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Abstract

The AGM postulates for belief revision, augmented
by the DP postulates for iterated belief revision,
provide generally accepted criteria for the design of
operators by which intelligent agents adapt their be-
liefs incrementally to new information. These pos-
tulates alone, however, are too permissive: They
support operators by which all newly acquired in-
formation is canceled as soon as an agent learns a
fact that contradicts some of its current beliefs. In
this paper, we present a formal analysis of the de-
ficiency of the DP postulates, and we show how to
solve the problem by an additional postulate of in-
dependence. We give a representation theorem for
this postulate and prove that it is compatible with
AGM and DP.

1 Introduction
Belief revision is the process of changing the beliefs of an
agent to accommodate new, more precise, or more reliable
evidence that is possibly inconsistent with the existing be-
liefs. In situations where the new evidence is consistent with
the existing beliefs, the two can just be merged; we call this
mild revision. More interesting and complicated are situa-
tions where the evidence conflicts with the prior beliefs, in
which case the agent needs to remove some of its currently
held beliefs in order to accommodate the new evidence. This
kind of revision is referred to as severe revision.

In the literature, the classical approach of belief revision
is the AGM framework [Alchourrón et al., 1985; Gärdenfors
and Makinson, 1988; Gärdenfors, 1988]. Given an underly-
ing logic language L, the beliefs of an agent are represented
by a set of sentences in L (known as belief set) which is closed
under logical consequence. New evidence is also a sentence
in L, and a belief revision operator maps the current belief set
and the new evidence to a revised belief set. To provide gen-
eral design criteria for belief revision operators, Alchourrón,
Gärdenfors, and Makinson (AGM) have developed a set of
postulates [Alchourrón et al., 1985]. The guiding principle is
that of economy of information or minimal change of belief
sets, which means not to give up currently held beliefs and
not to generate new beliefs unless necessary.

For the incremental adaptation of beliefs, these postu-
lates proved to be too weak [Darwiche and Pearl, 1994;
1997]. This has led to the development of additional postu-
lates for iterated belief revision by Darwiche and Pearl (DP),
among others.

Still, however, the two sets of postulates are too per-
missive in that they support belief revision operators which
assume arbitrary dependencies among the pieces of infor-
mation which an agent acquires along its way. A univer-
sal dependency among all new evidences has a drastic ef-
fect when the agent makes an observation which contradicts
its currently held beliefs: The agent has to cancel every-
thing it has learned up to this point [Nayak et al., 1996;
2003]. In this paper, we first give a formal analysis of this
problem of implicit dependence, and then we present, as a
solution, an Independence postulate for iterated belief revi-
sion. We give a representation theorem for our postulate and
prove its consistency by defining a concrete belief revision
operator. We also contrast the postulate of independence to
the so-called Recalcitrance postulate of [Nayak et al., 1996;
2003] and argue that the latter is too strict in that it rejects
reasonable belief revision operators.

The rest of the paper is organized as follows. In the next
section, we recall the classical AGM approach in a propo-
sitional setting as formulated by [Katsuno and Mendelzon,
1991], followed by the approach of [Darwiche and Pearl,
1994] for iterated belief revision. In Section 3, we formally
analyze the problem of the DP postulates to be overly per-
missive. In Section 4, we present an additional postulate to
overcome this deficiency. We give a representation theorem
for the postulate along with a concrete revision operator. We
conclude in Section 5 with a detailed comparison to related
work.

2 Preliminaries
It has been observed by many researchers that belief sets
alone are not sufficient to determine a unique strategy for
belief revision [Gärdenfors and Makinson, 1988; Spohn,
1988]. Any concrete belief revision operator requires addi-
tional information concerning the firmness of different be-
liefs to determine the revision strategy. In particular, this
(extra-logical) information should uniquely determine a set
of conditional beliefs: An agent is said to hold a conditional
belief α � β (with α, β sentences in L) precisely when



it will believe β after a revision with α [Gärdenfors, 1988;
Boutilier, 1993]. The Triviality Theorem of [Gärdenfors and
Makinson, 1988] shows that using the AGM postulates it is
improper to include conditional beliefs into the belief sets. As
a consequence, we need to distinguish a belief set (referred to
as propositional beliefs) from a belief state (also called epis-
temic state). The latter contains, in addition to its belief set,
the conditional beliefs which determine the revision strategy.

2.1 (Modified) KM Postulates

Katsuno and Mendelzon (KM) rephrased the AGM postulates
for the propositional setting [Katsuno and Mendelzon, 1991].
The beliefs of an agent are represented by a sentence ψ in
a finitary propositional language L.1 Any new evidence is a
sentence µ in L, and the result of revising ψ with µ is also a
sentence (denoted as ψ ∗ µ) belonging to L.

To avoid an inconsistency with their postulates for iter-
ated revision, [Darwiche and Pearl, 1994; 1997] suggested
to weaken the original KM postulates by regarding belief re-
vision operators as functions on belief states (rather than on
belief sets). This resulted in the Postulate (R*1)–(R*6) shown
below.

For the sake of the simplicity, we will abuse notation by us-
ing interchangeably a belief state Ψ and its belief set Bel(Ψ).
For example, Ψ and Ψ ∗ µ in Postulate (R*1) refer, respec-
tively, to the current belief state and to the posterior belief
state; and Ψ ∗ µ |= µ is just shorthand for Bel(Ψ ∗ µ) |= µ.
The following are the (modified) KM postulates, which in
turn are a reformulation of the AGM postulates:

(R*1) Ψ ∗ µ |= µ.
(R*2) If Ψ ∧ µ is satisfiable, then Ψ ∗ µ ≡ Ψ ∧ µ.
(R*3) If µ is satisfiable, then Ψ ∗ µ is also satisfiable.
(R*4) If Ψ1 = Ψ2 and µ1 ≡ µ2, then Ψ1 ∗ µ1 ≡ Ψ2 ∗ µ2.
(R*5) (Ψ ∗ µ) ∧ φ |= Ψ ∗ (µ ∧ φ).
(R*6) If (Ψ ∗ µ) ∧ φ is satisfiable, then Ψ ∗ (µ ∧ φ) |= (Ψ ∗

µ) ∧ φ.

Darwiche and Pearl have given a representation theorem
for Postulates (R*1)–(R*6) wrt. a revision mechanism based
on total pre-orders over possible worlds:

Definition 2.1 Let W be the set of all worlds (interpreta-
tions) of a propositional language L. A function that maps
each belief state Ψ to a total pre-order ≤Ψ on W is called a
faithful assignment iff

• If w1, w2 |= Ψ, then w1 =Ψ w2.

• If w1 |= Ψ and w2 6|= Ψ, then w1 <Ψ w2.

• If Ψ = Φ, then ≤Ψ=≤Φ.

where w1 =Ψ w2 is defined as w1 ≤Ψ w2 and w2 ≤Ψ w1;
and w1 <Ψ w2 means w1 ≤Ψ w2 and w2 6≤Ψ w1.

The intuitive meaning of w1 ≤Ψ w2 is that w1 is at least as
plausible as w2 in Ψ.

1We assume that the corresponding belief set Bel(ψ) contains all
logical consequences of ψ.

Theorem 2.2 [Darwiche and Pearl, 1997] A revision oper-
ator ∗ satisfies Postulates (R*1)–(R*6) iff there exists a faith-
ful assignment that maps a belief state Ψ to a total pre-order
≤Ψ such that

Mods(Ψ ∗ µ) = min(Mods(µ),≤Ψ)

Here, Mods(µ) denotes the set of all models of µ, and
min(Mods(µ),≤Ψ) is the set of minimal elements of Mods(µ)
wrt. the pre-order ≤Ψ.

2.2 DP Postulates

In order to allow for successive revisions, in each revision
step it must be fully specified how the conditional beliefs are
to be modified. Following the principle of economy of infor-
mation, minimal change should also be applied to the condi-
tional beliefs. Unfortunately, although the KM postulates put
much emphasis on the preservation of propositional beliefs,
they do not constrain the modification of conditional beliefs.
Darwiche and Pearl have shown that the KM postulates alone
are too weak to adequately characterize iterated belief revi-
sion, because they support unreasonable revision behaviors
[Darwiche and Pearl, 1994]. To overcome this deficiency,
they proposed these four additional postulates [Darwiche and
Pearl, 1997]:

(C1) If β |= µ, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ β.
(C2) If β |= ¬µ, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ β.
(C3) If Ψ ∗ β |= µ, then (Ψ ∗ µ) ∗ β |= µ.
(C4) If Ψ ∗ β 6|= ¬µ, then (Ψ ∗ µ) ∗ β 6|= ¬µ.

Motivation and interpretation of these postulates can be found
in [Darwiche and Pearl, 1994; 1997].

To provide formal justifications, Darwiche and Pearl have
presented an extension of the above representation theorem
for Postulates (C1)–(C4):

Theorem 2.3 [Darwiche and Pearl, 1997] Suppose that a
revision operator satisfies Postulates (R*1)–(R*6). The op-
erator satisfies Postulates (C1)–(C4) iff the operator and its
corresponding faithful assignment satisfy:

(CR1) If w1, w2 |= µ, then w1 ≤Ψ w2 iff w1 ≤Ψ∗µ w2.
(CR2) If w1, w2 6|= µ, then w1 ≤Ψ w2 iff w1 ≤Ψ∗µ w2.
(CR3) If w1 |= µ and w2 6|= µ, then w1 <Ψ w2 implies
w1 <Ψ∗µ w2.

(CR4) If w1 |= µ and w2 6|= µ, then w1 ≤Ψ w2 implies
w1 ≤Ψ∗µ w2.

Furthermore, [Darwiche and Pearl, 1997] showed that their
additional postulates are consistent with the (modified) KM
postulates. They did so by defining a concrete revision oper-
ator which satisfies both (R*1)–(R*6) and (C1)–(C4).

2.3 Why Not Absolute Minimization?

A different approach to studying iterated belief revision is by
defining concrete revision operators. For instance, [Boutilier,
1993] proposed a specific revision operator (known as natural
revision) which satisfies the modified KM postulates and the
following one:

(CB) If Ψ ∗ µ |= ¬β, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ β.



As shown by [Darwiche and Pearl, 1997; Boutilier, 1996],
postulate (CB) imposes absolute minimization on the change
of conditional beliefs:

Theorem 2.4 Suppose that a revision operator satisfies Pos-
tulates (R*1)–(R6). The operator satisfies Postulate (CB) iff
the operator and its corresponding faithful assignment satisfy

(CBR) If w1 |= ¬(Ψ ∗ µ) and w2 |= ¬(Ψ ∗ µ) then
w1 ≤Ψ w2 iff w1 ≤Ψ∗µ w2

Condition (CBR) says that the agent should keep as much
of the ordering information in Ψ as possible while satisfy-
ing the KM postulates. At first glance, therefore, it seems
that Condition (CBR) complies with the principle of economy
of information. However, Postulate (CB) is too radical since
any severe revision necessarily cancels all previous evidences
[Darwiche and Pearl, 1994; Zhang, 2004]. This suggests that
absolute minimization of the change of conditional beliefs is
overly strict and not desirable in general. It is easy to see that
the DP postulates are a weakening of Postulate (CB), in the
sense Postulate (CB) implies all of the DP postulates but not
vice versa.

3 The Problem of Implicit Dependence
Although most counter-examples in [Darwiche and Pearl,
1997] against the KM postulates are solved by adding the DP
postulates, several open problems remain. For instance, the
DP postulates are consistent with (CB), hence they do not
block counter-examples against natural revision, like the fol-
lowing [Darwiche and Pearl, 1997]:

Example 1 We encounter a strange new animal and it ap-
pears to be a bird, so we believe the animal is a bird. As it
comes closer to our hiding place, we see clearly that the an-
imal is red, so we believe that it is a red bird. To remove
further doubts about the animal birdhood, we call in a bird
expert who takes it for examination and concludes that it is
not really a bird but some sort of mammal. The question now
is whether we should still believe that the animal is red.

As argued in [Darwiche and Pearl, 1997], we have every
reason to keep our belief that the animal is red, since bird-
hood and color are not correlated. However, natural revision
enforces us to give up the belief of the animal’s color: Ac-
cording to Postulate (CB), since bird∗red |= ¬(¬bird) it fol-
lows that (bird∗red)∗¬bird ≡ bird∗¬bird.

In being compatible with (CB), the DP postulates are not
strong enough to guarantee that the belief of the animal’s
color is retained. This can be intuitively explained as follows:
After observing the animal’s color, we are actually acquiring
a new conditional belief, namely, that the animal is red even if
it were not a bird i.e., ¬bird � red. However, the DP postu-
lates do not enforce the acquisition of conditional beliefs. In
the sequel, we first give a formal analysis of this weakness of
the DP postulates, and then we present an additional postulate
by which this problem is overcome.

It is well known (see, e.g., [Gärdenfors and Makinson,
1988]) that if a belief state Ψ suffices to uniquely determine
a revision strategy that satisfies the AGM (or the KM) postu-
lates, then the belief state determines a unique, total pre-order

≤Ψ (known as epistemic entrenchment) over L which satis-
fies certain conditions. Given an epistemic entrenchment, the
corresponding belief revision operator is defined by the fol-
lowing condition: For any β,

(C*) Ψ ∗ µ |= β if either |= ¬µ or ¬µ <Ψ ¬µ ∨ β

Other forms of total pre-orderings on L have been pro-
posed, e.g., [Rott, 1991; Williams, 1992]. All of these or-
derings require extra-logical information, that is, they cannot
be determined by pure logical relations among the sentences.
Although we focus on epistemic entrenchment, the analysis
that follows does not depend on this specific ordering; it can
be easily adapted to the approaches just mentioned.

To begin with, we define the notion of dependence between
sentences wrt. a belief state as follows [Fariñas del Cerro and
Herzig, 1996]:

Definition 3.1 A sentence β depends on another sentence µ
in belief state Ψ precisely when Ψ |= β and Ψ∗¬µ 6|= β. Two
sentences µ, β are called dependent in Ψ if either µ depends
on β or β depends on µ in Ψ.

Consider, now, a (non-tautological) new evidence µ. When-
ever Ψ |= β, condition (C*) implies that if µ ≥Ψ µ ∨ β, then
β is (implicitly) dependent on µ in Ψ. This kind of depen-
dency could be problematic. In particular, it is possible that
two initially independent sentences become, undesirably, de-
pendent after a revision step. In Example 1, say, red becomes
dependent on bird after revising by red if natural revision is
used.

Epistemic entrenchment reveals that the problem of natu-
ral revision is that it assigns the lowest degree of belief to a
new evidence without asserting conditional beliefs for inde-
pendence. Thus the new evidence depends on all other beliefs
which survive the revision process. This explains why severe
revision always cancels all previous evidences.

4 A Postulate of Independence
The analysis in the previous section shows that in order to
overcome the problem of implicit dependence, the revision
operator must explicitly assert some conditional beliefs. It
is easy to see that the DP postulates only require the preser-
vation of conditional beliefs when a belief state Ψ is revised
with µ: Postulates (C1) and (C2) neither require to add nor to
remove certain conditional beliefs (namely, those conditioned
on β) in case β |= µ or β |= ¬µ; Postulate (C3) requires to
retain the conditional belief β � µ; finally, Postulate (C4) re-
quires not to obtain the new conditional belief β � ¬µ. Since
none of the DP postulates requires to make independence as-
sumptions, a new postulates is necessary to avoid undesired
dependencies.

The revision process may introduce undesirable dependen-
cies in both directions. That is, it could be that the new ev-
idence becomes dependent on existing beliefs, or the other
way around. Prior to stating the new postulate, we show that
the DP postulates impose some constraints on the retention of
the independence information in one direction. In the pres-
ence of the KM postulates, Postulate (C2) implies the follow-
ing:

(C2′) If Ψ ∗ ¬µ |= β, then (Ψ ∗ µ)∗¬µ |= β



This essentially means that if β is not dependent on the new
evidence µ in Ψ, then it also does not depend on µ in Ψ ∗ µ.

In order to ensure the explicit assertion of independence
information in the other direction, we propose the following
postulate of Independence to complement the DP postulates:

(Ind) If Ψ∗β 6|= ¬µ then (Ψ∗µ)∗β |= µ

Basically, Postulate (Ind) says that if the belief in β ⊃ ¬µ
is not strongly held in Ψ, then µ does not depend on ¬β in
Ψ ∗ µ.

Postulate (Ind) is sufficient to overcome the problem of im-
plicit dependence, as can be shown by reconsidering Exam-
ple 1. According to (Ind), (bird∗red)∗¬bird |= red, given
that bird∗¬bird 6|= ¬red. This shows that the new postu-
late blocks unreasonable behaviors which are admitted by the
DP postulates. In Section 5, we will also argue that Postu-
late (Ind) is not overly strict.

In order to formally justify our new postulate, we will
first provide a representation theorem along the line of The-
orem 2.3. Thereafter, we will give a concrete belief revision
operator which satisfies (Ind).

4.1 A Representation Theorem

For the proof of the representation theorem, we need the fol-
lowing observation, which is a consequence of Theorem 2.2.

Observation 4.1 Suppose that a revision operator satis-
fies Postulates (R*1)–(R*6). If 6|= ¬β, then Ψ∗β |= µ pre-
cisely when there exists a world w such that w |= µ ∧ β and
w <Ψ w′ for any w′ |= ¬µ∧β, where ≤Ψ is the correspond-
ing faithful assignment.

Theorem 4.2 Suppose that a revision operator satisfies Pos-
tulates (R*1)–(R*6). The operator satisfies Postulate (Ind) iff
the operator and its corresponding faithful assignment sat-
isfy:

(IndR) If w1 |= µ and w2 |= ¬µ, then
w1 ≤Ψ w2 implies w1 <Ψ∗µ w2.

Proof : “⇐”: Assume Ψ∗β 6|= ¬µ. From Observation 4.1, it
follows that for any world w |= β ∧ ¬µ, there exists another
world w′ |= β ∧ µ such that w′ ≤Ψ w. Hence, since ≤Ψ is
total, there must be a world w1 such that w1 |= µ ∧ β and
w1 ≤Ψ w2 for any w2 |= ¬µ ∧ β. Condition (IndR) then
implies that w1 <Ψ∗µ w2 for any w2 |= ¬µ ∧ β. Due to
Observation 4.1, we have (Ψ∗µ)∗β |= µ.

“⇒”: Assume w1 |= µ, w2 |= ¬µ, and w1 ≤Ψ w2. Let
β be such that Mods(β) = {w1, w2}. From Theorem 2.2, it
follows thatw1 ∈ Mods(Ψ∗β). Hence Ψ∗β 6|= ¬µ. Postulate
(Ind) implies (Ψ ∗ µ) ∗ β |= µ. Due to Postulates (R*1) and
(R*3), Mods((Ψ ∗ µ) ∗ β) = {w1}. From Theorem 2.2, it
follows that w1 <Ψ∗µ w2. 2

An immediate consequence of Theorem 2.3 and 4.2 is that
Postulate (Ind) implies both (C3) and (C4). Theorem 4.2 also
shows that Postulate (Ind) is not overly constrained: Condi-
tion (IndR) only requires to decrease the plausibility of the
worlds violating the new evidence µ and not to decrease the
plausibility of the worlds confirming µ.

4.2 Properties of the Independence Postulate
We suggest to use the KM postulates along with Postu-
lates (C1), (C2), and (Ind) to govern iterated belief revi-
sion. To show that these postulates together are consistent,
we present a concrete revision operator which satisfies all of
them. The operator is based on Spohn’s proposal of revis-
ing ordinal conditional functions [Spohn, 1988], which can
be viewed as a qualitative version of Jeffrey’s Rule of proba-
bilistic conditioning [Goldszmidt, 1992].

An ordinal conditional function is a function k from a given
set of worlds into the class of ordinals. Intuitively, the ordi-
nals represent degrees of plausibility. The lower its ordinal,
the more plausible is a world. An ordinal conditional function
encodes both a belief set and the conditional beliefs. The be-
lief set Bel(k) is the set of sentences which hold in all worlds
of rank 0 (the smallest ordinal):

Mods(Bel(k)) = {w|k(w) = 0}

From now on, we use an ordinal conditional function and its
belief set interchangeably; e.g., µ ∈ k means µ ∈ Bel(k),
and k ∧ µ denotes

∧

Bel(k) ∧ µ. A ranking of worlds can be
extended to a ranking of sentences as follows:

k(µ) =

{

(maxw k(w)) + 1 If |= µ
minw|=¬µ k(w) Otherwise

(1)

Put in words, the rank of a formula is the lowest rank of a
world in which the formula does not hold. Hence, the higher
the rank of a sentence, the firmer the belief in it. In fact,
it is not hard to see that an ordinal conditional function k
determines an epistemic entrenchment as follows:

α ≤k β iff k(α) ≤ k(β)

Our belief revision operator allows to assign different plau-
sibility degrees to new evidences; standard KM/DP revision
is easily obtained as a special case by using a fixed value in
all iterations [Darwiche and Pearl, 1997]. An ordinal condi-
tional function k is revised according to new evidence µ with
plausibility degree m > 0 as follows:

(k∗µ.m)(w) =

{

k(w) − k(¬µ) If w |= µ
k(w) +m If w |= ¬µ

(2)

Assuming the same degree of plausibility for any new ev-
idence, satisfiability of the KM postulates along with Postu-
lates (C1), (C2), and (Ind) by the revision defined in (2) is an
almost direct consequence of Theorem 2.2, 2.3, and 4.2. But
we can even prove a stronger result with varying plausibility
values m.
Theorem 4.3 For any m > 0, the belief revision operator
defined by (2) satisfies all KM postulates (R*1)–(R*6), where
Bel(Ψ) and Ψ ∗ µ are, respectively, identified with

∧

Bel(k)
and k∗µ,m.

Lemma 4.4 Let k be an arbitrary ordinal conditional func-
tion and µ a new evidence with plausibility degree m, then
for any non-tautological sentence β,

k∗µ,m(β) =

{

k(β) +m If |= µ ⊃ β
t− k(¬µ) Else if t = k(β)
min(t− k(¬µ), k(β) +m) Otherwise

where t = k(µ ⊃ β).



Theorem 4.5 For arbitrary m1,m2 > 0, the belief revision
operator defined by (2) satisfies the following conditions:2

(EC1) If α |= µ, then (k∗µ,m1
)∗α,m2

≡ k∗α,m2
.

(EC2) If α |= ¬µ, then (k∗µ,m1
)∗α,m2

≡ k∗α,m2
.

(EInd) If there exists m such that k∗¬β,m 6|= ¬µ, then
(k∗µ,m1

)∗¬β,m2
|= µ

Proof : If |= ¬α, Condition (EC1) holds trivially. Assume
that α |= µ and 6|= ¬α. By (2),

k∗α,m2
(w) = 0 iff w |= α and k(w) = k(¬α) (3)

Likewise,

(k∗µ,m1
)∗α,m2

(w) = 0 iff w |= α

and k∗µ,m1
(w) = k∗µ,m1

(¬α)
(4)

Since α |= µ, for any w |= α we have k∗µ,m1
(w) = k(w) −

k(¬µ) by (2). Since µ ⊃ ¬α ≡ ¬α and 6|= ¬α, it follows
from Lemma 4.4 that k∗µ,m1

(¬α) = k(¬α) − k(¬µ). Hence,
(4) is equivalent to

(k∗µ,m1
)∗α,m2

(w) = 0 iff w |= α and k(w) = k(¬α)

This and (3) implies (k∗µ,m1
)∗α,m2

≡ k∗α,m2
. Condition (EC2)

can be proved analogously.
We prove Condition (EInd) by contradiction. To begin

with, from the assumption that k∗¬β,m 6|= ¬µ it follows that
6|= β and 6|= µ ⊃ β. Furthermore, there exists w such that
k∗¬β,m(w) = 0, w |= ¬β ∧ µ, and k(w) = k(β). With the
help of (1), this implies k(β) = k(µ ⊃ β).

Now assume that (k∗µ,m1
)∗¬β,m2

6|= µ. It follows that there
exists w′ such that (k∗µ,m1

)∗¬β,m2
(w′) = 0, w′ |= ¬β ∧ ¬µ,

and k∗µ,m1
(w′) = k∗µ,m1

(β). Since k(w) = k(β) and w′ |=
¬β, we have k(w′) ≥ k(w). Hence by (2), k∗µ,m1

(w′) =
k(w′) + m1 > k(β). But from Lemma 4.4 it follows that
k∗µ,m1

(β) ≤ k(β), since 6|= β and 6|= µ ⊃ β. This contradicts
k∗µ,m1

(w′) = k∗µ,m1
(β). 2

Theorem 4.3 and 4.5 show that Postulate (Ind) is consistent
with the KM and DP postulates. On the other hand, (Ind) does
not follow from these postulates, which can be seen by the
fact that (Ind) is incompatible with (CB), the postulate that
characterizes natural revision.

It is worth mentioning that revisions based on ordinal con-
ditional functions are particularly suitable for implementa-
tions of belief revision. For instance, [Jin and Thielscher,
2004] presented a method (and its implementation) for revi-
sion of belief bases which is equivalent to the belief revision
defined by (2).

5 Related Work and Conclusions
The first DP approach [Darwiche and Pearl, 1994] seemed
excessively strong because one of the postulates, (C2), is
inconsistent with the classical AGM framework, as pointed

2Note that, as before, we abuse notation by simply writing k∗µ,m

instead of
∧

Bel(k∗µ,m) etc.

out by [Freund and Lehmann, 1994]. Apart from the solu-
tion by [Darwiche and Pearl, 1997], namely, to use a modi-
fied version of KM (which we followed in this paper), sev-
eral other proposals were made to overcome the inconsis-
tency. For instance, Lehmann proposed a different way of
weakening the AGM postulates accompanied by quite dif-
ferent additional postulates for iterated revision, in which
a belief state consists of a sequence of revision sentences
[Lehmann, 1995]. Nayak et al. suggested to retain the orig-
inal AGM framework and to consider a belief revision op-
erator as a unary function (associated with a belief state).
The idea is to view belief revision as dynamic, in the sense
that the operator evolves after each step [Nayak et al., 1996;
2003]. On the other hand, one point has been generally ac-
cepted, namely, that iterated belief revision should not be con-
sidered as a purely set-theoretical change of belief sets but as
an evolution of belief states, which encapsulate beliefs with
some kind of information of the firmness of beliefs [Zhang,
2004].

The problem of the DP postulates to be overly permissive
was already studied by Nayak et al., [1996; 2003]. They sug-
gested to strengthen the DP postulates by the following so-
called postulate of Conjunction:

(Conj) If µ 6|= ¬β, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ (β ∧ µ).

It is easy to see that (Conj) implies another postulate, which
they called postulate of Recalcitrance:

(Rec) If 6|= β ⊃ ¬µ, then (Ψ ∗ µ) ∗ β |= µ.

In the following, we argue that Postulate (Conj), while
strengthening the DP postulates, is overly strict. To this end,
we show that even Postulate (Rec) is too strong. The latter
says that, as long as β ⊃ ¬µ is not a tautology, it should be
canceled after a successive revision by µ followed by β, no
matter how strong the initial belief in β ⊃ ¬µ. A simple
example shows that this behavior is not reasonable:

Example 2 All her childhood, Alice was taught by her par-
ents that a person who has told a lie is not a good person. So
Alice believed, initially, that if Bob has told a lie then he is
not a good person. After her first date with Bob, she began to
believe that he is a good guy. Then a reliable friend of Alice
warns her that Bob is in fact a liar, and Alice chooses to be-
lieve her. Now, should Alice still believe that Bob is a good
guy?

According to Postulate (Rec), Alice should not challenge
Bob’s morality and still believe he is good, and hence to dis-
believe what her parents taught her. But it is at least as rea-
sonable to give up the belief that Bob is good. This shows
that Postulate (Rec) is too strict a criterion for belief revision
operators.

With regard to the postulate we have proposed in this paper,
it is easy to see that (Ind) is a weakening of Postulate (Rec).
This raises the question whether Postulate (Ind) weakens too
much. Let us consider an example, taken from [Nayak et al.,
1996], which, at first glance, seems to show that this is indeed
the case.

Example 3 Our agent believes that Tweety is a singing bird.
However, since there is no strong correlation between singing
and birdhood, the agent is prepared to retain the belief that



Tweety sings even after accepting the information that Tweety
is not a bird, and conversely, if the agent were to be informed
that Tweety does not sing, she would still retain the belief
that Tweety is a bird. Imagine that the agent first receives the
information that Tweety is in fact not a bird, and later learns
that Tweety does not sing.

Nayak et al. claimed that it is only reasonable to assume that
the agent should, in the end, believe that Tweety is a non-
singing non-bird. Indeed, with Ψ ≡ singing ∧ bird it follows
from Postulate (Rec) that (Ψ ∗ ¬bird) ∗ ¬singing |= ¬bird,
since 6|= ¬singing ⊃ bird. Postulate (Ind), on the other
hand, does not apply in this case. But the behavior which is
claimed to be the only reasonable one is not generally justi-
fied. Suppose, for example, the agent initially believes firmly
that ¬singing ⊃ bird. It is then possible, after revising by
¬bird, that the belief in ¬singing ⊃ bird is stronger than
the belief in ¬bird. In this case, after further revising by
¬singing, the agent believes that Tweety is a bird after all.

In [Zhang, 2004], it has also been argued that Postu-
late (Rec) is too radical because only those revision operators
are admissible which assign the highest belief degree to the
new evidence. This can be considered a further justification
of our Postulate (Ind). Moreover, it is easy to verify that Pos-
tulate (Ind) is satisfied by all revision operators with memory
[Konieczny and Pérez, 2000].

We have formally justified our new postulate by a repre-
sentation theorem and a concrete revision operator which sat-
isfies both (Ind) and KM/DP. Other concrete revision opera-
tors have been proposed, e.g., in [Williams, 1995], which also
use ordinal conditional functions. The main difference is that
these operators do not satisfy the Independence postulate.
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