
Scale-Based Monotonicity Analysis in Qualitative Modelling with Flat Segments

Martin Brooks 1 and Yuhong Yan1 and Daniel Lemire2

1National Research Council
200 Montreal Road, M-50

Ottawa, ON K1A 0R6
martin.brooks@nrc.gc.ca
yuhong.yan@nrc.gc.ca

2University of Quebec
4750 avenue Henri-Julien
Montréal, QC H2T 3E4
lemire@ondelette.com

Abstract
Qualitative models are often more suitable than
classical quantitative models in tasks such as
Model-based Diagnosis (MBD), explaining system
behavior, and designing novel devices from first
principles. Monotonicity is an important feature
to leverage when constructing qualitative models.
Detecting monotonic pieces robustly and efficiently
from sensor or simulation data remains an open
problem. This paper presents scale-based mono-
tonicity: the notion that monotonicity can be de-
fined relative to a scale. Real-valued functions de-
fined on a finite set of reals e.g. sensor data or
simulation results, can be partitioned into quasi-
monotonic segments, i.e. segments monotonic with
respect to a scale, in linear time. A novel segmen-
tation algorithm is introduced along with a scale-
based definition of “flatness”.

1 Introduction
Qualitative models are used in applications such as model-
based diagnosis[Yan, 2003; Struss, 2002], explaining system
behavior [Šuc, 2003; Forbus, 1984; Kuipers, 1986], and de-
signing novel devices from first principles[Williams, 1992].
It is a challenge to build qualitative models for complex real
world engineering systems. Current research efforts are on
automatic generation of qualitative models from numerical
data obtained by numerical simulation or sensors. Many pro-
posed methods, such as in[Struss, 2002] and[Consoleet al.,
2003], work only when the functions are piecewise mono-
tonic. Hence, partitioning data arrays into quasi-monotonic
segments is an important problem[Yanet al., 2004b; 2004a].

One could segment a data array in monotonic segments
using a naïve algorithm: simply segment wherever there is
an extremum. For example, it is easy to segment the array
{0, 1, 2, 3, 2, 1, 0} in two monotonic segments. How-
ever, monotonic segments must be significant for the appli-
cation at hand and algorithms must be robust because the
data will unavoidably be subject to noise or insignificant
features. Hence, we might want to consider that the array
{0, 1.2, 1.1, 3, 2, 1, 0} has only two “significant” mono-
tonic segments since the drop from 1.2 to 1.1 is not large
enough to indicate a downward trend. Also algorithms must

be fast (O(n)) and not require excessive amounts of memory
(O(n)).

In this paper, we address the “scale-based monotonicity”
problem: monotonicity can be defined relative to a scale. We
define a metric for monotonic approximation. We solve the
following problem: given a number of segmentsK, find K
segments having the smallest monotonic approximation error.

In short, the main novel results of this paper are:

1. A novel optimal segmentation algorithm;

2. A novel definition of scale-based flatness.

2 Monotonicity in Qualitative Modelling
We just list a few examples to show that the monotonic
features are important to leverage in qualitative modeling.
In QSIM [Kuipers, 1986], the qualitative valueQV(f , t), is
the pair <qmag, qdir>, where qmag is a landmark value
l i or an interval made up of landmark values(l i , l i+1), and
qdir takes a value from the sign domain (+,0,-) according
the f ′(t) is increasing, steady, or decreasing respectively.
In Model-based Diagnosis (MBD), qualitative models are
used to describe system behavior. Two kinds of qualitative
models, based respectively on absolute or relative quanti-
ties, rely on the monotonicity of the function. The first one
is Finite Relation Qualitative Model(FRQ) [Struss, 2002;
Yan, 2003], where the qualitative relation is represented by
tuples of real valued intervals. For a monotonic segment
[xa,xb] of f , the tuple is determined by the bounding rect-
angle � = [xa,xb]× [min(f (xa), f (xb)),max(f (xa), f (xb))],
that is the smallest rectangle such thaty = f (x)

∧
xa ≤ x≤

xb ⇒ (x,y) ∈ �. The second one isQualitative Deviation
Model [Consoleet al., 2003] where the qualitative relation
is represented by the sign of deviation[∆y] from a refer-
ence pointxre f defined as +,-, or 0, according to whether
f is increasing, decreasing or flat. For example, iff is
monotonic increasing, we have[∆y] = sign(f (x)− f (xre f)) =
sign(x−xre f) = [∆x].

In this paper, we focus on abstracting qualitative models
from scattered data obtained from numerical simulation or
sensors. This work is motivated by at least two kinds of appli-
cations. First, when applying model-based diagnosis to real
world engineering systems, we need to build symbolic qual-
itative models by a numerical simulation of the engineering
models. Second, we need to explain system behaviors from

sensor data. Qualitative model abstraction in this paper is
defined as transforming numerical values into qualitative val-
ues and functions into qualitative constraints[Šuc and Bratko,
2001]. Monotonicity Analysis is defined as partitioning a fi-
nite series of real valuesx1,x2, . . . ,xn over an intervalD into
“monotonic” segments.

Monotonicity analysis is a crucial step to abstract qualita-
tive models from scattered data but it rises a problem. The
difficulty is that when the scattered data contains noise, the
monotonicity is not absolute in a neighborhood of any point.
The monotonic segments need to be significant in the context
of the problem. The small fluctuations caused by noise must
be ignored. This requires that noise be removed by compu-
tationally efficient methods such that the number of remain-
ing segments is dependent only on the characterization of the
noise.

Linear splines is an obvious approach to solve this prob-
lem. We can use top-down, bottom-up and sliding window
algorithms to approximate the data with a set of straight
lines[Keoghet al., 2001]. Then the same-sign slopes can be
aggregated as monotonic segments. Various algorithms are
derived from classic algorithms[Key et al., 2000] [Hunter
and McIntosh, 1999]. The downside of these methods is that
there is no link between linear spline approximation error and
the actual monotonicity of the data (considery = ex). Hence,
using linear splines, it is difficult to specify either the desired
number of monotonic segments or some “monotonicity error”
threshold. In addition, linear fitting algorithms are relatively
expensive.

Inductive learning is used in[Šuc and Bratko, 2001] to au-
tomatically construct qualitative models from quantitative ex-
amples. The induced qualitative model is a binary tree, called
a qualitative tree, which contains internal nodes (called splits)
and qualitatively constrained functions at the leaves. A quali-
tative constrained function takes the formMs1,...,sm : Rm 7→R,
si ∈ {+,−} and represents a function withm real-valued at-
tributes strictly monotone increasing with respect to thei-th
attribute ifsi = +, or strictly monotone decreasing ifsi =−.
For example,f = M+,−(x,y) meansf is increasing whenx
is increasing, and decreasing wheny is increasing. A split
is a partition of a variable. The unsupervised learning algo-
rithm eq-QUIN determines the landmarks for the splits. The
training data set is all possible pairs of data points. eq-QUIN
checks the best split against all possible hypotheses. Its com-
plexity is O(n22m). QUIN is a more efficient algorithm that
uses greedy search. Its complexity isO(n2m2). We do not
address multidimensional data in this paper.

3 Monotonicity Error
In this section, we define a measure of monotonicity. Sup-
pose we are given a set ofn ordered samples notedF :
D = {x1, . . . ,xn} ⊂ R→ R with real valuesF(x1), . . . ,F(xn)
and x1 < x2 < .. . < xn. We define,F |[a,b] as the restric-
tion of F over D∩ [a,b]. We seek the best monotonic (in-
creasing or decreasing) functionf : R → R approximating
F . Let Ω↑ (resp. Ω↓) be the set of all monotonic increas-
ing (resp. decreasing) functions. TheOptimal Monotonic
Approximation Function Error (OMAFE) of F is given by

minf∈Ω maxx∈D | f −F | whereΩ is eitherΩ↑ or Ω↓. Sign +
or - is associated toΩ↑ or Ω↓.

The segmentation of a setD is a sequenceS =
X1, . . . ,Xm of closed intervals (called “segments”) in D with
[minD,maxD] =

⋃
i Xi such that maxXi = minXi+1 andXi ∩

Xj = /0 for j 6= i, i + 1, i− 1. Alternatively, we can define a
segmentation from the set of pointsXi ∩Xi+1 = {yi}. Given
F : {x1, . . . ,xn} → R and a segmentation{Xi}, the Optimal
Piecewise Monotonic Approximation Function Error (OP-
MAFE) of the segmentation is given by maxi OMAFE(F |Xi)
where the directions of the segmentsXi are alternating and
such that the direction of the first segment is chosen so as to
minimize the OPMAFE.

Solving for a best monotonic function can be done as fol-
lows. If we seek the best monotonic increasing function, we
first define f ↑(x) = max{F(y) : y≤ x} (the maximum of all
previous values) andf ↑(x) = min{F(y) : y≥ x} (the mini-
mum of all values to come). If we seek the best monotonic
decreasing function, we definef ↓(x) = max{F(y) : y ≥ x}
(the maximum of all values to come) andf ↓(x) = min{F(y) :

y ≤ x} (the minimum of all previous values). These func-
tions which can be computed in linear time are all we need
to solve for the best approximation function as shown by the
next theorem which is a well-known result[Brooks, 1994;
Ubhaya, 1974].

Theorem 1. Given F : D = {x1, . . . ,xn} → R, a best mono-
tonic increasing approximation function to F is given by

f↑ =
f ↑+ f ↑

2 and a best monotonic decreasing approxima-

tion function is given by f↓ =
f ↓+ f ↓

2 . The corresponding er-

ror (OMAFE) is given bymaxx∈D
| f ↑(x)− f ↑(x)|

2 (monotonic in-

creasing) ormaxx∈D
| f ↓(x)− f ↓(x)|

2 (monotonic decreasing).

The implementation of the algorithm suggested by the the-
orem is straight-forward. Given a segmentation, we can com-
pute the OPMAFE inO(n) time using at most two passes.
The functionsf↑ and f↓ are sometimes called the standard
optimal monotone functions as the solution is not unique in
general.

4 Scale-Based Monotonicity
We present the notion of scale-based monotonicity. The in-
tuition is that the fluctuations within a certain scale can be
ignored.

Given an ordered set of real valuesD = {x1,x2, . . . ,xn},
considerF : D = {x1,x2, . . . ,xn} 7→ R. Given some toler-
ance valueδ > 0, we could say that the data points arenot
going downor areupward monotone, if consecutive mea-
sures do not go down by more thanδ, that is, are such that
F(xi)−F(xi+1) < δ. However, this definition is not very use-
ful because measures can repeatedly go down and thus the
end value can be substantially lower than the start value. A
more useful definition ofupward monotonicitywould be to
require that we cannot find two valuesxi andx j (xi < x j) such
thatF(x j) is lower thanF(xi) by δ (i.e. F(xi)−F(x j) < δ).
This definition is more useful because in the worst case, the

δ

δ

δ−pair

Figure 1: Aδ-pair.

last measure will be onlyδ smaller than the first measure.
However, we are still not guaranteed that the data does in fact
increase at any point. Hence, we add the constraint that we
can find at least two data pointsxk < xl such thatF(xl) is
greater thanF(xk) by at leastδ (F(xl)−F(xk)≥ δ).

To summarize, given some valueδ > 0, we say that a se-
quence of measures isupwardδ-monotoneif no two succes-
sive measures decrease by as much asδ, and at least one pair
of successive measures increases by at leastδ. Similarly, we
say that a set of measures isdownwardδ-monotoneif no two
successive measures increase by as much asδ, and at least
two measures decrease by at leastδ.

This generalized definition of monotonicity was introduced
in [Brooks, 1994] usingδ-pairs (see Fig. 1):

Definition 1.

• x< y∈D is aδ-pair (or a pair of scaleδ) for F if |F(y)−
F(x)| ≥ δ and for all z∈ D, x < z< y implies|F(z)−
F(x)|< δ and|F(y)−F(z)|< δ.

• A δ-pair’s direction isincreasingor decreasingaccord-
ing to whether F(y) > F(x) or F(y) < F(x).

Notice that pairs of scaleδ having opposite directions can-
not overlap but they may share an endpoint. Pairs of scaleδ
of the same direction may overlap, but may not be nested for
a certainδ.

We can defineδ-monotonicity as follows:

Definition 2. Let X be an interval, F isδ-monotoneon X
if all δ-pairs in X have the same direction; F is strictlyδ-
monotonic when there exists at least one suchδ-pair. In this
case:

• F is δ-increasingon X if X contains an increasingδ-
pair.

• F is δ-decreasingon X if X contains a decreasingδ-pair.

We say that a pair is significant at scaleδ if it is of scaleδ′
for δ′ ≥ δ.

In the next section, we discuss how to partition the data set
into monotonic segments.

5 A Scale-Based Algorithm for
Quasi-Monotonic Segmentation

Suppose thatD is a finite set of reals having at least two ele-
ments.F is a real-valued function onD, i.e.,F : D→ R.

We begin by defining a segmentation at scaleδ or a δ-
segmentation.

Definition 3. Let S= X1, . . . ,Xn be a segmentation of D, and
let δ > 0, then S is aδ-segmentationof F when all the fol-
lowing conditions hold.

• Each Xi is δ-monotone.

• Each Xi for i 6= 1,n is strictlyδ-monotone.

• At least one Xi is strictly δ-monotone.

• Adjacent strictlyδ-monotone segments have opposite di-
rections.

• For each strictlyδ-monotone Xi , and for all x∈ Xi , F(x)
lies in the closed interval bounded by F(minXi) and
F(maxXi).
• When X1 is not strictly δ-monotone, then for all x∈

X1−maxX1, F(x) lies in the open interval bounded
by F(minX2) and F(maxX2); and when Xn is not
strictly δ-monotone, then for all x∈ Xn−minXn, F(x)
lies in the open interval bounded by F(minXn−1) and
F(maxXn−1).

Each Xi is called aδ-segment of S. When strictlyδ-monotone,
Xi is a properδ-segment; when not strictlyδ-monotone, X1
or Xn is an improperδ-segment. For strictlyδ-monotone Xi ,
minXi andmaxXi are δ-extrema.

As the following theorems show, allδ-segmentations are
“equivalent” and the monotonic approximation error (OP-
MAFE) is known precisely.

Theorem 2. Let δ > 0. Let S1 and S2 beδ-segmentations of
F; then |S1| = |S2|. Furthermore, the firstδ-segments of S1
and S2 are both either proper or improper, and similarly for
the lastδ-segments.

Theorem 3. Let δ > 0. Let S be anyδ-segmentation of F;
then the monotonic approximation error (OPMAFE)≤ δ/2.

Now we want to compute aδ-segmentation givenF . There
are two approaches depending on the application one has in
mind. The first one is to chooseδ and then solve for the
segments[Brooks, 1994], when the magnitude of noise is
known. When one doesn’t know how to chooseδ, the second
approach is to set the maximal number of segmentsK, espe-
cially when one knows the shape of the function. We focus
on this second approach. We begin by labelling the extrema
with a corresponding scale∆(x).
Definition 4. Let x∈ D be a local extremum of F. x’sdelta-
scale ∆(x) is the largestδ > 0 such that there exists aδ-
segmentation having x as aδ-extremum.

It is immediate from the definition that ifδ > ∆(x), then
x can’t be aδ-extremum, but also that ifx is a δ-extremum,
then∆(x)≥ δ. This is stated in the following proposition.

Proposition 1. Let δ > 0, and let S= X1, . . . ,Xn be a δ-
segmentation of F. Then∆(x)≥ δ for everyδ-extremum, x, of
S.

We observe that there must be a smallestδ such that the
cardinality ofXδ = {x|∆(x) ≥ δ} is at mostK. However the
set Xδ might contain repeated maxima or repeated minima
and those might be removed before the setXδ can define a
δ-segmentation. This is stated in the next theorem.

Theorem 4. Let δ > 0 and consider the set of extrema Xδ =
{x|∆(x) ≥ δ} of F as an ordered set. Each extremum in Xδ
is either a maximum or a minimum, and a sequence of two
minima or two maxima is possible. Consider a subset X′

δ⊂Xδ
such that

• it has no repeated maxima or minima;

• there is no superset X′′δ of X′δ in Xδ without repeated ex-
trema;

then there exists aδ-segmentation S of F such that X′δ is ex-
actly the set ofδ-extrema of S.

In order to compute∆(x) for all extremax, it is useful to
introduce the following definitions.

Definition 5. Opposite-sense extrema x< z∈ X ⊂ D are an
extremal pair for X if for all y ∈ X, x< y < z implies F(y)
lies in the closed interval defined by F(x) and F(z). The ex-
tremal pair has an extent[F(x), F(z)] or [F(z), F(x)] and
increasing or decreasing direction according to F(x) < F(z)
or F(x) > F(z). An extremal pair ismaximal for X when
no other extremal pair in X has larger extent. Similarly, an
extremal pair is a maximal increasing (decreasing) when no
increasing (decreasing) extremal pair has larger extent.

Intuitively, a maximal extremal pair forms the largest de-
creasing (increasing) segment inside a larger increasing (de-
creasing) segmentX.

Definition 6. We recursively defineordinary andspecialin-
tervals: D is an ordinary interval. When I is an ordinary
interval, then an interval J⊂ I is special when J’s endpoints
constitute a maximal extremal pair in I; in this case J has
direction inherited directly from its endpoints. Recursively, if
J is special and interval J′ (J has endpoints constituting a
maximal extremal pair in J of direction opposite to that of J,
then J′ is special. Let Ji , i = 1. . .n be all special intervals in
an ordinary or special interval X. Choose any nonempty sub-
set of the collection{Ji}, and let S be the segmentation of X
defined by the endpoints of the special intervals in the subset.
Then any segment I∈ S that does not contain any of the Ji is
an ordinary interval.

One can see that the special intervals are nested. The
endpointsx,z of the special intervals have∆(x) = ∆(z) =
|F(x)−F(z)|. We can call them “twins” due to the same∆(x)
value. The ordinary intervals are not nested. The endpoints
of the ordinary intervals have different∆(x). We call each of
them “singleton”.

If there are several extrema having an equal value, the way
to choose the endpoints to constitute a maximal extremal pair
is not unique. Therefore, there are different sets of special
intervals. They are equivalent. For simplicity, we do not con-
sider the case of equal valued extrema in Algorithm 1 and
Algorithm 2. Instead, we explain how to deal with it verbally
after introducing the algorithms.

Algorithm 1 computes∆(x) for every extremumx∈D. The
input to Algorithm 1 is a list of extrema - i.e. the extrema data
points in the data array.

Algorithm 1 This algorithm labels the extrema in linear time
(as in Definition 4).

INPUT : data - a list of the successive extremal values of F, al-
ternating between maximum and minimum. Each element is an
"extremum record", having three fields: value, sense, and index.
Index identifies the data point, value gives F’s value at that data
point, and sense indicates whether the extremum is a maximum
or minimum.
OUTPUT: a list of "scale records". Each scale record has two
fields: scale and extrema_list. Extrema_list comprises either one
or two extremum records. The semantics of a scale record is that
the indicated extrema have the indicated scale as delta-scale.
Notes about the algorithm: 1) Lists are accessed by element
numbers; e.g. data(2) is the second element of data. 2) Lists
are manipulated with functions Push and Pop. Push(thing, list)
adds thing to list, resulting in thing being the first element of list.
Pop(list) removes the first element of list, and returns this first
element as the value of the function call. 3)MakeList(item1..∗)
pushes the items into a list generated, starting from the first item.
4) MakeScaleRecordcreates a scale record.

LET extrema = empty_list
LET scales = empty_list
Push(Pop(data),extrema)
Push(Pop(data),extrema)
for next_extremum IN datado

while Length(extrema) > 1 AND {{sense.next_extremum =
"maximum" AND value.next_extremum > value.extrema(2)}
OR {sense.next_extremum = "minimum" AND
value.next_extremum < value.extrema(2)}}do

Push(MakeScaleRecord(| value.extrema(1) -
value.extrema(2)|, MakeList(extrema(2), extrema(1))),
scales)
Pop(extrema)
Pop(extrema)

if Length(extrema) = 0then
Push(Pop(extrema_list.scales(1)), extrema)

Push(next_extremum, extrema)
while Length(extrema) > 1do

Push(MakeScaleRecord (| value.extrema(1) -
value.extrema(2)|, MakeList(extrema(1))), scales)
Pop(extrema)

Push (extrema(1), extrema_list.scales(1))
RETURN scales

The principle of Algorithm 1 is as follows: thewhile loop
inside thefor loop detects the special interval and labels the
both endpoints with the difference of their values. But if the
extrema list is empty after this labelling, which means that
the top item in the list needs to be checked against the com-
ing data, this top item is popped back to extrema in theif fol-
lowing the abovewhile. Then the next extremum is pushed
into the extrema list for the nextfor loops. Thewhile outside
the for loop determines theδ for the ordinary intervals. The
lastpushstates that the last extremum in the extrema list has
the same scale as the one just popped into scale. Actually the
endpoints of the biggest ordinary interval are always the last
two pushed into scale record list and their scales are identical.

If one desires no more thanK segments, it is a simple mat-
ter of pickingδ as small as possible so that you have no more
thanK + 1 significant extrema (∆(x) ≥ δ) together with the
first and last extrema (indexes 0 andn− 1). Algorithm 2
shows how once the labelling is complete, one can compute
the segmentation in timeO(nK logK) which we consider to
be linear time whenK is small compared ton. It also uses
a fixed amount of memory (O(K)). The principle of Algo-
rithm 2 is to select theK + 1 data points to be the endpoints
of K segments. Since the endpoints ofD are by default, the
remaining endpoints come from the largestδ-extrema. The
for is to select the largestδ-extrema. As in Algorithm 1, we
know that the labels are either "twins" or "singleton". Thus
in the for loop, a maximum ofK +2 data points are chosen.
Then, after the firstif outsidefor, the smallestδ-extrema are
removed to reduce the total endpoints to at mostK +1. The
rest of the code checks whether the first and the last endpoints
of D are included. If not, the smallestδ-extrema will be re-
moved in favor of the first and the last endpoints. The number
of segments can be less thanK since several extrema can take
the sameδ value and can be removed together.

Algorithm 2 Given a labelling algorithm (see Algorithm 1),
this algorithm returns an optimal segmentation using at most
K segments. It is assumed that there are at leastK+1 extrema
to begin with.

INPUT: an arrayd containing the values indexed from 0 ton−1
INPUT: K a bound on the number of segments desired
OUTPUT: segmentation points as per Theorem 4 and Proposi-
tion 1
L← empty array (capacityK +3)
for e is index of an extremum ind having scaleδ, eare visited in
increasing orderdo

insert(e,δ) in L so thatL is sorted by scale in decreasing order
(sort onδ) using binary search
if length(L) = K +3 then

pop last(L)
if length(L) > K+1then

remove all elements ofL having the scale of last(L).
if indexes{0,n−1} 6⊂ L then

if (index 0∈ L OR indexn− 1 ∈ L) AND length(L) = K+1
then

remove all elements ofL having the scale of last(L).
if (index 06∈ L AND indexn−1 6∈ L) AND length(L)≥K then

remove all elements ofL having the scale of last(L).
RETURN: the indexes inL adding 0 and/orn−1 when not al-
ready present

Algorithms 1 and 2 assume that no two extrema can have
the same value. In case of equal valued extrema, we can mod-
ify these algorithms without increasing their complexity. In
Algorithm 1, we can generalize ScaleRecord so that entries in
the extrema_list field can also be lists of extrema of the same
value. Then in thewhile loop, we can put the extrema of the
same value into the corresponding list. For Algorithm 2, we
just need to remember that whenever removing a middle point
between two equal valued extrema, the two equal valued ex-
trema have to be treated as one extrema to avoid having two
adjacent minima or maxima.

0 5 10 15
−0.5

0

0.5

1

1.5

2

0 5 10 15
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2: Input flow of tank A (left) and level of tank B (right)
with added white noise.

6 Scale-Based Flatness
For applications, it is important to be able to find “flat” seg-
ments robustly in a data set. We propose the following defi-
nition:

Definition 7. Givenδ > 0, consider aδ-monotonic segment
in a δ-segmentation, an interval I in this segment isδ-flat if
the standard optimal monotonic approximating function (as
defined in Theorem 1) is constant over I.

Because we can compute the standard optimal monotonic
approximating function inO(n) time, we can find flat seg-
ments inO(n) time.

The next proposition addresses the flat segments in differ-
ent δ-segmentations. The first point is derived from the fact
that when theδ increases, the new segments are always the
result of mergers of the previous segments. Hence, the seg-
ments at a smallδ are always subsets of the segments at a
largerδ. The second point says that the old flat segments will
still be flat in the merged segment.

Proposition 2. Let S be aδ-segmentation and let S′ be aδ′-
segmentation forδ′ > δ, then 1) anyδ-segment X∈ S is a
subset of someδ′-segment X′ ∈ S′, 2) for anyδ-flat interval I
in X, I is alsoδ′-flat in X′.

7 Experimental Results
7.1 Cascade Tank Sample Data
As a source of synthetic data, we consider a system which
consists of two cascade tanks A and B. Each tank has an in-
put pipe (incoming water) and an output pipe (outgoing wa-
ter). Tank A’s output pipe is the input pipe of tank B. In the
equations below, let A and B be the level of water for the two
tanks respectively. The change of water level is proportional
to the difference of the input flow and the output flow. As-
sumein is the input flow of tank A.f (A) is the out flow of
tank A. g(B) is the output flow of tank B[Kuipers, 1994].
Thus, we have

A′ = in− f (A)
B′ = f (A)−g(B)

In principle, f (A) andg(B) are increasing functions. We
assumef (A) = k1A andg(B) = k2B. If we variate the input
flow of tank A, in, we can control the level of tank B. In this
way, we generated some sample data and added noise to it.
See Fig. 2 for the the input flow,in, of tank A at the left and
the level of tank B at the right.

5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

K

O
P

M
A

F
E

optimal
topdown

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9
x 10

−3

K

O
P

M
A

F
E

optimal
topdown

Figure 3: OPMAFE versus number of segments K for tank B
with (above) and without white noise (below).

7.2 Optimal Algorithm vs. Top-down Algorithm

We choose the top-down linear spline approximation algo-
rithm to compare the performance with the optimal algorithm
developed in this paper. The top-down algorithm is a refined
process choosing best split points that minimizes the linear
regression error. The top-down algorithm we implemented
has complexity ofO(nK2) which is the best complexity on
record. The optimal algorithm in this paper isO(nK logK).
The optimal algorithm is faster forK sufficiently large. We
also compare the monotonicity approximation error using
OPMAFE. Figure 3 compares the OPMAFE for segmenta-
tions computed using either algorithm. The optimal algo-
rithm we presented in this paper performs significantly better
than the top-down algorithm. Note that OPMAFE is an abso-
lute error measurement (which grows with the amplitude of
the data).

8 Conclusion
Monotonicity is the most important feature to leverage when
building the qualitative model from the scattered numerical
data. This paper gives a solid mathematical foundation to
the problem of defining monotonicity based on scale theory,
where the values of the data points, not the distance between
the data points, determine the monotonicity. It proves to be
suitable in qualitative modeling. We present efficient algo-
rithms to segment the data set into monotonic segments in
linear time. We will continue to work on the multidimen-
sional case.

References
[Brooks, 1994] Martin Brooks. Approximation complexity

for piecewise monotone functions and real data.Comput-
ers and Mathematics with Applications, 27(8), 1994.

[Consoleet al., 2003] L. Console, G. Correndo, and C. Pi-
cardi. Deriving qualitative deviations from matlab models.
In Proc. of 14th Int. Workshop on Principles of Diagnosis,
pages 87–92, 2003.

[Forbus, 1984] K. Forbus. Qualitative process theory.Artifi-
cial Intelligence, 24:85–168, 1984.

[Hunter and McIntosh, 1999] Jim Hunter and Neil McIn-
tosh. Knowledge-based event detection in complex time
series data. InProc. of Artificial Intelligence in Medicine
and Medical Decision Making (AIMDM99), LNAI 1620,
pages 271–280, 1999.

[Keoghet al., 2001] Eamonn J. Keogh, Selina Chu, David
Hart, and Michael J. Pazzani. An online algorithm for seg-
menting time series. InICDM, pages 289–296, 2001.

[Key et al., 2000] Herbert Key, Bernhard Rinner, and Ben-
jamin Kuipers. Semi-quantitative system identification.
Artificial Intelligence, 119, 2000.

[Kuipers, 1986] B.J. Kuipers. Qualitative simulation.Artifi-
cial Intelligence, 29:289–338, 1986.

[Kuipers, 1994] Benjamin Kuipers.Qualitative Reasoning.
the MIT press, 1994.

[Struss, 2002] P. Struss. Automated abstraction of numeri-
cal simulation models - theory and practical experience.
In Proc. of 16th Int. Workshop on Qualitative Reasoning,
pages 161–168, 2002.

[Ubhaya, 1974] V. A. Ubhaya. Isotone optimization I.Jour-
nal of Approximation Theory, 12:146–159, 1974.

[Šuc and Bratko, 2001] D. Šuc and I. Bratko. Induction of
qualitative tree. InProc. of European Conference of Ma-
chine Learning in 2001 (LNCS 2167), pages 442–453.
Springer, 2001.

[Šuc, 2003] D. Šuc.Machine Reconstruction of Human Con-
trol Strategies, volume 99 ofFrontiers in Artificial Intel-
ligence and Applications. IOS Press, Amsterdam, The
Netherlands, 2003.

[Williams, 1992] B. Williams. Interaction-based invention:
designing devices from first principles. InRecent Ad-
vances in Qualitative Physics, pages 413–433. MIT Press,
Cambridge, MA, 1992.

[Yanet al., 2004a] Yuhong Yan, Daniel Lemire, and Martin
Brooks. Monotone pieces analysis for qualitative model-
ing. In Proceedings of ECAI MONET’04, 2004.

[Yanet al., 2004b] Yuhong Yan, Daniel Lemire, and Martin
Brooks. Monotonicity analysis for constructing qualitative
models. InProceedings of MBR’04, 2004.

[Yan, 2003] Y. Yan. Qualitative model abstraction for diag-
nosis. InProc. of 17th Int. Workshop on Qualitative Rea-
soning, pages 171–179, 2003.

