
Phase Transitions of Dominating Clique Problem and Their Implications to
Heuristics in Satisfiability Search

Joseph Culberson, Yong Gao, Cǎlin Anton
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8�

joe,ygao,asy � @cs.ualberta.ca

Abstract

We study a monotone NP decision problem, the
dominating clique problem, whose phase transition
occurs at a very dense stage of the random graph
evolution process. We establish the exact thresh-
old of the phase transition and propose an efficient
search algorithm that runs in super-polynomial
time with high probability. Our empirical studies
reveal two even more intriguing phenomena in its
typical-case complexity: (1) the problem is “uni-
formly hard” with a tiny runtime variance on neg-
ative instances. (2) Our algorithm and its CNF-
tailored implementation, outperform several SAT
solvers by a huge margin on dominating cliques and
some other SAT problems with similar structures.

1 Introduction
In this paper, we study the phase transition behavior of the
dominating clique problem (DOMC), an NP-complete de-
cision problem which for a given graph, asks if there is a
subset of vertices that induces a clique and is a dominat-
ing set. Our interest in DOMC stems from an initial obser-
vation that its phase transition should occur when the ran-
dom graph has a constant edge probability (i.e., has on av-
erage �������
	 edges). This distinguishes DOMC from many
other NP-complete problems previously studied from a phase
transition perspective; Well-studied problems such as ran-
dom SAT, random graph coloring, and Hamiltonian Cy-
cle all have a phase transition when the underlying random
graphs are sparse. For random SAT and graph coloring,
it is known that randomly-generated instances become typ-
ically easy when the density parameter increases as a cer-
tain function of the problem size [Franco and Gelder, 2003;
Krivelevich, 2002]. For Hamiltonian Cycle, whose edges-
vertices ratio threshold is �������������	�	 , instances randomly gen-
erated at the phase transition are already typically easy [Van-
degriend and Culberson, 1998].

Another unique feature is that DOMC is a monotone deci-
sion problem without any extra parameter other than the prob-
lem size and edge density. This is in contrast to other simi-
lar partitioning and covering problems studied in the phase
transition literature, such as the vertex cover [Hartmann and

Weigt, 2003], in which an additional size parameter has to be
used as an input.

There has also been recent interest in the study of the
typical-case behavior of random problems with some deter-
ministic structures, hoping that these problems might be able
to capture more characteristics in real-world applications.
Among others, the Quasigroup completion problem [Gomes
and Shmoys, 2002], problems defined on the small-world
graphs [Walsh, 1999], and problems obtained by “morphing”
different problems [Gent et al., 1999] have been proposed
as alternatives to random problems with a uniform distribu-
tion. The dominating clique problem on random graphs and
its CNF-encoding provide another type of distribution with
(in some sense) extreme characteristics.

In Section 2, we establish the exact threshold of the
phase transition of the dominating clique problem in random
graphs. In Section 3, we present a backtracking algorithm for
DOMC which will be used in our empirical investigation. In
Section 4, we report two sets of interesting observations from
our empirical investigation. We conclude in Section 5.

2 Dominating Clique Problem and its Phase
Transitions

Consider a graph ����������	 . A subset of vertices ��� �!� is
called a dominating clique of ���"�#�$��	 if �%� induces a clique
and for any &(')�+*,��� , there is a vertex -.'/��� such that��-0��&1	�'.� . The dominating clique problem is the one that
asks the question whether a given graph has a dominating
clique.

The property of having a dominating clique is monotone
and has a phase transition when the random graph is at the
dense stage of the graph evolution process. The following
theorem shows the phase transition has an exact threshold2�3547698�: ;� for a random graph �����<� 2 	 where each of the�����5=/>
	$?A@ potential edges appears in the graph with proba-
bility 2 .

Theorem 2.1.�CB�DE Pr FG�����<� 2 	 has a dominating clique H
4JILK � if 2NM!698�: ;�PO>Q� if 2NR!698�: ;�PS (2.1)

To simplify the notations, we will write � 4 �� . Let��� ���<���A	 be the number of dominating cliques of size � . The
expectation of

��� ���<��� 	 is�
	 ��� ���<���A	�� 4� � ��� 2 ���� 	 ��> = ��> = 2 	�� 	 E 8 � S (2.2)

By Stirling’s formula, we have

�
	 ��� ���<���A	���� >� @���� �� � 2� � 8 ��!�" �� � � ��> = ��> = 2 	��G	 E 8 � S
(2.3)

Lemma 2.1. If the edge probability 2 is such that �CQ�$# �%� =>G	 R �� , then

�CB�DE E&��' � ��	 ��� ���<���A	�� 4 K S (2.4)

Proof. Let(
����	 4 �*) +-,/. E&�-' � � ��� 2 ���� 	 ��> = ��> = 2 	�� 	 E 8 �

and 0 ����	 4 &�21 �3) +-, . E � ��� 2 � �� 	 ��> = ��> = 2 	�� 	 E 8 �
Based on the bound 4 E �65�7 �68 E� 	 � , 0 ����	 can be estimated

as follows:0 ����	 4 &�91 �:) +�, . E � ��� 2 �%�� 	 � > =/� > = 2 	�� 	 E 8 �7 &�91 �:) +�, . E � � �� 	�� 2 � �� 	4 &�91 �:) +�, . E�; � � � ��<� � �>= �
7 &�91 �:) +�, . E�; � � �� = �

Since : # 8� M > if � is sufficiently large, we have �CB�DE 0 ����	 4K .
For

(
����	 , we have(

����	 4 �*) +�,2. E& ��' � � �:� 2 � �� 	 ��> = ��> = 2 	��G	 E 8 �7 �*) +�, . E& ��' � ��� > = � �#= >� 	�� � E 8 �7 �"@ ���� # ��	 � �3) ? E) +-, . E > = � � = >� 	 �*) +�, . E � E 8 �:) +�, . E� �"@ ����*# ��	 � �3) ? E) +-, . E � 8 � .�@:A. 	 �CB D%E .GF E 8 �:) +�, . E !4 �"@ ����*# ��	 � �3) ? E) +-, . E � 8 AF � E �GB DHE .�I .H@:A%J E 8 �:) +�, . E !� �"@ ����*# ��	 � �3) ? E) +-, . E � 8 E �CB DHE .�I .H@:A%JK@:A

Therefore, we have ��BCDE
(
����	 4 K if ����*# �H� = >
	 RL�� .

Solving the inequality about � , we get � R 6�M : ;� , that is,2 M 698�: ;� 4 K S N3O >CPRQRQTS9S9S . To prove the case of 2 R 6 8 : ;� ,
i.e., ���� # �%� = >
	 M �� , we have to consider the variance of
the number of dominating cliques in �����<� 2 	 . Details will
be given in the Appendix. Here, we only mention that the
first crucial observation is that in this case, we have (A)�� 8) +�, . # 8 ��! M @ and (B) the expected number of dominat-
ing cliques of size U������#1� tends to infinity for any constant U
such that �� 8) +-, . # 8 ��! M U M @ .
Lemma 2.2. Let U be a constant such that �� 8) +-, . # 8 ��! M U M@ and let � 4 U�����*#1� . Then,��B�DE ��	 ��� ���<���A	�� 4WVYX S
Proof. By (2.3), we have

�
	 ��� ���<���A	���� >� @<��� ; � � � ��<� � �>= � � 8 ERZ I B DHE .�I .H@:A%JK@:A%J\[*A
4 >� @����]� � � 8 Z�U�����*#1� �_^) +-, . E � 8 ERZ I B DHE .�I .�@:A�J`@:A�Ja[:A S

The lemma follows since by assumption we have U������� # �%� =>G	0= >G	 V > M K and > = ^� R K .
3 An Algorithm for the Dominating Clique

Problem
We present a brief over view of the elementary algorithm we
developed for this problem.

We assume we are given a simple undirected graph � 4�"�#�$��	 . The algorithm is a basic depth first backtrack al-
gorithm that recursively constructs a potential dominating
clique

�
. We call the set of vertices not adjacent to any ver-

tex in
�

the uncovered set b . For a vertex to be a candidate
for addition to

�
it must be adjacent to all vertices in

�
. We

call this the selection set c 4 F6dfeGgih ' � � F6d ��h H%'5� H .
At each node in the backtrack tree, we select a pivot setjlk c such that if the current

�
can be extended to cover the

graph at least one of the vertices must be in
j

. To this end,
we first find a vertex h '>b which has a minimum number
of neighbors in c . Clearly either h or one of its neighbors
in the current c must be in the final

�
. The effect of this

is to greatly reduce the branching factor and the amount of
redundant search.

For

(k ����h '!� we define the closed neighborhood
of a vertex h in a subset

(
as mn � (��h 	 4 FCd ' (eod 4h or F6d ��h H5' ��H , and the open neighborhood

n � (��h 	 4mn � (��h,	 * F6h%H . Initially, b 4 c 4 � and
� 4Wp .

At first glance it appears we have eliminated the vertex of
minimum degree, h , as a possible member of

�
. Suppose h

is the only vertex in
�

, then since h is of minimum degree� is a clique and any vertex will do. Otherwise, on the initial
step h will be in c<� and so is available for inclusion later in
the recursion. Correctness then follows by induction on the

DomClq(� �-c � � � b) :: BOOLEAN
If b 4 p then� ��� ����� 4 �

.
return yes.

endif
Find h+'fb such that � n �%c ��h 		� 4 D B�
������� n �%c ��� 		� .j 4 n �%c ��h 	 .
if
j 4Wp return no.c�� � 4 c .

while
j��4 p
Select & ' j .� 4 ��� F & H .c<� 4 n �%c<� �"��&1	 .b�� 4 b)* mn �Hb �$& 	 .
If DomClq(� �-c�� � � �/b��) return yes.� 4 � * F & H .c<� � 4 c�� � * F & H .j 4 j * FG& H .

endwhile
return no;

end DomClq.

observations given above. Our assumption is that usually the
vertex of minimum degree is not in

�
and so we may reduce

the search cost by leaving it out of the initial
j

. Note that
after the initial step c and b are disjoint.

In our program we made no effort to reorder the vertices
of

j
for selection (first statement in the while loop). One

obvious candidate is to select & ' j
to maximize

n �Hb �$& 	 .
We would guess that in positive instances this would tend to
find solutions quicker. However, the results for the negative
instances in table 2 indicate this is unlikely to help in those
cases, these are the most expensive and there would be a fair
bit of overhead cost to this heuristic. We leave further inves-
tigation of selection heuristics as future work.

4 Empirical Studies
In this section, we discuss our empirical investigation on the
dominating clique problem at phase transitions. In the first set
of experiments, we study the threshold behavior and typical-
case hardness of the dominating clique problem itself. In the
second set of experiments, we compare the performance of
our algorithm and some state-of-the-art SAT solvers.

4.1 Threshold and Uniformity of Hardness at
Phase Transitions

Table 1 shows the preliminary result on empirical value of
the threshold. Table 2 summarizes the typical case hardness
at 2 4 K S N � > for � 4 @�� K S S S > K�K�K . The data indicate that the
typical-case hardness at phase transitions increases at a super-
polynomial rate. More interesting is the fact that for negative
instances the variance in the number of the backtracks is tiny
as compared to the total number. In other words, randomly-
generated dominating clique instances just beyond the phase
transition seem to be “uniformly” hard. This suggests that
randomizing the selection within the pivot set

j
is unlikely

� Average Std. Min Max
50 0.3725 0.0203 0.3176 0.4106
75 0.3698 0.0150 0.3258 0.4040

100 0.3685 0.0109 0.3358 0.3826
125 0.3700 0.0110 0.3406 0.3951
150 0.3663 0.0110 0.3316 0.3817
175 0.3660 0.0096 0.3376 0.3794
200 0.3689 0.0078 0.3502 0.3853
225 0.3680 0.0075 0.3448 0.3827
250 0.3669 0.0072 0.3483 0.3842
275 0.3669 0.0084 0.3445 0.3814
300 0.3674 0.0060 0.3523 0.3775
325 0.3685 0.0073 0.3434 0.3784
350 0.3671 0.0083 0.3407 0.3803
500 0.3675 0.0063 0.3357 0.3786
750 0.3680 0.0061 0.3568 0.3770

Table 1: The average threshold of Dominating Clique, ex-
pressed as a fraction of 4 E � 5 possible edges, for various � .
Fifty instances at each � , except n=750 where only 8 in-
stances completed. Std is the standard deviation, Min (Max)
is the minimum (maximum) fraction encountered in the sam-
ple.

to produce the heavy-tailed running time behavior frequently
observed in many other problems [Gomes et al., 2000].

4.2 Significance of Using the Right Heuristics:
How SAT solvers fail?

The dominating clique problem has a very natural and simple
CNF encoding. To make the presentation easier, we adopt
the convention that a clause can be viewed as a set of literals.
Given a graph � 4 ���"�#�$��	 with � 4 FG& � �6S9S9S �$& E H , the
dominating clique problem can be encoded as follows.

1. There are � boolean variables FCd� � > 7 � 7 � H whered � 4 > signifies that the corresponding vertex & � is in
the dominating clique.

2. For each variable d�� , there is a clause
� � 4 F6d���H �n ��d � 	 , where

n ��d � 	 means the variables representing
the vertices adjacent to & � . This indicates that each ver-
tex has to be in the dominating clique or have a neighbor
in a dominating clique. These clauses will be called the
long-positive clauses.

3. For each pair of variables � d�$��d"!G	 not in � , there is
a clause

� �$# ! 4 F d � � d ! H , indicating that at most one
of the two non-adjacent vertices can be in a dominat-
ing clique. We will call these clauses the short-negative
clauses.

Other encodings are also possible such as the support en-
coding [Gent, 2002] that maps maintaining arc-consistency of
CSP algorithms to unit-propagation in SAT algorithms. But
similar CNF encoding of the CSP representation for the dom-
inating clique problem at the phase transitions will result in����� 6 	 clauses of length ������	 .

Backtrack nodes for YES instances
N Mean Std. Min. Max

600 179031.3 127471.9 836.0 517596.0
700 347996.4 266229.1 460.0 1043853.0
800 658643.6 496335.5 1890.0 2199760.0
900 1484544.5 978648.8 100955.0 3992411.0

1000 2354966.6 1796775.3 9259.0 6586573.0
Backtrack nodes for NO instances

N Mean Std. Min. Max
600 525205.8 7602.0 510705.0 537705.0
700 1121825.4 13552.0 1089553.0 1153289.0
800 2205960.3 19017.3 2166309.0 2254168.0
900 4063264.6 32241.0 3989194.0 4138323.0

1000 7103729.3 55926.8 6958133.0 7218638.0

Table 2: The number of backtrack nodes split on instances
with and without a dominating clique. 100 instances at each
N, 2.4 K S N � > . Note the remarkable consistency in the NO
instances.

A SAT algorithm for the CNF-encoding of DOMC
We noticed that SATZ and ZChaff cannot solve any of the
DOMC instances of size more than 600 in reasonable time.
Therefore we translated our dominating clique algorithm to a
SAT solver, called DCS, that solves the CNF-encoding of the
dominating clique problem almost as efficiently as the orginal
algorithm.

The solver does not use any of the current efficient data
structures such as the technique of watched literals, nor does
it use any advanced learning mechanism and heuristics, other
than those directly translated from our dominating clique
search algorithm. In the context of CNF formulas our algo-
rithm reads as follows: (1) always pick an unassigned vari-
able in the shortest remaining long-positive clause; (2) con-
duct a one-step unit propagation based on the information in
short-negative clauses; and (3) stop as soon as all the long
positive clauses are satisfied, or backtrack if a long-positive
clause becomes empty. As has been discussed at the end of
Section 3, our solver’s performance may be further improved
on satisfiable instances if we add the heuristic to select an
unassigned variable that satisfies a maximum number of long-
positive clauses.

N DCS BM MQ SZ Solution Prob.
150 0.04 0.119 12.715 1.73 0.47
300 1.11 3.904 � 600 58.93 0.51

Table 3: Median running time (in seconds) of SAT solvers
on random instances of the dominating clique problem. 100
instances for each N. The last column is the percentage of the
satisfiable instances. Cutoff time is 600 seconds.

Results on the CNF encodings of DOMC and Subgraph
Isomorphism
We have performed a series of experiments comparing the
performance of our solver DCS and some state-of-the-art

SAT solvers, including BerkMin(BM)1, MarchEq(MQ)2 and
Satz(SZ).

First, we compared the performance of our solver DCS
and other solvers on the CNF encoding of DOMC at phase
transitions. We generated 100 random instances of the dom-
inating clique problem at the edge probability 2 4 K S N Q O for� 4 >�� K and N K�K . According to our experiment on the thresh-
old, 2N4 K S N Q O is roughly the edge probability where � K per-
cent of the instances are satisfiable. The median running time
(in seconds) of these solvers is summarized in Table 3.

Inspired by the efficiency of DCS on DOMC we investi-
gated its performance on Subgraph Isomorphism (SGI) in-
stances. Given two graphs ���"��� �����#	 and �(�������$���,	 , the
subgraph isomorphism problem asks if there exists a sub-
graph � � of � such that � is isomorphic to � � . A SGI
instance can be naturally converted to SAT using an encod-
ing similar to the one used for DOMC (direct encoding); the
resulting SAT instance has � � � ��� � � � � variables, � � � � long
positive clauses and

� � � � � � � � � � � � � 	 short-negative clauses.
SAT encodings of random SGI (SERSGI) are difficult for (de-
terministic) SAT solvers.3

We generated 5 sets of SERSGI instances with 528 vari-
ables. Each set consisted of 50 instances generated around
the cross over point of SGI. DCS consistently outperformed
all the other solvers on each set (Table 4). DCS is one or
two orders of magnitude faster than MarchEq and Satz. This
is remarkable especially considering the simplicity of DCS.
To further investigate the speed up factor we compared the
performances of DCS and BerkMin on the SERSGI instances
used in the 2004 SAT competition (Table 5). With a single
exception, DCS performance was comparable or better than
that of BerkMin. Thus we conclude that DCS outperforms
state of the art solvers on SERSGI instances.

It may be possible to extend this conclusion to other classes
of SAT instances which have only long-positive and short
negative clauses, but more work needs to be done to see what
are the structural properties that DCS can exploit. However,
we do not expect that DCS will work efficiently on any type
of CNF formulas with a long-short clause structure. We no-
ticed that on random k-SAT instances, it is at least one order
of magnitude slower than Satz. We consider this behavior an
evidence against the idea of an efficient universal sat solver
that does not consider any problem structure.

5 Conclusions

Most of the well-investigated NP-complete problems in the
literature have a phase transition when the underlying graph is
very sparse. There is also evidence that randomly-generated
instances at the phase transition are typically not hard if the

1BerkMin is the predecessor of Forklift the winner of the Indus-
trial Category at the 2003 SAT competition. Our experience indi-
cates that Zchaff (winner of 2004) is not efficient for this type of
instances

2Winner of the Hand Crafted Category at the 2004 SAT compe-
tition

3At the 2004 SAT competition[LeBerre and Simon, 2004], no
deterministic solver could solve any SERSGI instance.

Set 1 Set 2 Set 3 Set 4 Set 5
% Solved

DCS 100 100 100 96 100
BM 100 90 80 58 44
MQ 94 66 36 12 2
SZ 50 22 2 14 2

Median Solution Time (sec)
DCS 14.48 19.14 54.92 131.23 135.50
BM 30.8 97.03 250.00 919.28 � 1200
MQ 233.74 905.15 � 1200 � 1200 � 1200
SZ 1111.75 � 1200 � 1200 � 1200 � 1200

Mean Solution Time (sec)
DCS 42.09 44.21 80.98 209.07 240.47
BM 90.47 283.00 479.91 - -
MQ 383.20 - - - -
SZ - - - - -

Table 4: Performances of DCS, BerkMin, MarchEq and Satz
on 5 sets of SERSGI instances with 528 variables. 50 in-
stances in each set. Cutoff time 1200 seconds.

Inst# 776 770 772 774 767 765 767
DCS 79.1 73.7 8.7 86.3 128.0 121.4 18.35
BM 526.4 33.3 58.5 79.9 2930.9 366.9 28.21

Table 5: Running time (minutes) of DCS and BerkMin on
SERSGI instances used in 2004 SAT competition.

threshold can be accurately established such as the Hamilto-
nian Cycle problem. DOMC studied in this paper is distin-
guished from a phase transition and typical-case complex-
ity perspective. On the one hand, it has an exact thresh-
old at a very dense stage of the random graph evolution
process. Our empirical results, on the other hand, indicate
that randomly-generated instances are still typically (and uni-
formly for negative instances) hard. As has been demon-
strated by our SAT solver’s outstanding performance advan-
tage on the CNF-encoding of DOMC and other problems with
similar structures, DOMC might serve as a prototypical prob-
lem to further investigate the relationship among the prob-
lem structure, the encoding efficiency, and the use of relevant
heuristics in satisfiability search.

Appendix: proof of Theorem 2.1
To estimate the second moment of the number of dominating
cliques of size � , we need the following lemma on the prob-
ability that two vertex subsets both dominate the rest of the
vertices in a random graph.

Lemma 5.1. Let b and � be two vertex subsets of size �
such that � b���� � 4�� and let

j � � 	 be the probability thatb and � both dominate all the vertices outside of b � � .
Then,

1. j � � 	 4�� > = @ � > = 2 	 � V � > = 2 	 � � 8	��
 E 8 � � 8�� ! (5.5)

2. Let
� ���<���A	 4 � > =/� > = 2 	 � 	 � E 8 � � . We have

(a) ��BCDE �� !� E # � ! 4 > ; and

(b) There exists a constant
� 3 and

n 3 such that if� R n 3 , � !� E # � ! M � 3 for all > 7 � 7 � .
Proof. (1). Let & be a vertex outside of b � � . The probabil-
ity that & is not connected to any vertices in b���� is ��>�= 2 	 � .
The probability that & is dominated by both bN*�� and � *�b
is � > =/� > = 2 	 � 8�� 	 � S
Thus,

j � � 	 is

� � > =/� > = 2 	 � 	 V ��> = 2 	 � ��> = ��> = 2 	�� 8	� 	 �
 E 8 � � 8�� !4 	C> = ��> = 2 	 � V � > = 2 	 � � > = @ ��> = 2 	�� 8��V � > = 2 	 � � 8�� ! 	�� E 8 � � 8	� !4 � > = @ ��> = 2 	�� V � > = 2 	 � � 8	��
 E 8 � � 8	� !
(2). Since ����� # �H� = >
	0= > M K , we have

�CB�DE j � K 	� ���<��� 	 4 ��BCDE � > =/� > = 2 	 � 	 � E 8 � � !��> = ��> = 2 	 � 	 � E 8 � �4 ��BCDE ��> = ��> = 2 	�� 	 8 � �4 ��BCDE � 8 � 8 � ! � 8 � � !4 ��BCDE � � � E Z I�������.�I .H@:A%J�@:A�J4 > S
For > 7 � 7 � , we havej � � 	� ���<��� 	 4 � > = @ � > = 2 	 � V ��> = 2 	 � � 8��
 E 8 � � 8	� !��> = ��> = 2 	 � 	 � E 8 � �7 � > = @ � > = 2 	 � V ��> = 2 	 � � 8��
 E 8 � �� > =/� > = 2 	 � 	 � E 8 � �7 	C> = @ � > = 2 	 � V � > = 2 	 � � E 8 � �� > =/� > = 2 	 � 	 � E 8 � �4 >> =/� > = 2 	 � � E
Since

�CB�DE >> = ��> = 2 	 � � E 4 �CB�DE > V � > = 2 	 �> = ��> = 2 	 � � E4 �CB�DE � E � 8 � ! � AA�@ I A�@ �-J �4 � � >
	 �CB�DE � ERZ I����!��.�I .H@:A%J`@:A%J\[*A
and UA� �"��� # �H� = >
	 = >
	 V > M K , conclusion 2(a) follows.

Proof of Theorem 2.1. The fact that�CB�DE j � F
�����<� 2 	 has a dominating clique H 4 K
for 2!M 698 : ;� follows from Lemma 2.1 and Markov’s in-
equality.

To prove that ��B�DE j � FG�����<� 2 	 has a dominating clique H 4> for 25R 6 8 : ;� , we will show that�CB�DE j � F ��� ���<��� 	 4 K H 4 K
where � 4 U����� # � and �� 8) +-, . # 8 ��! M U M @ . From Lemma
2.2, we have ��B�DE ��	 ��� ���<���A	�� 4WVYX S
By Chebyshev’s inequality, we havej � F ��� ���<��� 	 4 K H 7 �
	 ��� � ���<���A	��� � 	 ��� ���<���A	�� = > S
The expectation of

��� �Q���<���A	 is

�
	 ��� � ���<���A	�� 4 �&
� ' � � ��� � � � �N= �� = � � 2 � ���� 	 8 � �� 	 j � � 	 S

where 4 E �65 4 � � 5 4 E 8 �� 8	� 5 is the total number of pairs of ver-
tex subsets of size � that have � vertices in common, and2 � � � ��	 8 � ���	 j � � 	 is the probability that such a pair of vertex sub-
sets are both dominating cliques. Recall that

� � 	 ��� ���<���A	�� 4 � ��� 2 �%�� 	 � > =/� > = 2 	�� 	 E 8 � � �4 � ��� � 2 � � � � 	 � ���<���A	 S
We write � � ��� � E # � !��� � � ��� E # � !�� as

�
	 ��� � ���<���A	��� � 	 ��� ���<���A	�� 4 ��
� ' � 4 E � 5 4 � � 5 4 E 8 �� 8�� 5 2 � ���� 	 8 � �� 	 j � � 	4 E �C5 � 2 � � �� 	 � ���<���A	4 	 E V � E �

where

	 E 4 ��
� ' � 4 E �C5 4 � � 5 4 E 8 �� 8�� 5 2 � �H�� 	 8 � �� 	 j � � 	4 E � 5 � 2 � �%�� 	 � ���<���A	4 � ��� 8 ��
 � = �� � j � K 	� ���<���A	 V � � = ��,= ><� j ��>G	� ���<��� 	� S

and � E 4 � ��� 8 � �&
� ' � � � � � = ��,= � � 2 8 � �� 	 j � � 	� ���<���A	 S

We will prove that �CB�DE 	 E 4 > and ��BCDE � E 4 K . Since� F @ �� 	� F � 	�� > and � � F @ �� @:A 	� F � 	 � K , by Lemma 5.1(2.a and 2.b)

we have ��BCDE 	 E 4 > S

From Lemma 5.1 (2.b), we have for � R n 3� E 7 � 3 �&
� ' � � ��� 8 � � � � �N= ��,= � � 2 8 � ���	7 � � >
	 �&
� ' � � � �

��� � � � � �� 	
4 � � >
	 �&

� ' � � � � � " �� � � � �
Since � 4 U����� # � with U M @ , we have� E 7 � ��>G	�� � �� � 8 ^ " � � � � � � K S
This completes the proof.

References
[Franco and Gelder, 2003] J. Franco and A. V. Gelder. A

perspective on certain polynomial-time solvable classes
of satisfiability. Discrete Applied Mathematics, 125(2-
3):177–214, 2003.

[Gent et al., 1999] I. Gent, H. Hoos, P. Prosser, and T. Walsh.
Morphing: Combining structure and randomness. In Pro-
ceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI’99), pages 654–660, Orlando, Florida,
1999.

[Gent, 2002] I. Gent. Arc consistency in SAT. In Proceed-
ings of the 15th European Conference on Artificial Intelli-
gence (ECAI 2002), pages 121–125, 2002.

[Gomes and Shmoys, 2002] C. Gomes and D. Shmoys.
Completing quasigroups or latin squares: A structured
graph coloring problem. In Proceedings of the Compu-
tational Symposium on Graph Coloring and Extensions,
2002.

[Gomes et al., 2000] C. Gomes, B. Selman, N. Crato, and
H. Kautz. Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. Journal of Automated
Reasoning, 24(1-2):67–100, 2000.

[Hartmann and Weigt, 2003] A. Hartmann and M. Weigt.
Statistical mechanics of the vertex-cover problem. Journal
of Physics A: Mathematical and General (a special issue),
36(43):11069–11093, 2003.

[Krivelevich, 2002] M. Krivelevich. Coloring random
graphs - an algorithmic perspective. In Proceedings of the
2nd Colloquium on Mathematics and Computer Science
(MathInfo’2002), pages 175–195. Birkhauser, 2002.

[LeBerre and Simon, 2004] D. LeBerre and L. Simon.
SAT competition - webpage, 2004. Available from:
satlive.org/SATCompetition/2004.

[Vandegriend and Culberson, 1998] B. Vandegriend and
J. Culberson. The � E # � phase transition is not hard for
the Hamiltonian Cycle problem. Journal of Artificial
Intelligence Research, 9:219–245, 1998.

[Walsh, 1999] T. Walsh. Search in a small world. In Pro-
ceedings of the 16th International Joint Conference on Ar-
tificial Intelligence (IJCAI-99), pages 1172–1177, 1999.

