Session 14 Natural Language:
Semantics and Parsing

A LINGUISTICS ORIEENTED PROGRAMMNG LANGUAGE
Vaughan R. Pratt

Massachusetts

Institute of Technology

Cambridge, Massachusetts

Abstract

A programming language for natural language pro-
cessing programs is described. Examples of the output
of programs written using it are given. The reasons
for various design decisions are discussed. An actual
session with the system is presented, in which a small
fragment of an English-to-French translator is devel-
oped. Some of the limitations of the system are dis-
cussed, along with plans for further development.

1. Overview

This paper presents some aspects of work done at
odd intervals over the past two years, first at Stan-
ford and then at MIT, on a project to develop a pro-
gramming language suitable for writing natural language
processing programs. The relevant acronym is LINGOL,
for Linguistics Oriented Language. Similar projects
such as COMT® and its successors METEOR and SNOBOL®
no longer reflect the state of the art of computational
linguistics; indeed, they do not rise above the remark
that computational linguistics is concerned with pro-
cessing text strings. The issue addressed in these
pages is that of the programming technology appropriate
to the syntax-semaotics interface, an artifice that
arises in the phrase-structure paradigm for natural
languages. A secondary issue, to be dealt with else-
where, concerns the relative merits of various parsing
strategies for phrase-structure oriented grammars, and
the development of a parsing algorithm superior to
both the Barley and Cocke-Kasami-Younger procedures.
(See Aho and Uliman' , p. 314).

Following Winograd's lead, we begin by giving
some examples of the output of programs written in
LINGOL. The point of having a programming language is
to make programming less painful for all concerned.
interesting property of these programs is that two of
them were written in quite a short space of time by
students with no experience in either LINGOL or lin-
guistics. Another program (the French translator) was
designed, written and debugged from scratch for demon-
stration purposes by the author from 3:00 a.m. to
8:00 a.m. of the morning he was scheduled fo give a
talk on it.

The first program was written in September 1970,
to test out the first version of LINGOL. It was a sort
of "deep structure" analyzer which attempted to make
syntactic remarks about sentences (Figure 1).
mar used in it served as the basis for the next two
programs.

The system languished for six months until a grad-
uate student, Bill Faught, took advantage of it for a
project in an A.l. workshop. He took two weeks to
write an English-to-German translator (Figure 2).

Later, Faught decided to do some serious work on
questioning-answering systems, and soon produced a com-
prehension program (Figure 3) that relied on a rela-
tional model of the world in which all related concepts
were represented in a graph as vertices linked by two-
way labeled edges. Recently he has produced considera-
bly more impressive results, but it is more appropriate
that Faught himself report on them.

The French translator (Figure 4) was written by
the author early in 1972, for demonstration purposes.
The program consisted of a page of grammar and seman-
tics, a page of dictionary and a page of useful func-
tions for conjugating verbs, arranging agreements of

articles and adjectives, performing liason and so on, so

it was not particularly large. The point of it was

The

The gram-

372

i)
i)
exhibition;

(iii)

it was easy to write;
it was sufficiently succinct to be suitable for
and

which it was defined.

It is easy to claim that, since this is a toy
translator, it says nothing about the real world. This
is certainly true with respect to polysemy. However,

it is false with respect to extensibility of grammati-
cla rules; we shall later demonstrate the striking ef-
fects obtained on adding very simple rules. More re-
cently, another four hours of work gave a self-tutor-
ing capacity to the program (Figure 5). Notice how
unknown words are correctly classified as to part of
speech before the program requests information.

We have been basking in these examples somewhat
vicariously. It is very much like explaining the
advantages and disadvantages of FORTRAN by exhibiting
the output of some FORTRAN programs. Thus the reader
should only infer from these examples the existence
of LINGOL, and a lower bound on what can be achieved
with it; he should infer its quality or lack of it not
from here but from the following.

2. Terminology and Perspective

Let us set the stage preparatory to giving some
definitions, we need a paradigm for computational
linguistics programs, and we choose the translation
paradigm as best describing the LINGOL system. The
tranlation paradigm characterizes natural language
processing programs as translators from the natural
source language to some natural or formal target
language, whether French, LISP, structural descrip-
tions, predicate calculus, conceptual dependency
diagrams or what have you. No loss of generality is
entailed here, for by simply making the target
language a programming language, any other paradigm
may be conveniently emulated. The obvious competitor
is the stimulus-response paradigm, in which the input
isseen as a stimulus that elicits an action. Again
no loss of generality can occur, since a possible
action is to emit an utterance. The main advocate of
this paradigm is Narasimhan 13 although it appears to
be the implicit paradigm in many extant programs. We
prefer the former paradigm for no very good reason,
although we"do find it easier conceptually to mani-
pulate and characterize utterances rather than actions.
In particular, in the programming methodology to be
described, large items are gradually built up from
smaller ones, and it is tricky to cast this in a
stimulus-response format.

Within the translation paradigm we shall identify
two main phases, cognitive and generative. The cog-
nitive phase is parsing, in which the input is pre-
processed until it is in a form convenient for opera-
tion on by the generative phase, which then produces
the translation as output. The paradigm itself does
not require that one phase run to completion before
the other can start. Indeed, Winograd's program
makes effective use of feedback from the partial re-
sults of his generative routines in guiding the cog-
nitive routines, by attempting to build a semantic
structure for, say, a Noun Group, before continuing
with the parsing.

We are now prepared for the definitions. By
syntax is meant all aspects of the source language
involved in the cognitive phase, including such things
as phrase structure rules and semantic markers. By
semantics we refer to what is involved 1n going from

it dealt competently with that part of English for

MONE OF MY FRIEMDT WEFE EATEM BY P LION
ROSERTION:
FALSE

ACTOR: LIOM

ACT: EAT

OFJECT: FRIEMDT
FORTIDN: ZOME
OWNER: T

THE AUTHORES OF HOME DF TMESE EDOKT
ARE FRIEMDE OF ®ETER .

ASSERTION:
FALEE
ZUEJECT: FMUTHOPS
ZFPECIFY ! THE
AJTHORE: OFt RODKES
FORTION: ZOME

FLACE: HERE
EE: FRIENDEZ
FRIEMD: DF: FETEFR
IF A AN CAM EAT A DDG A HOREE
AW EAT A TMALL CRT .
TZERTIONM:
HCTOR @ HOFZE
RLT: EHT
BEJECTE CRT
ZMALLHE:T§ ZMALL
IMMEDIACY = POTENTIAL
COMDITIONM?
ACLTOR : MAM
ATT ! ERT
REIECT: [IOE
IMMEDIACY s FOTEMTIFL

HOW CLHICKELY CAM Y00 SWIM
GHEZTIDM:
ZFEED:
ACTOR S YO
ACT: ThIM
IMHEDIAC ¢ POTENTIAL
EAT A HORSE
COMMAMD &
HCTOR S v
ACT: ERT

OBJECTt HORSE
O YO LIKE ICECREAM .

QUEZTION &
FCTOR: YD
ACT: LIKE
OEJECT: ICECKEAM
WHERE DR YOU £AME FEDM .
GIEETION:
FLACE :
ACTOR: YO
AZTY COME
FROM: 5
Fiqure 1, "Deep Structure" Analyzer.

373

THE LOVES THE MEN WHID CAN SIVE HER AOLTE FLOWERS .
ZIE LIEET DIE MAEMNEFR DIE IHREM HAUT BLULMEN
SEREN KIOENMEN

THE AFFPLES THAT THE MOFSE ERTS Wil BE EETTER
TOMOREDW .

DIE AEPFEL DIE DA FFEED
MORGAMN SEIN

15T WERDEN EBETEER

THAT THE DO THAT EATT FLOWERY CAM COME
15 BRD.

DPAEE DER HUNMNE DER BLUMEN IZZT HKOMMEM kFANN
I5T ZCHLECHT

MEN THAT ARE OLDL CAN TLEEF BETTER.
MREMMER LIE ALT SIND MOEMHEN BEITIFR ZCHLAFEN

HE
EF

ZLEEPS BETTER WHILE WIZ DO ERT.
ZCHLREFT REZTER WAHFEMD SEINE HUMIDE EZIEN

HE LIVEL WITH HER FELCALZE IHEN HE ERTY AFPFLES
SHE ERTE LIITH HIM,

EF LEET MIT IHF WEIL WENMN EF REFFEL 1%:T

ZIE MIT MM 1257

FHE ITLEEFT WITH HIM BECRLZE THE LOVES HIZ
ZIE SCHLAEFT MIT IuWM WElL I1E TEINME ¢RYZE

CAT .
LIEETY

HE
EF:

I 1N THE HODLUZE.
IST IM DEM HRLIZ

HE HITS THE ERLL TO THE DOG.
EF TCHLAEGT DAT BALL ZI0 DEM HUMD

THE CAT 1T IM THE TREE Bv THE HOUZIE.

DIE KRTZE 1ET IM DEM ERUM HEEEN DEM MO

THE ETUDEMT WILL ZLEEF EETTEF WHEM HE UNDERSTANLS
THE IDEA.

[ER STUDENT WIRT BESTEF IUHLAFEM WENM ER

DIE 1DEE WERZTEMT

THE LITTLE OLT' M@M LOVET THE FEN HOUGE EBECAUSE

HE CHM ZEE THE HOFZET.
DEF. KLEINE RLTE MAtM { JEET DRT ROTE BHALT
WETL EF DIE PFEFDE ZEHEMN KAMM

WHILE TRE FLOWER 1% OLD THE #&FPLE 13 VOUMGS,
JHHREMIY DIE BLUME AT TET [37 DEF AHFFEL M3

FHE WILL SIVE HIM A FLOWER IF HE EATZ
AFFLE TODAY.
SIE WIRD IMM EINE ELLIME

THE

FEEEH WEMM EF DEM

AFFEL HEUTE ITSY
THE HOFZE THAT EATT BADL AFFLEX 1T A TICH HORIE.
DR: FFERD IME SCHLECHTE REPFEL IZZT 197

EIM KRANKE: PFERT

IFf A HORSE CAH ERT A BOG H MAM CAN ERT A
TMALL CAT.

WENH EIH PFERD EIMEM HLMD ETTER KAHM KANH
EIty MANNM ETNE KLEIME MATZE EZTEN

Figure 2. The German Translator of W. Faught.

JACK BUILT A RED HOUSE.
MORTIMER wWAS JACK “3 RAT.
HOUSE THAT JACK BUILT

JILL BUILT A BLUE HDUSE.
FPOT WAS A CAT WHDO ATE MORTIMER.
JILL BECAUSE SPOT ATE MORTIMER.

FIDPO WAT A BROWN DOE. HE CHASED SPOT.
SFIKE URZ A BLACK DOG. HE CHASED JILL.

HE LOVED RATE.
HE LIVED IN THE

SHE LOYED CRTS.
JACK HATED

JHAT IS5 FHE COLOF OF THE DOG THAT CHASED THE CAT.
BREDWN

Di0 JACK LEVE MORTIMER.
YES

WHO ATE MORTIMER.
SPOT

WHAT IS THE COLOR DF THE HOUSE IN WHICH
THE RAT THRT THE (AT ATE LIVED.
RED

WhY DID JACK. HATE JILL.
RECAUSE TPOT EAT MORTIMER

wHO DID THE BLACK DOG CHAZE,

JILL

DID JILL LOVE ANY AMIMALS.

YES

WAMEN HATE RATS. DID JILL DISLIKE MORTIMER.
VES

Figure 3. Faught's Quastfon-Answering System.

1 LAVE MY WIFE.
47 AIME MA FEMME

SHE LOYES ME.
ELLE M” AIME

WE HAVE SOME BIG RED IDG:.,
NOUS AYOND QUELGUES GRANMDS CHIEN: ROUGE:

WE LOVE OUR DOGE,
HOUS AIMONS NOZ CHIENZ

OuR DOGE LOVE D%,
NOE CHIENS MNOUS AIMENT

Bl1& DORS LOVE BERAUTIFUL RED TABLESR,
LES GRANDS CHIEMS AIMENT LES BELLES TRELES ROUGES

SMALL DOGT LIKE PRETTY LITTLE TARLET.
LES PETITS CHIEN: AIMENT LEZ JOLIES PETITES TRELES

YOU HAYE A FREYTY LITTLE WIFE.
TU A3 USNE JOLIE PETITE FEMME

THE WIFE DF THE MAN KIXIER HIM.
LA FEMME DE L° HOMME L EMERASIE

A BLUE TRELE IS A BEAUTIFUL TRELE.
UNE TABLE EBLEUE EST UNE BELLE TRELE

THE MAHN LOVES HIT DOG:.
L” HOMME AIME TES CHIENE

yOU LOVE DOGE.
TU AIMES LES CHIENS

WE HAYE THE TRELE DF MY WIFE.
MOUS AYONS LA TAELE DE MR FEMME
Figure 4. The 5-Hour French Translator.

374

THE POLICEMAN GIVES THEM A TICIET.

WHAT 1% “"THE <OR f> POLICEMAN"T
LE SENDARME

WHAT IZ "To GIVE"Y

DONNER

WHAT I3 “THE (OF F> TICKET"?

LE BILLET

LE GEMDARME LEUR DONNE UN BILLET.
1345, MILLIZECONDE.

THE LITTLE SIRLE WANT A RED PIG.

WHAT IS "THE <OF R» GIRL"Y

LA FILLE

WHAT IT "TO WANT™%

VAULOIFR

CONIJGRTE IT

YEUX WEUX YEUT VDULDNI VOULEZ YEULENT

WHAT [% "THE <Dk A PIG"?

LE <OCHOH

LES PETITEZ FILLEZ WEULENT UM COCHOM FOUGE.
1581 . MILLITECOMES.)

FIG: 13 PIGE.

LEZ COTHONT SDMT BES COCHONET,
TT3. MILLISECDHIT,

I HAYE THE PEN OF MY ALNT.

WHAT 1% “THE (OR A» PEN"T

LA FLUME

WHRT IZ “THE <OF A> AUNT"T

TANTE

UHAT 1% ITS GEMDEF (MARZC OR FEM>?
FEM

J° Rl LA PLUME DE MA TANTE.

1157, MILLIZECOMDZ,

1 WANT THE EUREAL OF MY ONCGUIT

+*

CHELLO

TVPE ZENTENCE FOLLOWED EY . ! OF ¥

I WANT THE EURFEAY OF MY UMCLE.

WHRT 17 "THE (OR A} BLREAU"T

LE EUREAU

WHAT I3 "THE <OFR A UNCLE"?

L 0ONCLE

WHAT IT ITS GENRIER (MASC OR FEMIT
MASC

JE WENS LE BUFEAW DE MON ONCLE.
1225, MILLIZECDHDS.

Tgure 5, The 9%Hour French Translator.

the source language (after the syntactic preproces-
sing) to the target language during the generative
phase. By pragmatics we mean knowledge about the
universe of discourse, and the local context, that may
be consulted by both the cognitive and generative
phases as they make decisions.

Each of these three concepts has been used many
times in the literature, with varying shades of mean-
ing and precision, so we are not redefining previously
well-defined terms. Rather, we see three main aspects
to the programs written in LINGOL, and found three
reasonably uncommitted terms with which to label them.
(The first two definitions coincide more or less with
those of Winograd'®, so we are not too far afield.)

{It may seem paradoxical to include semantic
markers in syntax, but this is just the consequence
of our usage of the word semantics as opposed to that
of, say, Katz and Fodor’. With respect to.our usage,
semantic markers represent an attempt to encode a
tiny fragment of pragmatics into syntax (or into
linguistics, to use the Katz and Fodor terminology,
and their equation SEMANTICS = LINGUISTICS - SYNTAX).
We do not want to make value judgment; about such
an encoding; the example simple serves to illustrate
the perspective induced by our definition.)

3. Design Philosophy

There is not one philosophy in LINGOL, but three,
each tuned to the requirements of the three concepts
defined above. In the current version of LINGOL, the
philosophies are roughly as follows.

3.1 Syntax

Although this paper 1s concerned mainly with the
semantic component of LINGOL, it behoves us fo con-
sider syntax since the cognitive phase's output is
the generative phase's input. The central decision to
be made here is the choice of representation for this
output. It seems to be necessary to discover the re-
lations between the words of the sentence, or the
phrases of the sentence, or the entities denoted by
those words or phrases. Corresponding to each Qf
these possibilities are dependency structures8 '
phrase structures (almost everybody) and conceptual
dependency networks. Actually the first two are
not mutually exclusive, since it is perfectly rea-
sonable to construct structures which contain all the
information of both techniques. We shall use the
term syntactic structure to refer to such a coalition,
to distinguish it from a concept structure.

LINGOL is meant to be a practical system suitable
for export and immediate use by practising computa-
tional linguists. The technology for phrase struc-
ture is far advanced over any other technology, and
every successful program for the past eight years or
so has unashamedly used it. Also, it is fairly easy
to convert a phrase structure system to a syntactic
structure system, by tagging each phrase with the
corresponding governing word together with pointers to
the dependent phrases (and hence words).

For these reasons, the decision was made to use
phrase structure as the output of the cognitive phase,
leaving the other representations as projects to be
experimented with in the future. It is worth noting
at this point that the Idea of a concept structure is
a very powerful one, especially in combination witp
Fillmore's® notion of case, as suggested by Shank *,
The notion of phrase concatenation is nowhere near as
rich as that of case-based relations between concepts.
On the other hand, this does not make phrase-structure
a hopeless loser; 1n principle it is possible to con-
struct these relations during the generative phase.
However, Shank's point 1s that the information so

375

More re-
those of

discovered 1s vital to the cognitive phase.
cent phrase-structure systems, includin%
Bobrow and Frazers, Woods™ , Winograd™ and the sys-
tem described here make provision for discovering this
sort of information while building the phrase struc-
ture. This immediately raises the question, why not
build the concept structure anyway, since this infor-
mation is being discovered? This point seems un-
anwerable, and is an excellent area for more research.
In the case of LINGOL, we have a half-answer, in that
we have developed what we feel is very nice program-
ming methodology for dealing with phrase structures
during the ?enerative phrase. An avenue for research
is to see if this methodology carries over to concept
structures.

Given that LNGOL is based on phrase structure,
the next issue is that of the user's language for des-
cribing how that phrase-structure is to be.built. The
two criteria here are expressive power and ease of use.
For our first iteration of LINGOL, since we were more
interested in rapidly developing the semantics tech-
nology, we opted to sacrifice expressive power for
ease of use if necessary. This corresponds in a way
to Woods™ and Charnlak* assuming the existence of
some sort of parser and continuing from there. The
differences are firstly that both addressed pragmatic
issues while we address semantic, and secondly that
whereas they made up their omn parsed output, LINGOL
is equipped with a parser, on the philosophy that it
is easier to type unparsed than parsed sentences, and
that no ham is done when the parser gangs agley,
which in practice occurs satisfactorily infrequently
anyway.

The user's language for the cofgnitive component
was therefore chosen to be context-free rules, since
these are very easy to write. They have exactly the
same %(pressive capacity as Wood's transition net-
works“". Moreover, just as Woods extended the capaci-
ty of these networks by allowing the user to specify
operations on registers, so do we permit the user to
supply code to give hints to the parser whenever it is
about to apply a rule. This code has access to the
part of the tree built so far by the parser and re-
levant to the rule in question, and also to the user's
data base, or pragmatics (which seems to make semantic
markers unnecessary as a special feature of LINGOL).
The form of the hint is a grunt of approval or disap-
proval, at a 'volume appropriate for the particular
hint, and in this respect is just like Winograd's
numerical treatment of ambiguity18. So far, however,
none of the programs written in LINGOL have made more
than trivial use of this feature, in sharp contrast
to the use made of the features in the semantics stage.

With respect to the actual parser used, the syn-
tax philosophy is that the parser should be transparent
to the user, to within the representation of the parts
of the tree to which the user's code has access during
the cognitive phase. This philosophy has enabled us
to run without alteration each of a number of different
LINGOL programs in conjunction with various parsing
algorithms. The details of these parsers and experi-
ments are beyond the scope of this paper.

3-2 Semantics

In programming his semantics, the user should be
able to work without the distracting detail of parsing,
tree representation, and ambiguity. The point of
identifying the cognitive and generative phases is to
isolate these issues logically in order to achieve
this division of labor. Whether writing an English-
to-French translation program or a question-answering
system, there are many details to worry about that
have absolutely no relevance to the cognitive phase;
the myriad idiosyncrasies of French grammar and style,
the various searching algorithms and inference rules

that are tightly coupled in a QA system to the sur-
face structure information, and so on. Without some
method in this large-scale madness, progress is bound
to be slow.

Furthermore, we believe that a high level of
performance will be forthcoming from the cognitive
phase of, say, machine translation programs, long be-
fore a similarly impressive level is attained by the
generative phase. This is partly because comparative-
ly little work is being done on generative aspects of
MT, but more because it is inherently harder to say
something with good grammar and style than it is sim-
ply to understand what is being said (at least expli-
citly!). The cognitive phase can ignore most details
of style, and many details of grammar. In every
program written so far with LINGOL, the generative
component has been about three times the size of the
cognitive component, and our prediction is that this
ratio will increase as each phase is improved.

In taking this point of view, we are foIIowmg
a different philosophy from that of Winograd 8 who
makes use of strong interaction between the syntax
and semantics components, which is one of the more
notable features of his program. However, the result
has been to produce a program whose details are lost
in the richness of this interaction, and 1 have heard
Winograd mutter when looking at a part of the program
for "BE", "I don't remember writing that".

For the moment we are willing to sacrifice what-
ever additional power this approach has to offer for
the sake of being able to write clean, modular, trans-
parent semantic code. However, we do not believe
that in order to restore this power we need to restore
this interaction. Instead, we plan to rely eventually
on strong interaction between syntax and pragmatics,
leaving semantics as the cognition-independent arena.
This is not just passing the buck; since we see seman-
tics as being more complex than syntax, we are trying
to divide the work-load more evenly to keep all mod-
ules reasonably small. How syntax is to consult prag-
matics is material for future research. Our point is
that the bulk of semantics is irrelevant to syntax.

The issue now is simply, how does one write pro-
grams that operate on trees(the output of LINGOL's
cognitive phase)? This issue has been addressed by
computer scientists in connection with compiling for
the past ten years, and the discipline of syntax
directed translation has gradually emerged. An early
syntax, dlrected translator is that of Warshall and
Shapiro’’. They used the tree-walk paradigm, in which
the semantics consists of programs that tell a pointer
to move up, down or across the tree and occasionally
output information. Floyd (conversation) has commented
that the technique was much too clumsy for practical
applications when compared with techniques that tied
the semantics to the syntax rather than to tne output
of the syntax. It is alarming to find Winograd using
this approach in his program, which we conjecture
would be made more transparent by adopting a more rule-
oriented and less tree-oriented approach.

Sore theoretical work has been done on syntax-
d|rected translation, notably by Lewis and Stearns'?,
Knuth'', and Aho and Ullman'. ~Knuth's paper is of
interest in that it deals with the problem of passing
information up and down a tree, using the notions of
inherited (from above) and synthesized (from below)
attributes. All of these studies suffer, from the
computational linguist's point of view, in that they
deal with the microcosm of computer source and target
languages, in which the former can be made a compro-
mise between the user's needs and the syntax-directed
technology, and the latter is a relatively well-de-
fined, reference-poor language when compared with,
say, French.

Knuth's inherited and synthesized attributes ocome
closest to meeting our needs. The problem with these
attributes lies with his mechanism for moving them
around a tree. Every node through which information
is passed must make explicit provision for forwarding
it, even if it is irrelevant to that node.

For example, consider:

No mother of such twins has time to relax.
The mother of no such twins has time to

relax.

The mother of such twins does not have time
to relax.

The mother of such twins has no time to
relax.

(The second sentence is inspired by a study of negation
by Klima It should be said in a tone of horror,
with the emphasis on "no", before it sounds correct.)

In each case, what is being negated is the whole
sentence, yet the negation marker can be almost any-
where in the sentence. This implies that a large num-
ber of rules will have to make provision for passing
a negation marker up the tree.

This problem can be circumvented by using global
variables instead of Knuth's attributes. Now all that
is needed is for the negation marker to set a negation
variable, and for the semantics at the syntactic clause
level to read it.

However, consider the following:

The mother who has no twins has time to

relax.

This sentence makes a positive claim (as distinct
from the negative one of the previous example) in that
it says that there actually are people who do have time
to relax, namely those mothers who have no twins,
(moreover, it.does not explicitly say what happens to
mothers of twins.) This seems to be a situation where
synthesized attributes outperform global variables,
since the rule at the relative clause level can simply
refuse to pass on the negation marker.

Negation is not the only such troublemaker. Ar-
ranging subject-verb, adjective-noun and determiner-
noun agreement also requires passing information
around the tree, especially when translating into
French, where word-for-word translation does not
necessarily result in correct agreement. Again,
having more than one clause makes difficult the use of
global variables, particularly when a plural relative
clause is separating a singular subject from its verb.
Consider the five subject-verb agreements in:

As | walked into the saloon, the three men
whom Jim talked to after | left him yesterday grt
up and slowly walked towards me.

All of these problems are "marker" type problems.
Even worse is passing stylistic information from a
word at the bottom of a tree to a clause node higher
up, where this information is to be used to alter the
whole structure of the translated clause. Again it
is important that the appropriate clause get this
information.

The mechanism we want here is that of the local
variable, whose scope is the clause with which it is
associated. With many clauses we will associate many
more local variables corresponding to the various
markers and other messages that each clause may want.
Similarly, we will associate other local variables with
noun phrases, to achieve adjective-noun and determiner-
noun agreement. In the case of the subject, some of
these markers (person and number, but not gender)
must be shared with the clause as well, to ensure
subject-verb agreement, but we do not want the clause
to share the object's variables. Also, a relative
clause such as "who sleeps" needs the same information
from its govenor as does the principal clause. More-
over, we will want to pass not only markers, but also

word-specific programs written at the dictionary lev-
el (Winograd™®makes use of this technique for put-
ing the right programs in the right places.) The
implementation of local variables must be able to
handle these combinations.

The first version of LNGOL implemented all of
this in an unimaginative and not very general way.
Eventually, we saw the light and came up with the
program paradigm for syntax-directed translation.

The program paradigm says that the surface struc-
ture tree is a program. At each node of the tree
there is a function, and the subtrees of that node are

the arguments of that function. For example, if we
have a tree labelled
print
X
1./ \-
7N 7N
a b i d
c

this corresponds to the program
"print (a + b)x((-c)-d)".

Since LISP has a mechanism for local variables
(two, in fact - PROG variables and LAVBDA variables),
by adopting the program paradigm we automatically get
local variables. Moreover, because we can write the
code for each function separately, we attain a very
high level of modularity, which we have found pays
off handsomely when one tries to add new rules to an
already operational LINGOL program.

The mechanism we use for running these programs
differs slightly from LISP's usual EVAL operator. The
main difference is that it evaluates the function at
each node first, giving the function the responsibili-
ty for evaluating subtrees at its leisure, and con-
trolling the scopes of variables for different sub-
trees.

To illustrate all of this,
small French translator. Imagine we are seated at a
computer console. The following session has all
typing errors and stupid mistakes edited out, since
they rapidly become boring and obscure the main is-
sues. The user input is underlined.

First we load the system.
L+K!

we shall develop a

LISP 229CK
ALLOCT_
READY-TO-READ-GRAMMAR :

We are now talking to LISP.
LINGOL, type (HELLO}.

(HELLO
TRST FNTER YOUR GRAMMAR.

TOP-LEVEL:

So LINGOL s not yet educated. We could tell
LISP to read in our dictionary and grammar from z file,
but since we don't have such a file we will simply
type it in at the terminal,

First, tet us give LISP a few words,

DICT IONARY

THE DET ¢ -
DOG NOUN o -
SEA NOUN O~
LOVE VERB 0 "{AIM})

To get to talk to

THEN SAY HELLQ AGAIN.

£

I%CTIONARY ~IN

Each entry has four {tems, a word, its part of speech,
the coghitive program and the generative program.

377

The cognitive part is a LISP s-expression (or
program) that should evaluate to a number to indicate
to LINGOL our satisfaction or otherwise with this
choice of interpretation for this word. It is rele-
vant only when a given word has two dictionary entries
corresponding to two parts of speech. Under these
circumstances, we might write a program for each
entry to inspect the environment to see how reasonable
the corresponding interpretation is. These programs
would be executed if and when both interpretations
were found to make sense given the context to the left,
e.g., it would be executed in "the scout flies..."
but not in "the big flies...", where "flies" is listed
as both a noun and a verb. This component of the
entry need not concern us further here; we will remain

neutral by writing 0 everywhere, unless we happen to
dislike the entry itself, in which case we will write
-1, or -2 if we are in a bad mood.

The generative part is a function destined to be
tacked onto the surface structure. Since words are at
the leaves of the tree, they have no arguments. In the
rase of "the", when the tree is evaluated, the corre-
sponding leaf will return a list of one element (LE)
as its value. The symbol ' is a quotation mark, and
means "literally", so as LINGOL will not think (LE) is
a program to be executed. The other entries are all
similarly structured. The reason we use a list of one
word rather than the word itself is that we are going
to APPEND these lists together to form longer lists.

Now we want a grammar to make sense out of the

words in combination.
(CRAMMARY
(SENTENCE__ (NP PRED) O (REFLY (AFFEND 'L !R)

CHAR
(NP_(DET NF) ¢ (APPEND 'L !R))
é@ NOUN © Thy

PRED (VERB NF) O {APPEND 'L IR))

o3
GRAMMAR-IN

Each rule is of the form (LEFT RIGHT QOG GEN). The
first two items should be interpreted as a context-
free rule LEFT -> RIGHT, where RIGHT is either one
category or a list of them if more are needed. At
present LINGOL only permits RIGHT to have at most two
categories; to get more, one should use extra names
and rules in the standard way.

The item GOG is exactly as for the corresponding
dictionary item, except that it may be invoked for
more complex types of ambiguity, usually structural.
As with the dictionary, we shall write no non-trivial
programs here, although we may occasionally use a
negative number when we write a rule which we do not
expect to need very often.

The item GEN is a more complex item than its dic-
tionary counterpart, since it can take arguments,
which are written !D (down) if RIGHT is a syntactic
category, and L (left) or IR (right) if RIGHT is a
list of two categories. These are not variables but
programs which run the program for the corresponding
subtree.

The first rule takes the translation of the NP and
the PRED and appends them into a single list. For
example, if the NP were (LE CHIEN) and the PRED were
(AIHE LE HER), then (APPEND !L IR) would produce (LE
CHEEN AIME LE MER). The function (REPLY L T) is a
LINGOL function which allows the generative phase to
type out on the console the words in L, followed by the
value of T. The variable CHAR is a LINGOL variable
which makes available to the generative phase the
character used to terminate the input string. (In the
near future we shall give this to the cognitive phase
instead, where it belongs.) In this case, we simply
echo CHAR back to the console.

The other rules are similar, but without the RE-
Hopefully they are all self-explanatory.
Let us try again to start LINGOL.

{HELLO)
™FE SENTENCE FOLLOWED BY . ! OR 7

5o far so good. Now for some sentences.

DOG LOVE SEA.
CHLEN AIM MER.
242, MILLISECONDS,

THE DOG LOVE THE SEA.
LE CHIEN AIM LE MER.
391, MILLISECONDS.

THE _SEA LOVE DOG?
TEMER ATM GHIEW?
317. MILLISECOMDS.

There is nothing to say here except to comment on
the timing. This includes reading in the sentence and
performing morphemic analysfs {a feature to be deg-
cribed tater), requiring about 30 milliseconds per
vord, or more if it is not in the dictiomary. Parsing
takes from 50 to 100 msecs per word depending on the
compiexity of the surface structure beaing preduced,
rather than on the size of the grammar, Parsing speed
15 essentially linear in the number of words in the
sentence, gfven a reasonably intelligently written
grammar of English. The timing of the generative
phase varies enormously, as 2 function of the complex-
jty of the user's semantic programs. In these examples
we are probably spending about 10 milliseconds per
word, The slowness 15 due to LINGOL's being written
in LISP,

It would be nice if we could inspect the tree on
which we are oparating. We can do this by telling
LISP to set the flag TREE., To get LINGOL to pass on a
message to LISP, precede it with a slash.

PLY .

£(SET0 TREE T)

T

THE DOG LOVE THE SEa.

THE bET

b0G NOUN — FF =xp

LOVE VERB

THE nBT T .
SEA mramame BOUN—= NP NP—PRED —— SENTENCE

(We have fl]]&d in the lines to show the con-
nections.) This device is one of several debugging
afds, It %= also possible to monitor the activity
of the parser as it discovers phrases, to see why ft
is not finding the right cnes. The start and end po-
sitions of each discovered phrase are given, along
with the rule used to discover ft.

E {SETQ SHOWPOUND T)

IHE.

1. 1. DET THR

Dog,

2. 2. NOUN DOG

2. 2, NP NOUN

1. 2. NP {DET . NP}
LOVE

3, 3. VERB LOVE

THE

4, &4, DET THE

SEA

5. 5. NOUN SEA

5. 5. NP NOUM

4. 5. NP {DET . NP)

3, 5. PRED (VERB . NP)
1. 5. SENTENCE (NP . PRED)
TE CHIER AIM LE MER,
682, MILLISECONDS.

We can also watch the EVAL mechanism for the se-
mantics (called SEVAL) returning values up the tree,
with the help of the LISP debugging afd TRACE:

/ (IRACE (SEVAL VALUE))
SEVAL)
THE DOG LOVE _THE SEA,

{1. ENTER SEVAL)

(2. ENTER SEVAL}

(3. ENTER SEVAL)

(3, EXIT SEVAL (LE))

(3. ENTER SEVAL)

{4, ENTER SEVAL)

(4. EXIT SEVAL (CHIEN))
{3. EXIT SEVAL (CHIEN))
(2. EXIT SEVAL (LE CHIEN))
{2. ENTER SEVAL)

(3. ENTER SEVAL)

{3, EXIT SEVAL (aIM))
(3. ENTER SEVAL)

(4. ENTER SEVAL)

{4. EXIT SEVAL (LE))

(4. ENTER SEVAL)

(5. ENTER SEVAL)

{5. EXIT SEVAL (MER))
{4. EXIT SEVAL {MER))
(3. EXIT SEVAL (LE MER})
(2. EXIT SEVAL (AIM LE MER)) LE CHIEN AIM LE MER.
(1. EXIT SEVAL WIL)

925, MILLISECONDS.

The numbers indicate the depth in the parse tree
(q.v. above). This routine is extremely helpful for
verifying that a1l functions are producing the correct
output, and also for discovering where in the iree
SEVAL runs into trouble.

We are not yet ready to translate the Canadian
Hansard. Let us put in a variable to denote gender.
The appropriate scope for the varfable 1s an NP, since
gender does not affect the verb. MWe need to tell LISP
to change the grammar (our grammar is not yet elaborate
enough to get LINGOL to do this for us).

L{SRAYMAR)

!gg !DET RP) 0 SQLAMBDA !GEND! !hPPEND 'L !R}}
—t)

(0]

ERAMARR-TN

LISP will now have replaced our old wule with the
new one, [(Only the components LEFT and RIGHT are
used to identify and delete the old rule.)

We have used LAMDBA rather than PROG to declare
cur new varfable. Had we used PROG we would have said

{PROG .(GEND) (SETQ GEND “M) (RETURN (APPEND
'L R

By using LAMDBA we save a SETQ and a RETYRN. This is
handy when there are a lot of variables to be SETQ'd.
The scope of GEND is just the NP, {.e., those

functions which are called directly or indirectly by

L and !R here, BEND is set to "M" (masculine) as the
default value (to enable us to eliminate specifying it
in the dictionary), and will retain this value through-
out its scope unless some function lower on the tree
changes 1t, which we arrange now.

DICTION.
SRA ROUN

0 (PROGZ (SETQ GEND “F) “(MER)))

v
BICTIONAR -IN

PROGZ evaluates each of 1ts arguments, but only
returns the value of the second.

We st111 have no way of using this information,
Suppose we want determiner-noun agreement.

378

/(DICTIONARY
(THE DET O (CDR {ASSOC GEND “{(M LE}(F LA))))

0]
DICTIONARY -1N

ASSOC is a LISP table-lookup function, and CDR
deletes the indicator in the discovered table entry
{recall that we want (LE}, not LE).

Hopefully we will find that the sea is LA MER.

THE DOG_LOVE THE SEA.
LE (HIEN AIM LE MER.
398. MILLISECONDS .

There i5 a problem here with timing - we are
trying to test GEND before it is set. The fault can
be corrected from the NF rule, by dofng 'R before L,
on the grounds that the noun will never have to con-
sult the determiner, This can be done by first as-
signing R to R. (For clarity, we revert to a PRDG.)

LUGRAMMAR)
(NP (DET NP) 0 {PROG (GEND R)
(SETQ GEND M)

(SETQ R !
{RETJRN (APFEND !L

a
GRAMMAR-IN

Now we can try again.

THE DOG LOVE THE SEA.
LE CHIEN AIM LA MER.
436. MILLIS ECONDS .

THE SEA LOVE THE DOG.
LA MER AIM LE CHIEN.
436, MILLISECONDS .

So it now seems to work. Had both the DET and the
NOUN depended on one other for various features, in-
stead of doing one before the other we would have
ignored the order and done the appropriate table look-
up higher up in the tree - the dictionary would simply
have passed the whole table up instead of dofng the
lockup itsetf. This would work because the table
lockup would be carried out with "complete informa-
tion", i.e., after both !L and !R had terminated exe-
cution.

Verb conjugation seems to be next.

The default value for PERSON is 3, and for NO it
is SING.

To use these varfables we need some dictionary
entries.

/ (DICTIONARY
Zébvz VERE O
(LI3T (COUNT {CDR (ASSOC NO

“{(SING AIME ATMES

ALME
(FLUR _ATMONS AIMEZ
DN
(1 NOUN D (PROGZ (SETQ PERSON 1) “{IF
YOU NOUN U (PROGZ (SETQ PERSON 2) “(TU)))
{}
PICTIONARY-IN

{COUNT L N) yields the Nth element of L.
This now gives:

THE DOG LOVE THE SEA.
TE THIEN AIME LA MER.
448, MILLISECONDS.

JOU_LOVE THE _SEA.
T} AIMES LA MER.
363, MILLISECONDS,

1t seems silly to have to write so much in a dic-
tionary entry for a regular verb ihy not just have a
function REG which adds the right ending to the stem?
We will define it by using DEFUN,

(DEFUN REG (STEM
“{TTET (CAT STEM (COUNT (CDR (ASSOC NO

“((SING E
ES EY
{PLUR ON5

EZ ENT))))

PEREON)) })

REG

(CAT concatenates two strings.)
Now we can make most effective use of it,

DICTIONARY
{LOVE VERE D (REG “AIM))
(HUNT VERB O (REG “CHASS))
{HIT VERB O (REG “FRAFP
{CLIMB VERE U {REG ‘HONT%)
O
BICTIONARY-IN

We can still enter irregular verbs the old way, or
better, we can define another function whose six argy-
ments are the sii. conjugations, We leave this to the
reader.

It would be nice to be able to distinguish sinqu-
lar and plural. This raises the morphological prob-
Tem of detecting an "s" at the end of plural words,

One solution 15 to make a dictionary entry for sach
plural word. But we can do better than this. LINGOL
a1lows the user to identify suffixes by saying

(DEFPROT 5 T SUFFIX)
5

This says that it is True that 5 1s a SUFFIX. The
same ¢an be done for PREFIX. If LINGOL fails to fimd
a word in the dictionary, it tries to remove a suffix.
If it succeeds, it looks in the dictionary for the
stem. For as long as it keeps failing to find anything
in the dictionary it keeps removing suffixes, and after
that prefixes. When it 15 done the effect is as if the
original word had been made several words, e.g., UN-
KINDNESSES becomes UN KIND NESS ES if UN 1s a prefix
and NESS and ES are suffixes. A1l information that
these words were once one word is discarded, which
could conceivably create unwanted ambiguities, although
it seems unlikely for most affixes.

The word 1s eventually reassembled by the usar's
grammar, e.49.,

E!GRMMAR!
NOUN (NOUN S) O (PROG2 _(SETQ NG "PLUR) ([IST

CAT (CAR JL) “53I)M)

)
éihMMAR-IN
DICTIDNARY
580
)
SrerionaRy-1N

THE DOGS LOVE THE SEA,
LE CHIENS AIMENT LA MER.
712. MILLISECONDS.

379

Ak, the determiner rule 1s no longer valid.

BYCTIONARY-IN

THE DOGS LOVE THE SIA.
LES CHIENS AIMENT LES MER,
918. MILLISECONDS.

Also we need a new FERION and NO for the object,
although GE\DRR is all right because it is in the NP
rule.

/ (GRAMMAR)
NP) 0 (APPEND 'L ((LAMEDA (PERSON
“HO) TR) 3 SING)JY
[#)
CRAMMAR-IN

THE DOGS LOVE THE SEA.
LES CHIENS AIMENT LA MER.
561, MILLISECONDS.

The reason we keep finding errors is because we
are writing the program as though we were beginners.
With a little experience, the user can learn to anti-
cipate most of'these problems at the start.

This scheme has the advantage that the user is
not constrained to any one morphological system, but
can write his omn in the same language as he writes
his semantics. It has another advantage in that
morphological processing can be interleaved with se-
mantic processing. For example, when LINGOL gives up
on a word altogether, it assigns it the category UN-
KNOAN and supplies the word in the generative phase.
If we want to implement Thome's closed-class dic-
tionary'®, in which unknown words are parsed as nouns,
verbs or adjectives depending on which interpretation
makes the best syntactic sense, then we could write
rules such as

{GRAMMAR,
(NOUN UNKNOWN O (LIST 'D
{VERB_UNKNOWN 0 (REG !D))
SEAMMAR-TN

THE DOGS PREFER THE CATS.
LES CHIENS PREFERENT LES CATS.
787, MILLISECORDS.

Notice how the issue of deciding what part of
speech the word is dealt with independently of, e.g.,
making "CAT" plural. Also notice that the parser cor-
rectly guessed the parts of speech, and went on to con-
jugate "correctly" the unknown verb, However, "cats"
is a bit of an Anglicism. Our program is starting to
look quite clever already without our having done very
much to it yet. We have only seven grammar rules, one
function (REG) and a few dictionary entries.

In the example of Figure 5 (section 1),the rules
involving UINANOAN have for their generative component
a program that queries the user about the translation.

These examples could go on indefinitely. To see
what can be achieved with a few more hours work, re-
fer back to Figure 5. That example still has very
little gammar - approximately twenty rules. However,
it has a page of LISP functions for doing liason, vari-
ous agreements, and handling tricky things like LES
versus DES in the object position.

These examples bring this section to an end.
There 1s no section 3.3 on Pragmatics - this is en-
tirely the user's problem. Figure 3 (section 1) gives
examples from a LINGOL program in which the user

380

successfully interfaced his semantics to quite non-tri-
vial pragmatics. It is not yet clear whether LINGOL
should ever address pragmatic issues.

4. Conclusions

We have described a programming language for
natural language processing programs. We discussed
the reasons for each of the major design decisions.
We presented a session with the system in which we
developed a trivial fragment of an English-to-French
translator. With adequate imagination, the reader
should be able to project at least some of the po-
tential of LINGOL. What may be more difficult to see
are the present limitations of the system.

We have already suggested that our separation of
semantics from the syntax does not present serious
problems. Whether this is true we leave to further
experiments with LINGOL. It should be noted that
LNGOL is still in its infancy; so far the author has
invested approximately three months' work in it, over
the two and a half years of its existence.

At present, conjunction is not handled at all by
LINGOL, except in so far as one may supply context-
free rules for each syntactic category to be conjoined
(which is most). This is tedious at best, and is net
even always possible. Ore wants to deal not only with
"The Chinese have short names and the Japanese long"
but with "He eloped with and married the farmer's
daughter." Neither of these are at all well handled
by context-free grammars, regardless of what we write
in the cognitive component of our rules. Winograd's
system deals with these sorts of problems simply by
being more procedure-oriented. This provides the
necessary flexibility to deal with pathological cases.

Another difficult area is that of adverbs, which
may appear in many places in a sentence, but which
always modify the verb of the clause they appear in
(unless they modify an adjective). It should not be
necessary to give rules for each of the places an
adverb may appear. It suffices to rely mainly on
semantic connections to establish the role of the ad-
verb, and this is one place where concept structures
(Schank') are of value. It is perhaps significant
that Winograd™® makes no attempt to deal with adverbs.

Both of these problems will be studied in the
near future, to see how best to change LINGOL to deal
with them without losing the attractive programming
convenience afforded by context-free rules in con-
junction with LISP semantics. In the meantime, the
system as it stands at present is available from the
author for experimental use. A LISP environment is
required, with at least 20K words of memory. An ob-
vious application for LINGOL is as a pedagogical tool
in a computational linguistics course, for Introduc-
ing students painlessly to one method of writing actu-
al programs that do something useful with English
other than parsing it for the sake of the parse tree.
We have used it for this purpose during the Independ-
ent Activities Period at MIT this January. Ore stu-
dent wrote an English-to-unpointed-Hebrew translator!
We ask only that users keep us up-to-date with the
uses to which they put LINGOL.

10.

1.
12.

13.

14,

5.

16,

17.

18.

19,

20.

21,

Bibliography

Aho, A.V. and J, UlTman, 1972. The Theory of
Parsing, Translation and Compiling, Vol.T,
Prentice-Hall, Inc., New Jersey.

Bobrow, D.6., 1964. "METEOR - A LIST Interpreter
for String Transformations," in Berkeley, E.D.
and D.G. Bobrow {eds.} The Programming Larguage
LISP: Its Operation and Application, Information
International, Inc. Cambridge, Massachusetts.

Bobrow, D0.G. and J.3. Frazer, 1969. "“An Augmented
State Transition Metwork Analysis Procedure,”
Proceedings of YJCAI, 1969, 557-568,

Charniak, E.C., 1972, "Toward & Mode! of Chil-
dren's Story Comprehension," Al TR-266, MIT,
Cambridge, Massachusetts,

Farber, 0.J., R.E. Griswold and [.F. PoTonsky,
1964, “SNOBOL, A String Manipmlation Language,“
Journal of the ACM, 11, 2, 21-30.

Fillmore, C.J., 1968, "The Case for Case," in
Bach and Harms {eds.) Universals in Linguistic
Theory, Helt, Rinehart & Winstor, T-30.

Green, P.F., A.K. Wolf, C. Chomsky and K. Laugher-
ty, 1961. "BASEBALL: An Automatic Question
Answerer," in Feigenbaum and Feldman {eds.)
Computers And Thought, 207-21A

Hays, D.G.. 1964, “Dependency Theory: A Forma-
lism and some Observations,”" Language, 40, 4,
511-525.

Katz, J.J. and J.A. Fodor, 1964, “"The Structure
of a Semantic Theory." 1n Fodor and Katz (eds.),
The Structure of Language, 479-518.

KTima, E., 1964, "Negation in English," in Foder
and Katz (eds.), The Structure of Lanquage, 246-
3zs,

Knuth, D.E., 1968, "Semantics of Context-Free
Languages,” Math Systems Theory, 2, 127-145.

Lewis, P.M. and R. E. Stearns, 1968, "Syntax-
directed Transduction,” Journal of the ACM, 15,
3, 465-488.

Narasimhan, R., 196%. “Computer Simulation of
Natural Language Behavior," Invited paper, (on-
ference on Pleture Proc. Mach., Canberva,
Australia.

Schank, R., L. Tesler and 5. Weber, 1970, "Spino-
za I1 - Conceptual Case Based Natural Language
Apalysis," AI-109, Stanford University, Stanford
California.

Simmons, R.F., S. Klein and K. McConlogue, 1964.
"Indexing and Dependency Logic for Answering
Engtish Questions, Amer. foc., 156, 3, 196.

Thorne, J., P. Bratley and H, Dewar, 1968.
Syntactic Analysis of English by Machine,’
Michie, D. {ed.) Machine Intelligence 3.

Warshall, S. and R, M, Shapiro, 1964. "A general
purpose table driven compiler," Proc. AFIPS
SJCC, 25, 59-65. S$partan, New York.

Winograd, T., 1977. "Procedures as a Representa-
tion for Data in a Computer Program for Under-
standing Natural Language,” Project MAC TR-84,
MIT, Cambridge, Massachusetts.

Woods, W.A,, 1967. PSemantics for a Question-
Answering System,” Report no. NSF-19, Afken
Computation Laboratory, Harvard University,
Cambridge, Massachusetts.

Woods, W.A., 1969, “Augmented Transition Networks
for Natural Language Analysis," Report No. C5-)
to the NSF, Aiken Computation Laboratory,

Harvard University, Cambridge, Massachusetis.

Yngve, V.H., 1963, "COMIT," Communtcations of
the ACM, &, 3, B3-84.

"The
in

Wok reported herein was supported in part at Stan-
ford by the National Science Foundation under grant
no. GJ 992, and the Office of Naval Research under
grant number N-00014-67-A-0112-0057 NR 044-402; by
IBM under a post-doctoral fellowship at Stanford; and
at the Artificial Intelligence Laboratory, a Massa-
chusetts Institute of Technology research program
supported in part by the Advanced Research Projects
Agency of the Department of Defense and monitored by
the Office of Naval Research under Contract Number
N00014-70-A-0362-0003.

Reproduction of this document in whole or in part is
permitted for any purpose of the United States Gov-
emment.

381

