Nonmonotonic Model

Inference

— A Formalization of Student Modeling —

Mitsuru IKEDA, Yasuyuki KONO and Riichiro MIZOGUCHI
[.S.I.R., Osaka University
8-1, Mihogaoka, Ibaraki, 567, Japan
{ikeda,kono,miz}@ei.sanken.osaka-u. ac.jp

Abstract

A student model description language and its
synthesis method are presented. The language
called SMDL is based on a logic programming
language taking 4 truth values such as true,
false, unknown and fail. A modeling method
called HSMIS is a new nonmonotonic model
inference system and has the following major
characteristics: (1) Model inference of logic
program taking 4 truth values, (2)Treatment of
nonmonotonicity of both student's belief and
inference process itself. HSMIS incorporates
de Kleer's ATMS as a vehicle for formulating
the nonmonotonicity. Both SMDL interpreter
and HSMIS have been implemented in Com-
mon ESP(Extended Self-contained Prolog) and
incorporated into a framework for ITS, called
FITS.

1 Introduction

Student modeling is one of the most important topics
of ITS research, because the behavior of an ITS largely
depends on a student model, which represents the snap-
shot of student's knowledge. This is a reason why many
efforts concerning student modeling have been made,
for instance, overlay model, buggy model, perturbation
model, etc.[Wenger, 1987]. Most of the conventional
modeling methods have simple pragmatic structures and
have been incorporated into many ITS's. However, all
the methods have some limitations and no complete and
sound inference procedure for the models is obtained yet.
In this paper, we formalize a student modeling problem
as an inductive inference problem, that is, a problem to
construct a model explaining observed data. In our case,
data are student's answers and the model is student's
knowledge.

In order to make ITS's intelligent, student models have
to satisfy the following requirements:
1. Accuracy-cost tradeoff: In general, the more ac-
curate the student model becomes, the more effective the
behavior of the system becomes. However, there exists
trade-off between accuracy of the model and cost to con-
struct it. From a pragmatic viewpoint, we must set up
an appropriate representation scheme for student models

by taking the trade-off into considerations.

2. Nonmonotonicity: Tutoring is to guide students
toward better understanding of teaching material. This
means that the learning process is essentially attained
with change of their minds and hence the consistency
of student's answers can be easily lost. Therefore, stu-
dent modeling methods should be able to automatically
manage the consistency of student's answers in order to
follow the student's mind. However, there is very few
attempts to formulate the nonmonotonicity of student
modeling process[Burton, 1982][Huang et al., 1991a].

3. Unknown assertions: When a student fails to
deduce her own solution for a problem, she would say to
her teacher "l could not solve the problem". Needless to
say, this assertion does not mean she does not have any
knowledge. The student model module should use this
assertion as informative data about her knowledge and
construct a model which explains why she cannot de-
duce the answer from her own knowledge. This requires
student model to deduce "unknown" assertions.

4. Theoretical foundation: Domain-independent and
theoretical foundation for the student modeling mecha-
nism should be defined. It contributes to both clarifica-
tion of the inherent property of student modeling prob-
lem and to articulation of the scalability and reusability
of the proposed mechanism.

To meet these requirements, we have developed a stu-
dent model description language SMDL and a hypothet-
ical student model inference system HSMIS. SMDL is
an extended version of Prolog and takes four truth val-
ues including "unknown" to model the student precisely.
HSMIS, an extended version of Shapiro's MIS[Shapiro,
1982], is an inductive inference system for SMDL. The
second requirement mentioned above suggests that the
inference procedure should cope with nonmonotonic
modeling process. In HSMIS, ATMS: Assumption-based
Truth Maintenance System [de Kleer, 1986] is employed
for this purpose. HSMIS has been implemented in Com-
mon ESP(Extcnded Self-contained Prolog) on SPARC
station.

2 SMDL : A Student Model
Description Language

In addition to the above requirements, a student model
is required to represent not only students but also sys-

lkeda, Kono, and Mizoguchi 467

tems’ understanding of the students, which implies the
model has to distinguish the two states: The system can
predict the behavior of the student and the system can-
not. When the model is based on logic, which is our
case, it has to have two truth values, true and false,
which dencte the above two states, respectively. Need-
less to say, the former state, that is, one corresponding to
“true”, should represent the student’s logical state such
an “true”, “false”, and “unknown” which stand for “the
student believes a statement is true”, “the student be-
lieves it 18 false” and “the student does not ascertain its
truth®, respectively. Then, we have two seemingly zsame
truth values “false”, which can be discriminated as fol-
lows: Employing Proleog terminclogy, the former “false”
is treated as “fail” and the other as one of the three val-
ues corresponding to “success”. Discrimination among
the three values is done by introducing an auxiliary ar-
gument interpreted by meta-interpreter.

2.1 Overview of SMDL

Facts are represented in SMDL as follows.
temperate{parias,true). torrid(paris,false).
tertile(paris,unknown).

These three facts represent “the student believes Paris is

not in the torrid zone but in the temperate zone and does

not know whether it is fertile or not.” If the facts are
all in the student model, it also represents “the system
cannot say anything about student’s knowledge for other
statements.”
Clauses are written in the form of
A "BlvBZs"',Bk

Ais called a head and RHS of the clause is called a body.
Some simplified examples are shown below.

7- grov(paris,T).

grow(X ,Ty) ::- temperate(X,T}).

grow(X ,Te) ::- torrid(X,T;), wet(X,T3).

These two clauses show that the student thinks “if place

X is in the temperate zone or in the torrid, wet zone

then the plant grows in X™. Intuitively, the clauses with

the same head have a disjunctive relation and the pred-

icates in the body have a conjunctive relation. Given a

goal grov(paris,T) , SMDL interpreter calls the sub-

goals temperate(paris,Ty), torrid(paris,T;) and
vet(paris,T5) in this order. The truth value T of
grov(paris,T) is obtained according to T = T, VT, =

NTV(TaATy) = truev(falseAunknown). Semantica of

the logical operators “A" and “v" are shown in Table 1.

2.2 Definition of SMDL

The predicate of SMDL is of the form p(X;, Xj,---,
Xm,T), where p 15 a predicate name and X; (1< X <
m) is a variable, From now on, a sequence of variables,
for example X1, X2,---, X, is abbreviated aa X. Tis
a truth valuable or one of four truth values.

The clause of SMDL is of the form: P:-Q,,@Qq,---,
Qm., m 2 0, where P,Q;(1 <€ 1 € m) are predicates.
In the case of m = 0, it is called a faet. The SMDL
program P is a finite set of clausea.

The execution process is defined as two different forms:
Weak-derivation and strong-derivation. The former is
like to the execution process of Prolog, that is, “a goal

468 Intelligent Tutoring Systems

succeeds in weak-derivation if there exists at least one
clause which derives the goal”. On the other hand, the
strong-derivation is somewhat different and complicated.
Roughly speaking, a goal with truth value T succeeds in
strong-derivation, if all the OR clauses unifiable with
the goal succeed and the result of OR evaluation is T.
Formal definition of the execution of G with P is given
below.)
[Definition 1] When a goal G = p(X’,T”) is given
and there exist the clause C = p(f(.T)::-ql()'fl,Tl),
. --,qk()-fg,Tg) € P and the substitution #; such that
p(X"T') = p(X,T)8, a new goal G' = {g(X,.T}),
-, qe(Xi, Ti)}0 18 derived from the goal G and the
clause C. When k > 1, § = {T/(TWA---T)} U 6.
This operation is called weak derivation and denoted by
a triple < G',8,C >. GOy8;---8_, is weakly-derived
from P, if there exists a sequence of the weak deriva-
tion: < G,0p,Cy >< G, 0,C, > - < ¢, 8,Ct >,
where C; € P(0<i<l-1). 0
[Definition 2] For a given goal G = p(X',T'),
iIf there exist a set of clauses § such that § = {C;|
Ci = p(Xi,T)-ga(Xa, Tar). -+ @in(Xin, . Tin,) € P
p(X'\T") = p(X;,1)8;, 1 €1 < m and the most general
unifier 8 of {p(X")} U {p(X;)|1 € i < m} then a new
goal G’ as shown below is derived from G and §.

G = {gi(Xip. Tl € i € m, 1 <k < n;} 8, where

8 = {{Te/ gLy Tu)1 < i < m} U{T'/ (VL T} U o

This operation is called strong derivation and de-
noted by a triple € G, 8,5 3. G808, ---#,_, is said to
be strongly-derived from P, if there exists a sequence
of the strong derivation operations as shown below,:
< G! Bﬂ! Sﬂ >r& qu 911 Sl SRR 4 ¢a gln Sl p- - N where
S, cprDo .

[Definition 3] When a goal G = p(X',T") and a SMDL
program P are given, the result of derivation is defined as
follows. (1) p(X’', true)@ is derived from P iff it is weakly-
dertved from P . {2) p(f(’, false)8 is derived from P iff
it is strongly-derived from P. (3) p(X', znknown)d is
derived from P iff it is strongly-derived from P. (4)
Otherwise, p(X’, fail)® is detived from P. O

3 HSMIS

In general, an inductive inference algorithm is based on
the assumption that all the observed data{oracles} are
consistent. In our case, it requires that student’s an-
swers are consistent. Unfortunately, however, the as-
sumption does not always hold. Studenta change their
minds and sometimes make careless mistakes. There-
fore, a student model inference system must cope with
inconsistent data. In HSMIS, ATMS is emplayed for this
purpose. Fig. 1 shows the block diagram of HSMIS. It
consists of SMIS[Ikeda et al., 1989], ATMS, Virtual ora-
cle generator{explained below) and Contradiction resolv-
ing system(CRS). The main task of ATMS is to manage
consistency of a set of assumptions (environment) used
by the problem solver, SMIS in our case. Virtual oracle
generator is responzible for improving the performance of
model inference by generating assumed student answers
based on the reliability of the student without asking

Table 1: Definition of A and V.

{a) A operator

(b) V operator

A | true | unk. | false | fail v " true | unk. | false | fail
true true | unk. | falsc | Il true true | true | true | true
unk. || unk. | unk. | false | fml unk. [[true | unk. | unk. [fail
false || false | false | fnlse | fail false || true | unk. | false | tal
Tal || fal [sl | Imal | fmil Tal | true | T3l | Ia3l | fai]

HSMI

manage
CONTEXT
Swdest Model, exc.

{
¥

SMIS

oracle, ; meta-oracle

Student

Figure 1: Block diagram of HSMIS.

the student questions. CRS resolves the inconsistency
identified by changing the environment.

3.1 SMIS

A pair of a problem and an answer to it is called an
oracle and is nsed as data to be covered by the model
obtained. X
[Definition 4] An oracle is of the form < p{(X',T),
T’ >, where X' is a sequence of ground terms, 7 iy a
truth variable and T” € {true, false, unknown} . O

Because fail represents the system’s understanding of
student, it cannot be the truth value of an oracle. A set
of oracles given to the system is called an oracle set and
denoted by £,

[Definition 5] The clause C = p(X, T)-q1 (X1, Th).
QZ(Xh T2)1 e an(j{iu Tk) € P covers P(X’, T’}w when
there exist 8 such that C8 = p(X', T")::-q, (X, TY),
@2(X3.T3), -, qu(XL, T3), T'= AL, T} and
{<pX".T), T >}u{< (X, T).T] > 1 i<k} C
2. We call the ¢;(X],T{). - q(X}.T}) a top-level
trace of C for p(X',T"). O

A simplified but concrete example of top-level trace is
shown in Fig.2, where the oracles Oy, - -, Og correspond
to student’s anawers (a) through (f), respectively. In this
case, the clause C covers Oy, where the top-level trace
is made by O; and O,.

SMIS applies the following procedure repeatedly to
the model: (1) if there is a difference between an oracle
and the fact derived from the student model, activate the
student model diagnosis system, SMDS, to identify the
cause of the difference. (2) According to the diagnosis,

SMIS selects an appropriate operation, either removal
of an incorrect clause or addition of a new clause, and
informs ATMS of it.

3.1.1 SMDS: Student Model Diagnosis System

SMDS traces derivation process of the current model
and checks the results with oracles. SMDS has three
subprocedures, such as, ip , fp and failp . The procedure
ip finds out where a new clause should be added, The
procedure fp detects an incorrect clause which should be
removed from the model. The procedure failp dynami-
cally decides which procedure, fp or ip , should be acti-
vated. SMDS selectively activates one of them according
to the difference between the oracle’s truth value and the
one derived from the student model.

[Definition 6] The model P is said to be weak, if
there exists an oracle < p(X’,T),T" > and p(X', T') is
not weakly-derived from the current medel P. O

The cause of the weskneas is identified by the proce-
dure ip . To cover the uncovered goal detected by ip ,
HSMIS searches for a new clause to add into the model,

We define « to be the binary relation over truth val-
ues. When two clauses derive different truth values, T}
and T, for a goal, T} is dominant if the relation 77 > T3
holds.

[Definition 7} Ty » T» if T, = IvT;,
.7y € {true, false, unknown}and T} # T5. O
[Definition 8] Assume that < p(X'.T),T" >€ and
T’ € {unknown, false}. The model P is said to be
strong if p(X’,Tg) such that Tg » T' is weakly-derived
from P. O

A strong model has at least one incorrect clause which
has a refutation as defined below.) .
[Definition 9] The clause C = p(X,T):-q1(X1. 1),
---,qk(){'k,Tk) is said to be incorrect, if there exist
< p(X'\ T}, T >€ Qand {< (X|,T).T' > 1 <i <
k} C Q@ where T" < AX T p(X.T)-q(X].T)),
---,qk()i',:,T;) is called refutalion for C. O

In Fig.2, the clause C is refuted by oracles Oy , Oy and
Os. The incorrect clause with a refutation, which should
be removed from the model as a cause of strongness, is
identified by the procedure fp .

[Definition 10] The model P is said to be incomplete
if < p(X’,T), T >¢ R and p(X’, fail) is derived from
PD

where

The procedure failp identifies the cause of the incom-
pleteness, which ig either an uncovered goal or an incor-
rect clause. Becanse of the space limitation, detailed ex-
planation of the procedures, ip , fp and failp |, ia omitted.

Ikeda, Kono, and Mizoguchi 469

| grow(Plant,Place,T)::-
suitable_temperature(Plant, Place,T1),
suitable_soil(Plant, Place,T2).

A

(01 is covered by C', where the top-level trace,

(suitable_temperature(rice.ceaka true),
suitable_soil{rice,onaka,true)) ,

_ is made by O2 and 03.

V4

»

.

(El' is refuted by O4, O6 and 06, where the refutation is

t, falae)::-
(mﬁgﬁlﬁalyp u)at.ure(rice, a?rpt true),

suitable_ lm] rice, egypt, tru

O1: <grow(rice, osaka }, true>
0Q2: <suitable_temperature(rice, osaka), true.>
03: <suitable_soil{rice, osaka), tue>

04: <grow(rice, egypt }, falso:-
0O5: «suitable_temperature(rice, egypt), true.»
06: «suitable_soil{rice, sgypt), true.>

(a) Does rice grow in Osaka? yes
(b) Is the temperature of Osaka suitable for rice ? yes,
(c) Is the soil of Osaka suitable for rice ? yes,

(f) Is the s0il of Egypt suitable for rice ? yes.

(d) Does rice grow in Egypt? no.
(e} Is the temperature of Egypt suitable for rice ? yas,

Figure 2: Examples of the top-level trace and the refutation for a clause.

More detailed explanation and Prolog implementation of
each procedure is shown in [Ikeda et al., 1992].

3.1.2 Search for a new clause

A clause to be added into the model is searched by us-
ing the refinement graph having the clause as a node ac-

cording to breadth-first search. The directed arc C £ ¢’
on the refinement graph suffices the following relation.

C £ C': When the clause C' covers a goal A
- then the clause C covers A

With contraposition of this condition, the search on the
refinement graph can be pruned. That is, when the
clause does not cover A, branches leading to descendents
of C in the graph can be pruned. A refinement operator
p , which is defined by modifying that defined in MIS,
produces a refined clause C' from the given clause C.

A refinement graph represents knowledge which en-
ables efficient search for a clause to be added into the
model. However, it does not have any a priori knowl-
edge of bugs. So, it always tries to find out a clause from
a fixed root, that is, the most general clause, indepen-
dently of materials. Note here that we can introduce the
concept of bug when we know the material well. Given
some typical bugs specific to the teaching material un-
der consideration, search procedure can begin searching
from these bugs, which makes search very efficient.

3.2 Managing cons;stency of the inference
process

There are two types of nonmonotonicity in our system.
One is inherent to inductive model inference itself and
the other is cansed by inconsistency of students’ behav-
ior. Both of them are formalized in a unified architecture
on HSMIS by combining SMIS and ATMS. The model-
ing task perfermed by HSMIS is defined as follows:
[Definition 11] When an oracle set 1 is given, infer a
model for §2 allowing the distance D(£2,) to be mini-
mlzed 2 satisfies the following restriction.

Q={<ATi>|1<i<k}

forQ={< A, T;>|1<:<k}. O
The distance D(R,12) is defined as number of the or-

470 Intelligent Tutoring Systems

acles of 2 whose truth value is different from the corre-
sponding one in § .

With the aid of schematic diagram shown in Fig. 1,
the overall behavior of the system will be made clear in
this subsection. (1) Given student answers (“real ora-
cle™), Virtual oracle generator generates virtual oracles
if necessary and pass them to ATMS with the real ora-
cles. (2) SMIS informs ATMS of all the inference process,
When a contradiction is informed, ATMS computes the
label responsible for the inconsistency based on the infor-
mation given up to that point and store it in the nogood
record. (3) SMIS asks CRS to resolve the inconsistency.
(4) According to the cause of inconsistency identified,
CRS selects a new environment which i3 consistent by
asking ATMS to check its consistency. (5) ATMS an-
swers the queries by inspecting the nogood record and
(6) pass the control to SMIS together with a new context
supported by the new consistent environment.

With regard to the contradiction caused by the incon-
sistent oracle set, CRS searches for a consistent {1 in the
ascending order of D{Q,). To improve the efliciency
and educational validity of selecting the consistent ora-
cle get which has the minimal distance, we incorporated
some domain-independent heuristics into the search pro-
cedure: Give priority to correct answers, give priority
to the oracles supporting the plausible clause, which is
supported by relatively many oracles, and so on. After
that, HSMIS continues inference on the new consistent
environment including £ . Details of HSMIS reasoning
process are explained in the following subsections.

3.2.1 Description of inference process
Conditions for HSMIS to add a new clause C =
p(X, T} v-qi{X1. 1)y -+, g X, Tk} to a model can be

described as shown below.

if condl: (<p(X',T7), T >€ 1) and
cond2: (C is correct) and
cond3: (C covers p{X’,T'}) and
cond4: (C is the most general clause)
then { add C to the model)

The conditions, i.e.
scribed as follows,
condl: To cope with nonmonotonicity of student's an-

swers, the oracle is dealt with as the following assumed
node of ATMS. .
< oracle(p(X’,T),T'), {{a:}}, {{ai}} > !
cond2: The correctness, which means there is no refuta-
tion for C, is also dealt with as the assumption node as
shown below,
< correct(C), {{a:}}, {{a:}} >

cond3: The condition means that C has a correct top-
level trace for (X', T’) in 2 . HSMIS informs ATMS of
its exiatence in the following form.

oracle(p(X",T), T')

orncle(?l (x; ' Tl)al T'{)

condl through cond4, are de-

= cover(C,p(X,T"))

oracle(gu(X}, Te)8, TL)
where T = Af:l T:' and (91 (Xll T'.I.)s Ty Qk(xh Tk))o is
a cotrect top-leve! trace of the clause C for p(X', T").
cond4: When C is added to the model, it has to be guar-
anteed that its ancestor clause in the refinement graph,
which is more general than C, does not exist in the cur-
rent model. However, an ancestor clause may be added
to the model as the inference proceeds, because of the
nonmonotonicity of the inference process. Therefore, the
generality of C is also dealt with as the assumption.

< general(C), {{a:}}, {{a:}} >

Addition of C to the model is informed ATMS in a style
as shown below.

oracle(p(X',T), T")

correct(C)

cover (C,p(X', T"))

general(C)

If the environment is changed and the model{C) does
not hold in the new environment, ATMS changes the
status of the node from in to out .

When a refutation for a clause C identified by the
SMDS, it 15 informed ATMS in the following form.

oracle(p(X',T), T")
oracle(q:(X1.Th), 7))

= model(C)

= refutation{C))

oracle(qe(X}, Ti), T¢)
where p(X', T"):-q (X1, T3), -, qe(XL, TL) is a refuta-
tion for C. .
When it is found that €’ does not cover p(X', T'),
HSMIS informs ATMS of it as an assumption.
< uncover (C’, p(X', T')), {{as}}, {{ai}} >

3.2.2 Controlling the modeling process

HSMIS tries to model the student from her behavior
during which it automatically asks questions which con-
tribute to disambiguation of alternative clause selection

1An ATMS node is a triple < D,L,J >, where D is the
datum used in the remsoning eystem, L iz a Iabel, which is a
set of environment the deutm holds and J is a eet of justi-
fications. An assumed node has the same set composed of a
single identifier as a label and a justification(in this paper,
the jdentifier of the assumption will be expressed with a;).

and diagnosis. In other words, HSMIS asks questions
regardless of their appropriateness in the sense of tutor-
ing. This requires some control mechanism of the HSMIS
behavior. This subsection describes several additional
mechanisms introduced to augment the HSMIS.
Virtual Oracles: Let us discuss the initial model prob-
lem. There are two alternative initial models: one is
empty which means the teacher does not know anything
about the student in advance and the other is complete
knowledge (teaching material) which means teacher as-
sumes the students usually understand the material very
well. Although the former case is reasonable, the system
tends to ask many questions to get a lot of information
of how well the student understands the material. On
the other hand, the latter case does not require many
questions at least for excellent students, since the model
can explain their correct behavior. This characteristics
is very reasonable in real tutoring. Therefore, we de-
cided to employ the latter. However, a serious problem
still remains. One cannot simply put a clause into the
student model without any justification.

In order to cope with this problem, we devised an Vir-
tual oracle generator, which generates plausible student
answers based on the reliability of the current student
model instead of asking questions. When a student's
behavior is confined within the scope of her teacher's
prediction, the teacher asks less questions by replacing
the necessary information with correct answers. We call
this type of oracle a "virtual oracles".

Let C be an SMDL clause p{X,T):-q (X1, T3+,
qi(Xy, Ti) which is either correct knoledge or plausi-
ble buggy knoledge in the teaching material. When
the student makes an answer p(X',T') for the head of
C and C is supported by p(X’,T') and a set of cor-
rect answers concerning C', ATMS is informed of an as-
sumtion trust(C}, which means “C is reliable.,” When
trust(C) is fn the current environment, Virtual ora-
cle generator generates a set of virtual oracles, that is,
{< @(XTT] > < (XL Te), T, >} The vir-
tual oracles together with p(X’,T’) construct a correct
top-level trace of C and are correct answers of the teach-
ing material. For each virtual oracle < ¢;(X!, T3), T} >,
ATMS is informed its generation according to the fol-
lowing justification:

trust(C), oracle(p(X', T). T")

= vooracle(gi{ X, 1), T7))
SMIS treats oracles and v_oracles in the same manner,
while ATMS manages their consistency.
Meta-Oracles: Students sometimes want to say her
knowledge in the form of knowledge instead of facts. And
the system sometimes wants to ask the student the rea-

son why she answers a question that way. The following
ia an example.

Systetn : Does rice grov in Russia?

Student: Yam, it doas.

System : Why do you think rice grovwa in Rusaia?
Student: It has wide flat fisld and river.

In this case, HSMIS can obtain an oracle and a clause
as follows.
< grow(rice, russia, T), true >

Ikeda, Kono, and Mizoguchi 471

grow(rice, Place) ::-
flat field(Place),
Tiver{Place).
The clause obtained from the student are called

“meta-oracle”. When the clause C is added to the model
based on a “meta-oracle”, HSMIS informs ATMS of the
following justification.
metaOracle(C, yes)
correct(C)
general(C)
Similarly, when the clause € ia removed from the
model based on a “meta-oracle”, HSMIS informs ATMS
of the following justification.
metaOracle{C, no) = re futation(C)
The meta-oracle is dealt with as the following assump-
tion node of ATMS.
< metaeOracle(C, V), {{a;}}. {{n:}} >

} = model(C)

3.2.3 Detection of contradiction

The contradiction derived during the inference process
of HSMIS is classified into the following seven types: 1)
Contradiction of correctness, 2} Contradiction of cover
teat, 3)Contradiction of clause generality, 4) Contradic-
tion of trust, 5) Contradiction of meta-oracle, 6) Contra-
diction of oracle and 7) Failure of clause search. More
detailed explanation of the contradictions and the mech-
anism to detect them is shown in [Ikeda et al., 1992).
When any types of the contradiction is detected, ATMS
is informed of it and updates the nogood record.

3.2.4 Resolution of contradiction

correct(C'), uncover (C, A), general(C), trust(C) and
metaOracle(C) are called to be default assumptions,
which means that “so long as no contrary evidence is
found, it is assumed to be tm ”. The set of these as-
sumptions included in the environment is called a de-
fault environment (expressed with D,}. From this, the
current environment C, can be expressed with

C,=Deuft

Thus, contradiction can be classified into I) one re-
garding the default environment and II) one rcgarding
the oracle environment. I) is the contradiction caused by
the nonmonotonicity inherent to the inference process,
whereas II} is the one caused by the nonmonotonicity of
the student'’s answers,

I} A resolution method for contradiction of the default
environment can be easily derived from its definition.

Suppose that contradiction is detected since there
exist both the refutation(C) and the correct(C} in
the current context. As has already been stated, the
correct(C) can be hold so long as there does not ex-
ist the refutation for the clause C (refutation(C)).
Therefore, the inconsistency can be resolved by rewnov-
ing the correct(C) from the default environment. Sim-
ilarly, the assumptions, uncover(C,A), trust{C) and
metaOracle(C), are removed from the default environ-
ment when the contradictory data is found.

IT} In the case of the oracle contradiction, it is nec-
essary for the distance between the two oracle sets to
be minimized and all the contradiction already detected
will be evaded in the new environment. This is done by
the heuristic search method.

472 Intelligent Tutoring Systems

3.3 Behavior of HSMIS

In this subsection, we show an example of how HSMIS
works, in which the description is partially simplified
because of space limitation, for example, the description
of teaching material is not correct in the strict sense(for
example, the first argument of grow is omitted).

[An example of HSMIS modeling process]

Does rice grow in Japan? grow(Place).
yes. o1: grow(iapan), yes. temp(Place),
v_o2: tmp{japan), yes. ~, _ Soill Place).
v_0o3: soil{japan), yes.
Because ol is a correct answer, the correct clause C1 i
added io the model. And then, v_o2 and v_o3, which are
correct answers, are generated by oracle-generator. They
are justified by trust(C1) and oracle(ol). ATMS is informed
of the following assumptions and justifications.
Assumptions: oracle(ol), rust{C1), comect(C1), general{C1)
Justifications:
trust(C1), oracle{ol) =% v_oracle{v_o2)
trust{C1), oracle{o]) = v_oracle(v_o3)
oracle{ol), v_oracle{v_o2), v_oracle(v_ol) =cover(Cl,o0l).
oracle{ol), correct{C1), cover{C1,01), general{C1)=modcl(C1)
Does rice grow in Kiev? ———{ grow(Place)::-
yes. 04: grow(kiev), yes. soil{ Place).
v_o05: soil{kiav), yes. —————
A buggy clauze C2 ir added to the model, because of ina
typical incorrect answer(Kiev is too cold for rice to grow).
A virtual oracle v_o5, which is justified by trust(C2) and
oracle(od), is generated by the oracle-generator. Since the
clause C1 is a descendent node of C2 in refinement graph,
model(C1) becomes 'out’ by cuting general(C1). Then
the status of v_o2 and v_o3 becomes ‘out’. However, v_o3
becomes in' at once, because it is justified by trust(C2)
and araclefol).
Assumeptions oracle{od) , trust{C2), correc1(C2),general(C2)
Justifications;
rust{C2), oracle{o]) = v_oracle{v_o3)
rust{C32), oracle(od) = v_oracle{v_o3)
oracle(od), v_oracle(v_o5) =scover(C2,04).
oracle(od), correct{C2), cover(C2,04), general{C2)=>model(C2)
Oracle environment
in ol:<grow(japan)yes. >
eat v_oli<unp{japan), yes, >
in v_o3:<soii{japan}, yes. >
Does rice grow in Moscow?

in o4d:<grow(kiev), yes. >
in v_o5:<soil(kiev}), yes. >

no. ob:grow{moscow), no.
Is Soil of Moscow suitable for rice to grow?
yes. o7:soil{moscow), yes.

SMDS: C? is refuted by 06 and 67, Refualion: g rouimascow filke): - sailfmoscom,trut}
C2 is removed because SMDS found out its refutation. A
contradiction is found between refutation(C2) and
correct(C2). CRS resolves this by outing the default
assumption eorrect(C2). Then the model(C2), oracle(v_o3)
and oracle(v_o5) become ‘vut’. HSMIS starts to search for
a clause which covers o4d.
Justifications:
oracle{od), oracle{o7)=>refutation{C2).
Oracle environment
in ol:<grow(japan)yes. > in v_oS:<soil{kiev), yes, >
eut v_o2:<tmp(japan), yes. > in ob:<grow{moscow), no. >
out v_o3:<soil(japan), yes.> nm o7:<soil{moscow), yes. >
in od:<grow(kicv), yes. >
Is soil of Kiev suitable for rice to grow?

yes. 035:soil(kiev), yes. (confirmed by the student)
Is Temperature of Kiev suitable for rice to grow?
no. 08: temp(kiev), no.

SMIS: C3: grow(Place):-temp({Place) cannol cover grow(kiev,yes)
Contradiction is found, because HSMIS has failed to search
for a cover of growlkiev,true). CRS changer the oracle
environment to resolve the contradiction based on give-a-
priority-to-correct-answer heuristics. In this case, o4
becomes ‘out’ and 09, whose truth value is opposite to o4,
is believed wecording to give-priority-to-correct-answer
heuristic. Finally, C1 is added to the current model
(model(C1) becomes “in’ again} in the new consistent oracle
environment .
< Assumptions and Justifications are omitted >
Oracle environment
in ol:<grow{japan)yes. > in
in v_ol:<amp(japan), yes.> in
in v_ol:<soil(japan), yes.> in
out od:<grow(kiev), yes. > n
in oS<soil{kiev), yes, >

In order to realize the above behavior of HSMIS, at
least two kinds of knowledge is required. Omne is the
knowledge for refinement graph generation. In the above
example, for example, the following knowledge is used for
generating three clanses C1, C2 and C3.

declare_called(grow(Place, T),
[temp(Place, T}), soil{ Place, T3)])

This means that the predicates in the second argument,
that is, temp(Place, T}) and soil(Place, T2}, can appear
in the body of a clause whose head is grow(Place, T). If
this form of knowledge including necessary predicates is
prepared, HSMIS can automatically generate a complete
aet. of clauses as a model of the student.

The other one is the correct domain knowledge which
provides HSMIS with correct answers. In the above ex-
ample, the knowledge is used for three purposes, that 1s,
for the virtual oracle generation, the environment man-
agement by CRS, and the problem generation.

In the above example, the student model changed two
times. The first change from C1 te C2 can be: regarded as
corresponding to the nonmonotonicity inherent to the in-
ference process, that is, C1 is not an appropriate hypoth-
csis of the student nnderstanding at that time. Mean-
while, the gecond change from C2 to C1 corresponds to
the nonmonetonicity of student’s understanding,.

ob:cgrow(moscow), no. >
o7:<soil{moscow), yes. >
of:<temp(kicv), no. >
09:<grow(kicv), no. >

4 Concluding remarks

Both SMDL interpreter and HSMIS have been imple-
mented in Common ESP(Extended Self-contained Pro-
log) and incorporated in a framework for ITS, called
FITS[Mizoguchi and Ikeda, 1991]. HSMIS can cope with
a variety of teaching materials as far as it can be repre-
sented in Prolog. Therefore, the authors think that the
generality of HSMIS is relatively high.

Two ITS's have been built using FITS, one is on ge-
ography and the other is on chemical reactions. Simple
examination of both systems shows they run in real time
if the oracle contradiction does not occur. When the or-
acle contradiction occurs and there is no heuristics for
its resolution, we find that the cost to resolve the con-
tradiction is very expensive.

The current implementation of contradiction resolu-
tion is based on a somewhat brute-force method us-
ing domain-independent heuristics. To improve the
efficiency, more powerful domain-dependent heuristics

should be employed. It seems promising to adopt a be-
lief revision mechanism developed by X. Huang et.al,
which provides efficient, minimal revision of belief bases
by using attention(focus) in the belief space[Huang et
al, 1991b].

We have discussed mechanisms to avoid inconsistency
in model inference in this paper. However, there exist
such students who have contradictions in their head. To
cope with modeling of such students, the system may
not avoid the inconsistency but has to model inconsis-
tent knowledge as it is. This issue will involve the de-
velopment of more sophisticated control mechanism for
student modeling. We are currently engaging in the
issue, where student's inconsistent knowledge is mod-
eled in multiple worlds which are again supported by
ATMS[Kono et al, 1992].

Acknowledgements : The authors are grateful to re-
viewers for their valuable comments.

References

[Burton, 1982] R. R. Burton. In D. H. Sleeman, edi-
tor, Intelligent Tutoring Systems, pages 157-183, Aca-
demic Press, 1982.

[de Kleer, 1986] J. de Kleer. An Assumption-based
Truth Maintenance System. Artificial Intelligence,
28:127 162, 1986.

[Huang et al, 1991a] X. Huang, G.l. McCalla,

J. E. Greer, and E. Neufeld. Revising Deductive
Knowledge and Stereotypical Knowledge in Student
Modeling. User Modeling and User-Adapted Interac-
tion, 1:87-115, 1991.

[Huang et al, 1991b] X. Huang, G.l. McCalla and
E. Neufeld. Using Attention in Belief Revision. In
Proceedings of the Ninth National Conference on Ar-
tificial Intellegeince, pages 275-280, 1991.

[Ikeda et al, 1988] M. lkeda, R. Mizoguchi and
O. Kakusho. A Hypothetical Model Inference Sys-
tem. Trans, of IEICE Japan, J71-D:1761 1771, 1988
(in Japanese).

[Ikeda et al, 1989] M. lkeda, R. Mizoguchi and
O. Kakusho. Student Model Description Language
SMDL and Student Model Inference System. Trans, of
IEICE Japan, J72-D-11112-120, 1989 (in Japanese).

[Ikeda et al, 1992] M. lkeda, Y. Kono and

R. Mizoguchi. Nonmonotonic Model Inference. Tech-
nical Report of Artificial Intelligence Research Group,
ISIR Osaka Univ., ALTR-92-10, 1992.

[Kono et al, 1992] Y. Kono, M. Ikeda and
R. Mizoguchi. To contradict is human — Student
modeling of inconsistency —. In C. Frasson, G. Gau-
thier, and G. |. McCalla, editors, Intelligent Tutor-

ing Systems, ITS '92, Montreal, Canada, Proceedings,
pages 451-458. LNCS 608, Springer-Verlag, 1992.

[Mizoguchi and Ikeda, 1991] R. Mizoguchi and
M. lkeda. A Generic Framework for ITS And Its Eval-
uation. In R. Lewis and S. Otsuki, editors, Advanced
Research on Computers in Education, pages 63-72.
North-Holland, 1991.

[Shapiro, 1982] E. Y. Shapiro. Algorithmic Program De-
bugging. MIT Press, 1982.

[Wenger, 1987] E. Wenger. Artificial Intelligence and
Tutoring Systems. Morgan Kaufmann Publishers, Cal-
ifornia, 1987.

Ilkeda, Kono, and Mizoguchi 473

