
Efficient Distributed “Hormone” Graph Gradients.

Esben Hallundbæk Østergaard
Maersk Mc-Kinney Moller Institute for Production Technology

University of Southern Denmark
esben@mip.sdu.dk

Abstract

Several researchers have attempted extract the prin-
ciples behind hormone gradients found in biologi-
cal system, and apply them to control physically
manifested distributed systems. This paper presents
an efficient implementation of a graph-based ver-
sion of hormone gradient mechanisms. The algo-
rithm is based on hop-counting of the topological
distance between any given vertex and the hormone
emitting vertex, and can deal with dynamic changes
to the topology of the system. Performance of
the described algorithm is documented through a
number of experiments. The algorithm was de-
veloped for use in self-reconfigurable robotics, but
might very well be useful for many other appli-
cations. The use of the algorithm to provide a
common coordinate system for a collection of self-
reconfigurable robot modules is described, that pro-
vides pose relative to the emitting module for all
modules affected by the hormone.

1 Introduction

Hormone gradients have a central role in the coordination
of growth and self-repair in biological multicellular systems.
Several researchers have attempted to use these same mech-
anisms to control physically manifested distributed systems,
by using some abstraction over the perceived functioning of
biological hormone gradients. This paper presents an efficient
implementation of a graph-based version of hormone gradi-
ent mechanisms, based on hop-counting and spanning a tree
over the topology, that can deal with dynamic changes to the
topology of the system. The paper will also describe how the
algorithm can be used to relay a common coordinate system
for modules in a self-reconfigurable robot. Even though the
focus was on self-reconfigurable robots during development,
the algorithm is believed to have much wider applicability.

2 Graph-Based Hormone Gradients
As a first approximation, simple gradients are fairly easy to
implement. Figure 1 illustration a) shows a graph represent-
ing a system of 11 vertices, with 11 edges. In b) a simple

3 12

5

4

3

22

3

2

1

d)a)

0

2

3

1

3

4

1

212

3

b)

121

3

2

1

2

c) e)

Figure 1: A few simple graph gradients

width first graph traversal algorithm (starting at the gray ver-
tex) has been applied to assign a value to each vertex, where
the value corresponds to the recursion depth. The result is
that each vertex holds its distance to the gray vertex. In c)
a similar algorithm is run, where a limit has been imposed
on the recursion depth. The value assigned to vertices is the
limit minus the recursion depth, resulting in the held value de-
creasing the further we get away from the gray module. This
can be regarded as an abstract implementation of a hormone
gradient emitted from the gray vertex. The hormone gradient
is emitted with a given strength that defines the depth of the
recursion (the maximum topological distance) and thus the
number of affected vertices. The c) approach also allows us
to have several emitting vertices, as shown in d) where two
vertices are emitting a gradient, one with strength 3, and one
with strength 5. In d) the graph algorithm is designed such
that once a vertex has been assigned a value, only higher val-
ues can be assigned to that vertex.

To illustrate how this can be used as a gradient, in e) arrows
point to the edge leading to the vertex with highest value.
We see that if we start at any vertex in the graph and follow
the arrows, we end up at one of the emitting vertices. Also
we see that the vertex with a higher emission strength has a
larger basin of attraction than the vertex with lower emission
strength.

3 Agent-Based Hormone Gradients
The previous section briefly described how traditional graph
traversal algorithms can produce a loose analogy to biologi-
cal hormone gradients. However, in a physically distributed
system we cannot directly use graph traversal algorithms.

This paper presents a distributed algorithm, providing in-
formation on topological distance in communication net-
works with dynamic changing topologies. Consider an agent

for each vertex in the graph, where agents asynchronously
and without any global knowledge, efficiently realizes such
graph hormone gradient information.

3.1 Related Work
Hormone gradients have been studied by biologists and have
been found to be a key player in coordinating and controlling
growth in plants and animals. Mainhardt and Gierers’ [Mein-
hardt, 1993] [Meinhardt and Gierer, 2000] work on how hor-
mone gradients control the forming of the tentacles of the
Hydra animal describes how hormones are responsible for al-
most all aspects of shaping the animals body. Other relevant
work includes Nishimura’s [Nishimura and Sasai, 2004] work
on chemo-taxis on cells in solutions with chemical gradients.

Several researchers have extracted and abstracted these
mechanisms for use in the multi-robot domain. Amorphous
computing [Abelson et al., 2000][Nagpal, 1999][Nagpal et
al., 2003] is one example of research relying heavily on sim-
ulated hormone gradients, and many more examples exist,
including work on cell division in artificial evolution [Hotz,
2004], and in self-reconfigurable robotics, such as Bojinov,
Casal and Hogg’s scents [Bojinov et al., 2000].

All the implementations of digital hormone gradients in
the distributed robotics literature rely on continuous broad-
casting of a hop-count number. When an agent receives a
message with a hop count number, it remembers this number
and starts emitting a message with an incremented or decre-
mented hop count number, at regular intervals. A timer keeps
track on when the last message matching the stored hop count
number was received. If too long time has expired, the stored
hop count number is erased, and the agents stop sending mes-
sages.

As a first approximation, this continuous broadcasting ap-
proach works fine. However, there are two main problems
with this approach:
• Frequent emission of messages, even if there is no

change to the topology of the agents.
• Continuous broadcast style approaches can fail to deal

adequately with dramatic changes to the topology.
The first point has to do with efficiency in terms of power

consumption and processing power. The second point, illus-
trated in figure 2, is more serious.

For these two reasons, it is desirable to develop a better
algorithm.

4 Features of the Algorithm
The algorithm described in this paper is an extension of E.
Gafni and D. Bertsekas’ work described in the paper “Dis-
tributed Algorithms for Generating Loopfree Routes in Net-
works with Frequently Changing Topology” [Gafni and Bert-
sekas, 1981]. Their algorithm has a number of properties that
makes it interesting for the purpose of this paper:

1. The algorithm is distributed and works on unknown
communication topologies.

2. Their algorithm spans a directed acyclic graph (DAG)
over the network topology, where all directed paths lead
to the destination.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Edge
removed

Source

Figure 2: Illustration of a case where continuous broadcast-
style graph gradients is problematic. Assume a gradient
source in the upper part of the illustrated graph, emitting
a decrementing gradient (type c) from figure 1) with high
enough intensity to cover the graph. When the edge is re-
moved, we would like gradient information to disappear from
the amputated part of the graph. However, depending on
the exact implementation of the broadcast-style approach, the
gradient hop-count number might instead drift (slowly) to-
wards infinity or zero. The problem is, that when one vertex
has timed out, it might receive an new gradient message from
one of its neighbors, keeping the gradient “alive”.

3. In the event of changes to the topology of the network,
the algorithm creates a new DAG using an iterative
method.

From a functional point of view, the algorithm presented in
this paper is an improved version of the algorithm presented
by Gafni and Bersekas, with two additional features;

4. From a given vertex, the length of any directed path to
the destination is equal to the shortest undirected path to
the destination.

5. Each vertex knows its topological distance from the des-
tination.

4.1 Definitions
The algorithm described below works on a graph, to create a
loose analogy to chemical/hormone gradients. The algorithm
is completely distributed, and is able to deal with frequently
changing topology, while at the same time using very little
communication. Consider an agent for each vertex v in the
graph G = (V, E). Agents have a number of ports, through
which they can communicate to other agents. The algorithm
uses two features per agent. Agents can emit a hormone with
strength s and sense the intensity i of the hormone. Both s
and i are in

�
, the set of natural numbers. We require agents

to know which of their ports are connected to other agents,
and which are not. Given this, a digital hormone gradient can
be defined as a four-tuple, {G, I, S, P}, where:
• G = (V, E) is a graph, where vertices are elements of

the configuration, and edges are physical connections
between the elements.

• I : V →
�

is the hormone intensity (concentration)
mapping, so that i = I(v) is the hormone intensity for
vertex v.

• S : V →
� is the hormone emission strength mapping,

where s = S(v) is the strength s with which vertex v ∈
V emits the hormone.

• P : (V ×
�

) → ({�}
⋃

V) is the port function. The
port function holds information for the state of each of
the agent’s ports, so that P (v, n) is the state of the agent
for vertex v’s n’th port. The symbol � is used to specify
a port that is not connected, such that ∀n ∈

�
: ∀v ∈

V : ∀v′ ∈ P (v, n), {v, v′} ∈ E ⇔ P (v, n) ∈ V .

The four-tuple {G, I, S, P} describes the global state of
the hormone gradient, but we are aiming at a distributed
algorithm with only local information. For any given ver-
tex v ∈ V , the local gradient state information available is
i = I(v), s = S(v) and for each of the j ports, pn = P (v, n)
where 0 ≤ n < j. Besides this information, the algorithm
requires agents to remember their parent in the spanning tree
−1 ≤ f < j (using −1 for no parent), a timer/counter t ∈

�

and an array for storing information on which ports to send
messages to, m[n] ∈ {NONE, PROPAGATE}.

The algorithm basically works by maintaining local infor-
mation on the spanning tree, such that the variable f always
points to the port from which the gradient is flowing. The
timer/counter is used to adjust the relative speeds of propa-
gating gradient and deleting the gradient. Without this ad-
justment continuous propagation and deletion of the gradient
in local cyclic areas of the graph might arise, causing much
communication and slow hormone deletion. However, this
adjustment introduces a parameter that is the number of time
steps to delay propagate messages when spreading the gradi-
ent. Lower values cause the algorithm to be faster but more
unstable.

The algorithm for each agent, implementing the desired
graph-based hormone gradient behavior, is given below. Note
that neither global communication nor synchronization be-
tween agents is assumed.

The —initialize— function resets the variables of the
agent. —emitGradeint— is used to set the hormone emis-
sion strength of the agent. Setting to zero clears the gradient.
—updateGradient— holds the central functionality such as
sending messages, and should be called at regular time inter-
vals. The frequency at which it is called determines the hor-
mone propagation speed in the system. The four event func-
tions —connectEvent—, —disconnectEvent—, —prop-
agateMessageRecievedEvent— and —deleteMessageRe-
cievedEvent— are very light-weight and can be called in
some interrupt routine whenever the corresponding event is
detected.

—initialize()—
i := 0; s := 0; f := 0; t := 0;
foreach n ∈ {0..j − 1} do

m[n] := NONE;
end

—emitGradient(s ′)—
s := s′;
—connectEvent(n)—
m[n] := PROPAGATE;

—disconnectEvent(n)—
if n = f then

f := −1;
end

—updateGradient()—
if s > i then

i := s; f := −1;
foreach n ∈ {0..j − 1} do

m[n] := PROPAGATE;
end

else if s < i ∧ f = −1 then
foreach n ∈ {0..j − 1} do

if pn 6= � then
sendDeleteMessage(n,i-1);

end
m[n] := NONE;

end
i := 0;

else if t > 0 then
t := t − 1;
if t = 0 then

foreach n ∈ {0..j − 1} do
if n 6= f then

m[n] := PROPAGATE;
end

end
end

else
foreach n ∈ {0..j − 1} do

if pn 6= � ∧ m[n] = PROPAGATE ∧ i > 1 then
sendPropagateMessage(n,i-1); t := 0;

end
m[n] := NONE;

end
end

—propagateMessageRecievedEvent(n ′, i′)—
if i′ > i then

i := i′; f := n′; t := 3;// This constant (3) defines the
delay before propagating the gradient, to allow delete
messages to “catch up”.

else if i′ < i − 1 then
m[n′] := PROPAGATE;

end

—deleteMessageRecievedEvent(n ′, i′)—
if i′ ≥ i then

f := −1;
else

m[n′] := PROPAGATE;
end

4.2 Tests of the Algorithm

The algorithm was implemented and tested on graphs with
varying sizes and numbers of loops, shown in figure 3. To
test the robustness of the algorithm, the different activation
schemes described in [Butler et al., 2002], D0,D1 and D∞,
were used for the agents. In D0, agents are activated in a
fixed order each time step, in D1 the agents activation order
is permuted for each time step, and in D∞ a random agent
is picked and activated n times each time step, where n is
the number of agents. Figure 4 shows the number of mes-
sages passed as a function of the number of modules for three
different graph types, using the D∞ activation scheme. The

String graph Fully connected gridSingle cycle graph

Figure 3: The three graph types used to test performance of
the distributed hormone algorithm. The gray vertex is the
source of the gradient.

data shows that the algorithm has good performance, in that
the number of messages passed is linearly proportional to the
number of edges in the graphs, and that the number of time
steps used to propagate the hormone is proportional to the
diameter of the graph.

A different set of experiments were performed for counting
the number of messages used to remove the gradient again,
by setting the emission strength of the emitting agent to zero.
These results are shown in figure 5. The results show that the
number of messages generated for removing a hormone is
linearly proportional to the number of involved graph edges.
Notice that removing the hormone is faster than covering the
graph, due to the delay on propagating the gradient.

5 Pose Hormone Gradients

The previous section described the basic graph hormone gra-
dient algorithm. This section describes how the algorithm
has been used for controlling two self-reconfigurable robot
systems, shown in figure 6. Self-reconfigurable robot control
is a good application test bed for this kind of hormone gra-
dient algorithms, because of the constantly changing topol-
ogy in such a robot, and because of similarities between self-
reconfigurable robots and multi-cellular organisms.

5.1 Common Pose for Self-Reconfigurable Robot
Modules

The distributed hormone gradient algorithm described above
can be expanded slightly to be used for propagating pose
(position and orientation) relative to the emitting vertex in
a self-reconfigurable robot. Basically, the expanded algo-
rithm uses feed-forward kinematics in the generated directed
acyclic graph to compute the relative pose to the emitting ver-
tex. To realize this, it is a requirement that the relative pose
between two connected vertices in the configuration can be
found. We let the space � be the space of relative poses in a
3D vector space.

Then, a relative pose hormone is a four-tuple, {G, I,S,P}
where:

• G = (V, E) is a graph, where vertices are elements of
the configuration, and edges are physical connections
between the elements.

• I : V → (
�

× �) is the hormone intensity (concen-
tration) mapping, so that i = I(v), i = 〈in, ip〉, where
in ∈

�
, ip ∈ � is the hormone intensity in and relative

pose ip for vertex v.

Scalability of the hormone gradient algorithm for 100 runs

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Number of vertices (agents)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

Fully connected grid

Single cycle graph

Number of vertices (agents)

Hormone gradient spreading time for each of the three graph types

Ti
m

e−
ste

ps
 to

 c
ov

er
ed

 g
ra

ph

String graph
Single−cycle graph

Fully connected grid

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800

Figure 4: Top: Message count for covering a graph with the
hormone gradient, for varying number of vertices. Results for
the string graph type is not shown, since they turned out to be
the same as the results for the single-cycle graph. The vari-
ance is caused by using the D∞ activation scheme. Bottom:
The number of time steps it takes to fully cover the graph for
each of the three graph types and for varying graph sizes.

• S : V → (
�

× �) is the hormone emission mapping,
where s = S(v), s = 〈si, sp〉 is the emission strength
(si) and the emitted pose (sp) for vertex v.

• P : (V ×
�

) → ({�}
⋃

(V × �)) is the port function.
The port function holds information for the state of each
of agent’s ports, so that P (v, n) is the state of vertex v’s
n’th port. The symbol � is used to specify a port that is
not connected, such that ∀n ∈

�
: ∀v ∈ V : ∀〈v′, p′〉 ∈

P (v, n) : {v, v′} ∈ E ⇔ P (v, n) ∈ V . Here, p′ is the
relative orientation between the two connected elements,
such that if pv′ is the pose of v′ and pv is the pose of v,
then pv′ × p′ = pv.

For any given module v ∈ V , the local gradient state infor-
mation available is i = 〈in, ip〉 = I(v), s = 〈si, sp〉 = S(v)
and for each of the modules j connectors, pn = P (v, n) is
either � or 〈v′, p′〉, for 0 ≤ n < j.

The principle is to do feed-forward kinematics in the di-
rected acyclic graph generated by the graph hormone algo-
rithm. As a consequence, each module affected by the hor-
mone knows its relative position and orientation to the hor-
mone source. It turns out that by exploiting that each module
knows its relative position to the source, it is possible to re-

Number of vertices

Removing the hormone from the graph

N
um

be
r

of
 m

es
sa

ge
s

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700 800

Single cycle graph

Fully connected grid

Time to remove the hormone

T
im

e
st

ep
s

Number of vertices

String graph

Fully connected grid

Single cycle graph

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

Figure 5: Tests on removing the hormone from the graph by
setting the emission strength of the emitting vertex to zero, af-
ter the hormone has fully propagated. The two graphs show
the number of messages generated and the time used for the
three graph families and for varying graph sizes. In the top
graph the string graph results were omitted since they are
identical to the single cycle results. Notice that removing the
hormone is faster than propagating the hormone, but pro-
duces more communication and has higher variance. This
relationship can be adjusted by changing the propagation de-
lay.

move the delay for propagate messages by adding an extra
condition for the case of receiving a propagate message. The
implementation details of the pose hormone gradient algo-
rithm has been omitted due to space constraints.

6 Implementation and Experiments
The pose hormone algorithm has been implemented and
tested on simulations of the ATRON system, figure 6, left,
and on the M-TRAN system, figure 6, right.

Both the ATRON and the M-TRAN modules are composed
of two parts, where the parts are connected by an actuated
joint. The algorithm is implemented, such that each part of
the modules corresponds to a vertex in the graph. The fol-
lowing will describe some experiments done on the pose hor-
mone algorithm on the simulated M-TRAN robots.

6.1 M-TRAN, Message Count
Three test configuration designs are shown in figure 7. Each
configuration comes in a form with 4, 32, 108, 256, 500 and

Figure 6: Module for two self-reconfigurable robot systems.
Left: The ATRON system. Right: The M-TRAN System.

a) b) c)

Figure 7: The three test configurations used in the synthetic
tests. Here composed of 32 modules each.

864 modules. The three designs differ in the number of loops
in the topology, where a) has no loops, b) a single loop and c)
has many loops.

An experiment proceeds as follows:
1. A module in one end/corner is set to emit a hormone

gradient with an emission strength of 1000.
2. Data is collected on the number of messages used to

fully propagate the gradient, and on how many time
steps it took.

3. Then the emission strength of the emitting module is set
to zero.

4. Similarly to step two, data is collected.
The algorithm was tested using the D0, D1 and D∞ activa-

tion schemes. Ten experiments were performed for each com-
bination of configuration and activation scheme, and mean
and variance were computed. The correctness of the pose in-
formation is easily verified by placing the emitting module
such that the emitted pose is identical to the pose in the sim-
ulator. In this case, the relative pose hormone for any module
should be identical with its pose in the simulator (provided
appropriate scaling). Figure 8 shows the average number of
messages, and figure 9 the communication load per connec-
tor, using the D1 activation scheme. For deleting the hormone
gradient, the number of messages passed by any connected
connector was constant two.

Besides these simple tests, the algorithm was used a lot
during work on control of the two self-reconfigurable robot
systems, to produce a common coordinate frame of reference
for locally cooperating groups of modules.

7 Discussion & Conclusion
This paper describes an efficient algorithm for realizing an
abstract implementation of hormone gradients. Hormone gra-

Test Configuration a) b) c)
modules 4 32 108 4 32 108 4 32 108

connections 3 31 107 4 32 108 4 64 252
messages for propagating 7 63 210 8 66 221 9 115 455

message for deleting 14 126 420 16 128 432 16 193 720

Figure 8: The average number of messages (rounded to nearest integer) used to propagate and delete a digital hormone
gradient for nine different configurations using the D1 activation scheme. The messages passed between “agents” within the
same module are included in the data, so since each module has two “agents”. The number of messages to propagate the
gradient in configuration a) is exactly the number of modules plus the number of connections between modules. The data also
shows that the number of messages for deleting a gradient is approximately double that of propagating the gradient.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 100 200 300 400 500 600 700 800 900

Setup a)
Setup b)
Setup c)

Figure 9: Average message count per connector for propa-
gating the hormone gradient for each of the configurations,
using the D1 activation scheme. The graph shows that con-
figuration design c) with many topology graph cycles causes
more messages per connector than a) and b). However, the
message count per connector is still lower than two.

dients are widely used in biology to coordinate and differen-
tiate cellular behavior.

The described algorithm is based on topological distance,
and is capable of dealing with changing topology in the con-
nectivity graph using only local information and without re-
quiring global synchronization.

The algorithm has properties similar to that of Gafni and
Bertsekas, with the added benefit that the spanning DAG is,
in a sense, optimal, in that any directed path tho the source
has the same length as the shortest undirected path. Addition-
ally, in contrast to the commonly used continuous broadcast
method, the presented algorithm only generates communica-
tion when the topology of the graph changes, or when the gra-
dient information changes. Furthermore, only a constant (and
small) number of messages is generate per graph edge, in the
event of any change to the hormone gradient. Less commu-
nication results in reduced hardware requirements, that again
can reduce requirements to power, processing, price and size.

Performance of the described algorithm is documented
through a number of experiments. An expansion of the hor-
mone gradient algorithm is given which can be used to pro-
vide all self-reconfigurable robot modules affected by the hor-
mone their pose relative to the emitting module. The algo-
rithm was developed for use in self-reconfigurable robotics,
but might very well be useful for many other applications.
Future work will include further analysis of performance and
analytical proofs.

References
[Abelson et al., 2000] H. Abelson, D. Allen, D. Coore,

C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch,
G. Sussman, and R. Weiss. Amorphous computing. Com-
munications of the ACM, 43(5):74–82, 2000.

[Bojinov et al., 2000] H. Bojinov, A. Casal, and T. Hogg.
Multiagent control of self-reconfigurable robots. In Fourth
International Conference on MultiAgent Systems (IC-
MAS), pages 143–150, Boston, Massachusetts, USA, July
2000.

[Butler et al., 2002] Z. Butler, K. Kotay, D. Rus, and
K. Tomita. Generic decentralized control for a class
of self-reconfigurable robots. In Proceedings, IEEE Int.
Conf. on Robotics and Automation (ICRA), volume 1,
pages 809–815, Washington, DC, USA, 2002.

[Gafni and Bertsekas, 1981] E. Gafni and D. P. Bertsekas.
Distributed algorithms for generating loopfree routes in
networks with frequently changing topology. IEEE Trans.
on Comm., COM-29:11–18, 1981.

[Hotz, 2004] P. E. Hotz. Asymmetric cell division in artifi-
cial evolution. In Congress on Evolutionary Computation
(CEC), 2004.

[Meinhardt and Gierer, 2000] H. Meinhardt and A. Gierer.
Pattern formation by local self-activation and lateral inhi-
bition. Bioessays, 22(8):753–60, Aug 2000.

[Meinhardt, 1993] H. Meinhardt. A model for pattern for-
mation of hypostome, tentacles, and foot in hydra: how to
form structures close to each other, how to form them at
a distance. Developmental Biology, 157(2):321–333, June
1993.

[Nagpal et al., 2003] R. Nagpal, A. Kondacs, and C. Chang.
Programming methodology for biologically-inspired self-
assembling systems. In Proceedings, AAAI Spring Sym-
posium on Computational Synthesis: From Basic Building
Blocks to High Level Functionality, 2003.

[Nagpal, 1999] R. Nagpal. Organizing a global coordinate
system from local information on an amorphous computer.
AI Memo 1666, 1999.

[Nishimura and Sasai, 2004] S. I. Nishimura and M. Sasai.
Chemotaxis of an eukaryotic cell in complex gradients of
chemoattractants. In The ninth international symposium
on artificial life and robotics (AROB), Beppu, Oita, Japan,
January 2004.

