
Abstract 
Traditional supervised learning deals with labeled 
instances. In many applications such as physiologi-
cal data modeling and speaker identification, how-
ever, training examples are often labeled objects 
and each of the labeled objects consists of multiple 
unlabeled instances. When classifying a new ob-
ject, its class is determined by the majority of its 
instance classes. As a consequence of this decision 
rule, one challenge to learning with labeled objects 
(or sessions) is to determine during training which 
subset of the instances inside an object should be-
long to the class of the object. We call this type of 
learning ‘session-based learning’ to distinguish it 
from the traditional supervised learning. In this pa-
per, we introduce session-based learning problems, 
give a formal description of session-based learning 
in the context of related work, and propose an ap-
proach that is particularly designed for session-
based learning. Empirical studies with UCI datasets 
and real-world data show that the proposed ap-
proach is effective for session-based learning. 

1 Introduction 
A typical supervised learning problem is to learn a model 
from training examples that are usually labeled instances. 
But for many applications, training examples are labeled 
objects and each labeled object consists of multiple unla-
beled instances. During classification, an object is labeled as 
class ‘a’ if the majority of its instances are classified as ‘a’.  

 One application is physiological data modeling, whose 
goal is to predict context activities of individual users based 
on their physiological data. Typically, physiological signals 
are measured and recorded continuously for every other 
second. Continuous physiological signals are then divided 
into a number of sessions. Each session is of minutes long 
and consists of hundreds of records of physiological data. 
To predict the user’s activities for a session, prediction is 
first made for each record, and the dominant activity pre-
dicted for records in the session is then used as the activity 
for the session. Although each session is labeled as a single 
activity, a user may perform activities other than the labeled 
one. For example, during a session of ‘watching TV’, the 

user may fall into sleep for a short period of time. More 
information can be found from the website 
http://www.cs.utexas.edu/users/sherstov/pdmc/. 

Another application is speaker identification. To deter-
mine the speaker for a speech sample that is a minute long, a 
typical strategy is to first divide the long speech sample into 
a number of short ones. Then, a standard classification 
model, such as Gaussian Mixture Model (GMM), is applied 
to determine the speaker identity for each short sample. Fi-
nally, the dominant speaker that is classified for short sam-
ples will be used as the predicted speaker for the long sam-
ple. Compared with the strategy that extracts a single set of 
features for the whole long speech sample, this majority 
vote approach is usually more robust and accurate [Rey-
nolds, 1995]. This is because features extracted from a long 
speech sample may include significant amounts of back-
ground noise, while the noise can be reduced substantially 
when a long speech sample is divided into short ones.  

The common characteristics of the above two applica-
tions are that (1) training examples are labeled objects (e.g., 
sessions of physiological records in physiological data mod-
eling, and a long speech sample in speaker identification); 
(2) every object consists of multiple instances that are not 
labeled; and (3) in predicting an object’s class, it is deter-
mined by the class that is assigned to the majority of its in-
stances. To distinguish this new type of learning from the 
traditional supervised learning, we call it ‘session-based 
learning’. 

The challenge of session-based learning arises from the 
majority vote strategy that is used to determine the label of 
an object. This decision rule makes it ambiguous, during 
training, as to which subset of the instances inside an object 
should belong to the class of the object – we name it the 
label ambiguity problem. A straightforward strategy to-
ward this problem is to treat every unlabeled instance within 
a labeled object as a positive example for the class of the 
object. In physiological data modeling, every physiological 
record within a labeled session is treated as a training in-
stance for the activity assigned to the session. In speaker 
identification, every short sample within a long speech is 
used as a positive training instance for the speaker of the 
long speech. We call this simple strategy the ‘naive ap-
proach’. 

Learning with Labeled Sessions 

Rong Jin*, Huan Liu† 
*Dept. of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824  

rongjin@cse.msu.edu 
† Department of Computer Science and Engineering, Arizona State University, Tempe, AZ85287-8809

hliu@asu.edu 



One obvious problem with the naïve approach is that in-
stances within a single object often belong to multiple dif-
ferent classes, not just to the class of the object. Thus, by 
treating every instance within an object as a positive exam-
ple for the class of the object, we likely introduce training 
examples with noisy labels, which, as a result, degrades the 
quality of classification models. To further illustrate the 
problem with the naïve approach, let us consider a toy learn-
ing problem in Figure 1. It has four classes, with class ‘A’, 
‘B’, and ‘C’ centering on the vertices of a triangle, and the 
fourth class ‘D’ sitting on the center of the triangle. In tradi-
tional supervised learning, training examples are labeled 
instances. Since these four classes are well separated, we 
would expect that a simple Naïve Bayes model should work 
fine for this problem. But, for a session-based learning prob-
lem, training examples are labeled objects that consist of 
instances from different classes. In particular, consider the 
case when training objects for classes ‘A’, ‘B’, and ‘C’ are 
mixtures of instances from these three classes, while train-
ing objects for class ‘D’ only contain instances from ‘D’. 
With appropriate mixtures, the input means of instances 
from labeled objects for the four classes can stay close to 
each other, which makes it hard for the Naïve Bayes method 
to learn if assigning each instance with its object class. 

In the following, we first give a formal description of ses-
sion-based learning, and elaborate on the differences be-
tween this new type of learning problem and other related 
learning problems, such as multiple-instance learning. Then, 
we present a novel approach that is particularly designed for 
session-based learning. The key idea is to develop an inno-
vative way that handles the label ambiguity problem. Fi-
nally, we demonstrate the effectiveness of the proposed ap-
proach for session-based learning using both UCI datasets 
and data from physiological data modeling. 

2 Formal Description of Session-based 
Learning 

Let training examples be denoted by 
{ }1 1 2 2( , ), ( , ),..., ( , )n nD o y o y o y= , where each ( , )i io y  is a 

labeled object and iy ∈Y  is the class label assigned to ob-
ject io . Domain Y is { 1,1}−  for binary-class classification 
problems, and [1.. ]K  for multiple-class classification prob-

lems where K (K > 2) is the number of classes. Let ( )c o  be 
an object-based classification function, which takes an ob-
ject o as input and outputs its class label. In general, any 
supervised learning problem can be formulated as an opti-
mization problem: 

( )*
1

arg min ( ),
n

i iic
c L c o y

=
= ∑  (1) 

where L is a loss function that determines the amount of 
punishment when prediction ( )ic o  is different from iy . 
 For a traditional supervised learning problem, each object 
only contains a single instance. As a result, training exam-
ples can be simplified as { }1 1 2 2( , ), ( , ),..., ( , )n nD y y y= x x x , 

where each instance d
i ∈ℜx  is a vector in a d dimension 

space. Furthermore, the object-based classification function 
( )c o  becomes an instance-based classification function 

( ) : df ℜ →x Y . Thus, a traditional supervised learning 
problem is usually formulated as follows: 

( )*
1

arg min ( ),
n

i iif
f L f y

=
= ∑ x  (1a)

In session-based learning, each object consists of multiple 
unlabeled instances. Let the training data be denoted by 

{ }1 1 2 2( , ), ( , ),..., ( , )n nD y y y= X X X , where each object 

{ }, 1
im

i i j j=
=X x  contains mi different instances. Given an 

instance-based classification function ( ) : df ℜ →x Y , the 
decision rule for session-based learning is that, an object iX  
is labeled as class ‘a’ if the majority of its instances are 
classified as ‘a’. Thus, in session-based learning, the object-
based classification function cs can be written into the fol-
lowing form of the instance-based classification ( )f x : 

( ),1
( ; ) arg max ( )im

s i i jjy
c f f yδ

=∈
= =∑

Y
X x  (2) 

where ( )δ ⋅  is a delta function that outputs 1 when the input 
is positive and zero otherwise.  
 Compared to traditional supervised learning, the chal-
lenge of session-based learning is due to the label ambiguity 
problem. Although each training object is provided with a 
class label, the label information of instances within objects 
is not given. Hence, it is difficult to learn an instance-based 
classification function from labeled objects. In the naïve 
approach, each instance within an object is treated as a posi-
tive example for the class of the object. As a result, a ses-
sion-based learning problem is simplified as a traditional 
supervised learning problem: 

( )*
,

1 1

arg min ( ),
imn

i j i
f i j

f L f y
= =

= ∑∑ x  (1b)

 The most related work to session-based learning is multi-
ple-instance learning[Dietterich, et al.,1997]. Similar to ses-
sion-based learning, in multiple-instance learning, class la-

Figure 1: A toy example of session-based learning 
problem with four classes ‘A’, ‘B’, ‘C’, and ‘D’. 

A 

B 

D 

C 



bels are assigned to objects that consist of multiple in-
stances, which are called “bags” in multiple-instance learn-
ing. In the past, there have been many studies on multiple-
instance learning, including the approach of learning axis-
parallel rectangles [Dietterich, et al.,1997], the diverse den-
sity algorithm [Maron and Lozano-Pérez,1998], the ap-
proaches based on support vector machines [Andrews, et 
al.,2002, Tao, et al.,2004], the nearest neighbor approach 
[Amar et.al. 2001; Wang and Zucker, 2000], and the boost-
ing approach [Andrews and Hofmann,2003]. 

Multiple-instance learning differs from session-based 
learning in its decision rule. In multiple-instance learning, 
an object iX  is labeled as positive class when at least one of 
its instances is classified as positive. A negative class is 
assigned to an object when all of its instances are classified 
as negative. Thus, given the instance-based classification 
function ( ) : df ℜ →x Y , the object-based classification 
function cm for multiple-instance learning is written as: 

[ ]
[ ]

,

,

1 1... , ( ) 1
( ; )

1 1... , ( ) 1
i i j

m i
i i j

j m f
c f

i m f
+ ∃ ∈ = += − ∀ ∈ = −

x
X

x
 (2’)

Examples for the three different types of learning are shown 
in Figure 2 for comparison. The first column shows tradi-
tional supervised learning with instances and their labels. 
The columns for Multiple Instance Learning and Session-
based Learning show how these two different strategies ag-
gregate instances and assign labels to the aggregates. 

Session-based learning is more challenging than multiple-
instance learning in the following sense: in multiple-
instance learning, when an object is labeled as ‘negative’, all 
of its instances will belong to the negative class. Thus, for 
multiple-instance learning, there is no label ambiguity for 
negatively labeled objects. In contrast, the label ambiguity 
problem exists for session-based learning regardless of the 
sign of labels. For instance, in Figure 2, for session-based 
learning, both the first and second objects are labeled as 
‘negative’. However, the labels of instances in these two 
objects are different. The two learning schemes also differ 
in degrees of difficulty when deciding positive classes for 
objects: multiple-instance learning adopts the “at-least one” 
strategy and session based learning uses the majority one.  

3 SBoost – An Algorithm for Session-based 
Learning 

In this session, we will present a boosting-based algo-
rithm for session-based learning problems of binary classes. 
The key for designing a learning algorithm for session-
based learning is to define a simple yet effective loss func-
tion ( )( ; ),i iL c f yX . A simple choice is 

( ) ( )( ; ), ( ; )i i i iL c f y c f yδ= ≠X X . However, this choice 
will lead to a non-smooth objective function, which is usu-
ally difficult for optimization. Hence, we choose to use the 
exponential loss function to approximate classification er-

rors, which has been demonstrated to be effective in the 
AdaBoost algorithm [Freund and Schapire, 1997]. 
 In particular, in designing objective functions, two types 
of errors are considered: instance-based errors and session-
based errors. An instance-based error is a prediction mistake 
made for an instance, and a session-based error is a predic-
tion mistake made for a session. One key difference be-
tween session-based learning and traditional supervised 
learning is that the former is concerned with both session-
based errors and instance-based errors while the latter con-
cerns with only instance-based errors. To include both types 
of errors, given an instance-based classification function 

( )H x , we define the loss function as: 

( ), ,
1 1

Session-based error Instance-based error

( ( ; ), )

exp ( ) exp ( )
i i

i i

m m
i

i j i j i
i j j

L c X H y

y
H x H x y

m
γ

= =

=

    − −     
∑ ∑  (3) 

In the above expression, both session-based and instance-
based errors are approximated by an exponential function. 
The loss function is defined as the product of these two er-
rors. In other words, a misclassified instance is important 
only when its related session is also misclassified. Constant 
γ  in (3) determines the relative importance between the 
session-based error and the instance-based error. In experi-
ment, a cross validation with 20/80 split of training data is 
used to determine appropriate values for γ . In the follow-
ing, we will discuss how to efficiently find ( )H x  that 
minimizes the loss function in (3). 

 3.1 Boosting-based Optimization Algorithm 
With the loss function defined in (3), our goal is then to 

search for optimal H(x) that minimizes the overall cost for 
the training data, i.e., 

( )

( )

*
1

, ,
1 1 1

arg min arg min ( ; ),

arg min exp ( ) exp ( )
i i

n
i iiH H

m mn
i

i j i j i
H ii j j

H err L c H y

y
H x H x y

m
γ

=

= = =

= =

    = − −     

∑

∑ ∑ ∑

X

(4)

Trad. Super-
vised Learning

Multiple-instance 
Learning 

Session-based 
Learning 

0.1 0.2 0.3 -1 0.1 0.2 0.3 0.1 0.2 0.3
0.2 0.5 0.4 -1 0.2 0.5 0.4 0.2 0.5 0.4
0.6 0.2 0.1 -1 0.6 0.2 0.1 

-1 
0.6 0.2 0.1

-1 

…… …… …… 
0.3 0.7 0.6 -1 0.3 0.7 0.6 0.3 0.7 0.6
0.7 0.2 0.2 -1 0.7 0.2 0.2 0.7 0.2 0.2
0.8 0.1 0.0 +1 0.8 0.1 0.0 

+1 
0.8 0.1 0.0

-1 

…… …… …… 
0.5 0.7 0.1 +1 0.5 0.7 0.1 0.5 0.7 0.1
0.1 0.6 0.9 -1 0.1 0.6 0.9 0.1 0.6 0.9
0.7 0.1 0.2 +1 0.7 0.1 0.2 

+1 
0.7 0.1 0.2

+1 

Figure 2: Training examples for traditional super-
vised learning, multiple-instance learning, and ses-
sion-based leaning. 



An efficient approach for optimizing Eq. (4) is to divide it 
into a series of simple learning problems that do not have 
the label ambiguity problem and thus can be resolved by 
traditional supervised learning techniques. We solve the 
label ambiguity problem by maintaining weights for differ-
ent instances such that only instances with large weights are 
assigned to the class of their objects and used for training. 
Since boosting [Freund and Schapire, 1997] is a learning 
algorithm that uses weighted instances to efficiently update 
classification functions, we design a boosting-based learning 
algorithm for learning with labeled sessions below.   

Let ( )th x  be the ‘weak’ classifier of the t-th iteration that 
is learned using traditional supervised learning techniques. 
The combined classifier ( )TH x  for the first T iterations is 

1( ) ( )T
T t ttH hα

=
=∑x x , where tα  is the combination con-

stant for the t-th iteration. Our goal is to find another ‘weak’ 
classifier 1( )Th + x  and a constant 1Tα +  such that the new 
combined classifier 1 1 1( ) ( ) ( )T T T TH H hα+ + += +x x x  will 
effectively minimize the function in (4). Given classi-
fier 1( )TH + x , the objective function in (4) is rewritten as: 

( )

, ,
1

1
, ,

1

exp ( ) ( )

exp ( ) ( )

i

i

m
i

i j i jn i j

m
i

i j i j i
j

y
H h

m
err

H x h x y

γ
α

α

=

=

=

  
   − +     =  
 

 × − +  
  

∑
∑

∑

x x
 (5) 

In the above expression, for the convenience of presenta-
tion, we drop the index for ( )TH x , 1( )Th + x , and 1Tα + . 
Using the convexity of an exponential function, we have  

( ), , ,
1 , 1

exp ( ) ( ) ( )
imn

i
i j i k i i j i

ii k j

g
err h h y H y

m
α γ

= =

 ≤ − + − ∑ ∑ x x x (6)

where ,1
exp ( )imi

i i jj
i

yg H
m
γ

=

 
≡ − 

 
∑ x . Then, using inequal-

ity 1 1e ,  [ 1,1]
2 2

x x xe e xα α α−+ −
≤ + ∀ ∈ − , we can further 

upper bound (6) by the following expression: 

Given: (X1, y1), …, (X m, ym) where { } { }, ,1
,  ,  1,1im d

i i j i j ij
y

=
= ∈ℜ ∈ −X x x ; Weighting constant γ  

Initialize the weight distribution ( )0 1( , ) 1 n
iiD i j m== ∑ , 0 ( ) 0H x =  

For t = 1,…,T 
1. Sample training instances { }11,1 1, ,1 ,,..., ,..., ,...,

nm n n mx x x x  according to 1tD −  

2. Train a weak classifier ( ) : { 1,1}d
th ℜ → −x  on sampled examples 

3. Compute 1 ,1
exp ( )imi

i t i jj
i

yg H
m
γ

−=

 
= − 

 
∑ x , ( )1 ,1

exp ( )im
i t i j ij

a H y−=
= −∑ x , and 

( ), 1 , ,
1 1

( )exp ( ) ( )
i im m

i i
i i i j t i j i i j

ij j

y ab y h H y h
m
γ

−
= =

= − +∑ ∑x x x  for each session. 

4. Let 
[ ]

[ ]
1

1

(1 )
1 ln

2(1 ) (1 )

n

i i i
i

t n

i i i
i

g a b

g a b

γ
α

γ γ

=

=

 
+ +  =  +  + −

  

∑

∑
 

5. Update the weight distribution ( )
( )( )1 ,exp ( )

,
i t i j i i i

t
t

g H y a m
D i j

Z

γ−− +
=

x
, where tZ  is a normaliza-

tion factor (chosen so that 1tD +  is sum to 1). 
6. Update the classifier 1( ) ( ) ( )t t t tH H hα−= +x x x  

Output the final hypothesis: 
{ }

1
1,1

( ) arg max ( )T
T t tt

y
F h yα=

∈ −
= ∑x x  

Figure 3: Description of the SBoost algorithm.



( )

upper

(1 ) (1 )

1

,(1 ) (1 )

,
1 1

2

exp ( )
( )

2(1 )

i

n

i i
i

m i i j in

i i j i
i j i

i

err err

e e a g

g H y
e e y h a

g
m

α γ α γ

α γ α γ

γγ

+ − +

=

+ − +

= =

≤

+
=

 −
 −

−  
+ + 

 

∑

∑∑
x

x

(7) 

where ( ),1
exp ( )im

i i j ij
a H y

=
≡ −∑ x . Define weight 

( ) ( )( ),, exp ( )i i j i i iD i j g H y a mγ≡ − +x  and rewrite the 

second term in (7) as: 
(1 ) (1 )

,
1 1

( ) ( , )
2(1 )

imn

i i j
i j

e e y h D i j
α γ α γ

γ

+ − +

= =

−
+ ∑∑ x  (8) 

Clearly, to minimize the objective err in (7), we need to 
maximize the above expression (8). The best case is that the 
output of weak classifier ( )h x  is consistent with yi, for all 
instances in an object. When this is not the case, the label 
ambiguity problem is then resolved based on weight 

( , )D i j . In particular, instances with large weights are as-
signed with the class of their objects, while the labels for 
instances with small weights remain unlabeled. This is be-
cause the contribution of an instance to (8) is mainly deter-
mined by its weight ( , )D i j . When an instance has a small 
weight, its contribution to (8) will be ignorable. Further-
more, notice that ( , )D i j  is proportional to ig , which is 
related to session-based error. Thus, a misclassified instance 
will not be assigned with a large weight if the related ses-
sion error is small. Finally, the combination constant α  can 
be obtained by setting the derivative of the upper bound in 
(7) w.r.t. to α  to be zero. That is, 

[ ]

[ ]
1

1

(1 )
1 ln

2(1 )
(1 )

n

i i i
i
n

i i i
i

g a b

g a b

γ
α

γ
γ

=

=

 
+ + 

 =  
+  + − 

 

∑

∑
 (9) 

where

( ), , ,1 1
( ) exp ( ) ( )i im mi i

i i i j i j i i jj j
i

y a
b y h x H y h

m
γ

= =
≡ − +∑ ∑x x . 

For later reference, we name this algorithm SBoost for ‘ses-
sion-based boosting’. The details are given in Figure 3.  

4  Experiments 
The goal of this section is to examine the effectiveness of 
SBoost for session-based learning. We compare SBoost 
with the simple naïve approach that treats each instance 
within an object as a positive example for the class of the 
object. In particular, the naïve approach is applied to ses-

sion-based learning with both a Decision Tree and 
AdaBoost using a Decision Tree as its base classifier. 

Two types of data are used in experiments to evaluate the 
effectiveness of SBoost:  

1) Synthesized data that are generated from binary UCI 
datasets [Blake and Merz,1998] by combining multiple in-
stances into objects. Each object consists of ten different 
instances. To create an object for the positive class, a ran-
dom number between 1 and 5 is first generated, and the cor-
responding number of instances from the negative class are 
randomly chosen and added to the object. The rest of the 
object is filled out with instances randomly selected from 
the positive class. A similar procedure is applied to generate 
objects for the negative class. By doing so, we guarantee 
that the class of an object is consistent with the dominant 
class assigned to its instances. The details of UCI datasets 
used in this experiment are listed in Table 1. 
2) Physiological data that come from the workshop of 
physiological data modeling at the ICML 2004. We use the 
dataset for ‘watching TV’ with code 3004. In the original 
problem, the number of instances for the negative class is 
overwhelmingly larger than that for the positive class. Since 
we focus on the study of session-based learning, we inten-
tionally reduce the effect of rare class by randomly selecting 
parts of negative instances. The resulting data set has 241 
sessions with 40,838 instances. The details of this dataset 
are listed in Table 2.  

A decision tree [Quinlan,1993] is used as the baseline 
classifier throughout the experiments. The session-based 
classification error, i.e., the percentage of sessions that are 
misclassified, is used for evaluation. 50% of data are ran-
domly selected for training and the rest is used for testing. 
The same experiment is repeated 10 times, and the average 
session-based classification errors are reported. Finally, for 
both SBoost and AdaBoost, the maximum number of itera-
tions is set to be 30. 

4.1 Results 
The results of three methods (SBoost, the naïve approach 
using a single decision tree, and with AdaBoost) are shown 
in Table 3. First, we compare the performance of AdaBoost 
with that of a decision tree as both adopting the naïve ap-
proach to session based learning. We observe that AdaBoost 

Data Set # Examples # Features 
spam 4600 58 
cmc 1470 10 

german 680 24 
Table 1: Statistics of UCI datasets used for synthesized data

 
 Positive Class Negative Class 

# Instances 4343 3,6495 
# Objects 55 186 

# Avg of instances 
per object 69.3455 199.0538 

Table 2: Statistics for the physiological data 



does not guarantee to improve performance over the base-
line classifier (a decision tree here). In fact, for the spam 
dataset and the physiological data, the classification errors 
of AdaBoost are even greater than those of a decision tree. 
This is because the naïve approach treats all instances in an 
object as positive examples for the class of the object, while 
in reality, some instances in an object may belong to a class 
other than the class of the object. Hence, the naïve approach 
introduces noisy labels to training data, which will likely 
cause AdaBoost to overfit as observed in previous study of 
Boosting [Quanlin, 1996, Dietterich, 2000, Jin et al., 2003].   

Second, comparing SBoost with the decision tree, we ob-
serve that SBoost always outperforms its baseline classifier. 
According to t-test, it is statistically significantly better than 
the decision over all the UCI datasets with 0.05p < . Thus, 
SBoost does not suffer from the problem of overfitting as 
AdaBoost does. To further investigate this issue, we obtain 
average classification errors of AdaBoost and SBoost in 
different iterations, respectively, as shown in Figure 4. 
Clearly, AdaBoost tends to overfit the training data after the 
first several iterations whereas SBoost does not. 

5. Conclusion 
In this paper, we formulate a new type of learning problem, 
session-based learning. It differs from the traditional super-
vised learning in that training examples are labeled objects 
and each object consists of multiple unlabeled instances. 
Furthermore, session-based learning adopts a different deci-
sion rule from that of multiple-instance learning: an object is 
classified as class ‘a’ when the majority of its instances are 
classified as ‘a’. This majority vote decision rule causes the 

label ambiguity problem and has made session-based learn-
ing very challenging. We formally describe this new learn-
ing problem and propose a novel boosting algorithm, named 
Sboost. Empirical studies have demonstrated the effective-
ness of the Sboost algorithm. 

References 
[Amar et.al. 2001] Robert A. Amar, Daniel R. Dooly, Sally 
A. Goldman, Qi Zhang, Multiple-Instance Learning of Real-
Valued Data, Proc. 18th ICML, 2001. 
[Andrews and Hofmann, 2003] Stuart Andrews and Thomas 
Hofmann, Multiple-Instance Learning via Disjunctive Pro-
gramming Boosting, NIPS, 2003. 
[Andrews, et al., 2002] Stuart Andrews, Thomas Hofmann 
and Ioannis Tsochantaridis, Multiple Instance Learning with 
Generalized Support Vector Machines, Proc. 18th AAAI , 
2002. 
[Blake and Merz,1998] C.L. Blake and C.J. Merz, UCI Re-
pository of Machine Learning Databases,1998. 
[Dietterich, et al.,1997] T. G. Dietterich, Richard H. Lathrop 
and Tomas Lozano-Perez, Solving the Multiple-Instance 
Problem with Axis-Parallel Rectangles, Artificial Intelli-
gence, 89(1-2), 31-71,1997. 
[Dietterich, 2000] T. G. Dietterich, An experimental com-
parison of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization. Ma-
chine Learning, 40:139–157,2000. 
[Freund and Schapire, 1997] Yoav Freund and Robert E. 
Schapire, A Decision-theoretic Generalization of On-line 
Learning and an Application to Boosting, Journal of Com-
puter and System Sciences, 55(1), 119-139, 1997.  
[Maron and Lozano-Pérez,1998] Oded Maron and Tomás 
Lozano-Pérez, A Framework for Multiple-Instance Learn-
ing, NIPS, 1998. 
[Jin et al. ,2003] Rong Jin, Yan Liu , Luo Si, Jaime Car-
bonell, Alexander G. Hauptmann, A New Boosting Algo-
rithm Using Input-Dependent Regularizer, Proc. 20th ICML, 
2003 
[Quinlan,1993] R.J. Quinlan,C4.5: Programs for Machine 
Learning, Morgan Kaufmann,1993. 
[Tao, et al.,2004] Qingping Tao, Stephen Scott, N. V. Vi-
nodchandran and Thomas Takeo Osugi, SVM-based Gener-
alized Multiple-Instance Learning via Approximate Box 
Counting, Proc. 21st ICML, 2004. 
[Wang and Zucker, 2000] Jun Wang, Jean-Daniel Zucker, 
Solving the Multiple-Instance Problem: A Lazy Learning 
Approach, Proc. 17th ICML, 2000. 
[Quinlan, 1996] Quinlan, J. R. (1996). Bagging, Boosting, 
and C4.5. Proceedings of the 13th National Conference on 
Artificial Intelligence, 322–330. 
[Reynolds, 1995] D. A. Reynolds, Speaker identification 
and verification using Gaussian mixture speaker models, 
Speech Communications, vol. 17, pp. 91–108, 1995. 

Data Set SBoost AdaBoost Decision Tree 
spam 0.189 (0.022) 0.258 (0.059) 0.232 (0.051) 
cmc 0.439 (0.044) 0.444 (0.070) 0.519 (0.052) 

german 0.342 (0.028) 0.424 (0.069) 0.476 (0.081) 
phys. 0.163 (0.038) 0.191 (0.035) 0.176(0.030) 

Table 3: Classification errors with variances for the 
SBoost algorithm, the AdaBoost, and the decision tree  

0 5 10 15 20 25 30
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

C
la

ss
ifi

ca
tio

n 
E

rr
or

Iteration

SBoost
AdaBoost

Figure 4: Classification errors for physiological data 


