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Abstract
We present a new architecture for Description
Logic implementations, a range of new optimisa-
tion techniques and an empirical analysis of their
effectiveness.

1 Introduction
Description Logics (DLs) are a family of logic based knowl-
edge representation formalisms. Although they have a
range of applications (e.g., configuration [McGuinness &
Wright, 1998], and reasoning with database schemas and
queries [Calvanese et al., 1998b; 1998a]), they are per-
haps best known as the basis for widely used ontology lan-
guages such as OIL, DAML+OIL and OWL [Horrocks et
al., 2003]. As well as DLs providing the formal under-
pinnings for these languages (i.e., a declarative semantics),
DL systems are also used to provide computational services
for ontology tools and applications [Knublauch et al., 2004;
Rectore, 2003].

Most modern DL systems are based on tableaux algo-
rithms. Such algorithms were first introduced by Schmidt-
Schauß and Smolka [Schmidt-Schauß & Smolka, 1991], and
subsequently extended to deal with ever more expressive log-
ics [Baader et al., 2003]. Many systems now implement the
SHIQ DL, a tableaux algorithm for which was first pre-
sented in [Horrocks et al., 1999]; this logic is very expres-
sive, and corresponds closely to the OWL ontology language.
In spite of the high worst case complexity of the satisfiabil-
ity/subsumption problem for this logic (ExpTime-complete),
highly optimised implementations have been shown to work
well in many realistic (ontology) applications [Horrocks,
1998].

Optimisation is crucial to the viability of tableaux based
systems: in experiments using both artificial test data and
application ontologies, (relatively) unoptimised systems per-
formed very badly, often being (at least) several orders of
magnitude slower than optimised systems; in many cases,
hours of processing time (in some cases even hundreds of
hours) proved insufficient for unoptimised systems to solve
problems that took only a few milliseconds for an optimised
system [Massacci, 1999; Horrocks & Patel-Schneider, 1998].
Modern systems typically employ a wide range of optimisa-
tions, including (at least) those described in [Baader et al.,
1994; Horrocks & Patel-Schneider, 1999].

Tableaux algorithms try to construct a graph (usually a
tree) representation of a model of a concept, the structure of
which is determined by syntactic decomposition of the con-
cept. Most implementations employ a space saving optimisa-

tion known as the trace technique that uses a top-down con-
struction requiring (for PSpace logics) only polynomial space
in order to delineate a tree structure that may be exponential
in size (with respect to the size of the input concept). For
the ExpTime logics implemented in modern systems, how-
ever, guaranteeing polynomial space usage is no longer an
option. Moreover, for logics that support inverse roles (such
as SHIQ), a strictly top down approach is no longer possible
as constraints may be propagated both “up” and “down” the
edges in the tree.

We describe an alternative architecture for tableaux imple-
mentations that uses a (set of) queue(s) instead of (an adap-
tion of) the standard top-down approach. This architecture,
which we have implemented in our new FaCT++ system, has
a number of advantages when compared to the top-down ap-
proach. Firstly, it is applicable to a much wider range of log-
ics, including the expressive logics implemented in modern
systems, because it makes no assumptions about the structure
of the graph (in particular, whether tree shaped or not), or the
order in which the graph will be constructed. Secondly, it
allows for the use of more powerful heuristics that try to im-
prove typical case performance by varying the global order
in which different syntactic structures are decomposed; in a
top-down construction, such heuristics can only operate on a
local region of the graph—typically a single vertex.

2 Preliminaries
We present here a brief introduction to DL (in particular
SHIQ) syntax, semantics and reasoning; for further details
the reader is referred to [Baader et al., 2003].
2.1 Description Logics
Syntax Let R be a set of role names with both transitive and
normal role names R+∪RP = R, where R+∩RP = ∅. The
set of SHIQ-roles (or roles for short) is R∪{R− | R ∈ R}.
Let NC be a set of concept names. The set of SHIQ-
concepts (or concepts for short) is the smallest set such that
every concept name C ∈ NC is a concept, and if C and D
are concepts, R is a role, S is a simple role1 and n ∈ IN, then
(C u D), (C t D), (¬C), (∀R.C), (∃R.C), (6nR.C) and
(>nR.C) are also concepts; the last four are called, respec-
tively, value, exists, atmost and atleast restrictions.

For R and S (possibly inverse) roles, R v S is called a
role inclusion axiom, and a finite set of role inclusion axioms
is called a role hierarchy. For C and D (possibly complex)

1A simple role is one that is neither transitive nor has any tran-
sitive subroles. Restricting number restrictions to simple roles is
required for decidability [Horrocks et al., 1999].



concepts, C v D is called a general concept inclusion (GCI),
and a finite set of GCIs is called a TBox.
Semantics An interpretation I = (∆I , ·I) consists of a non-
empty set ∆I , the domain of I, and a function ·I which maps
every role to a subset of ∆I ×∆I such that, for P ∈ R and
R ∈ R+, 〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I , and if 〈x, y〉 ∈ RI

and 〈y, z〉 ∈ RI then 〈x, z〉 ∈ RI . The interpretation func-
tion ·I of an interpretation I = (∆I , ·I) maps, additionally,
every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,
¬CI = ∆I \ CI ,

(∃R.C)I = {x ∈ ∆I | RI(x,C) 6= ∅},
(∀R.C)I = {x ∈ ∆I | RI(x,¬C) = ∅},

(6nR.C)I = {x ∈ ∆I | ]RI(x, C) 6 n}, and
(>nR.C)I = {x ∈ ∆I | ]RI(x, C) > n},

where ]M is the cardinality of a set M and RI(x, C) is de-
fined as {y | 〈x, y〉 ∈ RI and y ∈ CI}.
An interpretation I satisfies a role hierarchy R iff RI ⊆ SI

for each R v S ∈ R, and it satisfies a TBox T iff CI ⊆ DI

for each C v D ∈ T ; such an interpretation is called a model
of R and T .

A concept C is satisfiable w.r.t. a role hierarchy R and a
TBox T iff there is a model I of R and T with CI 6= ∅.
Such an interpretation is called a model of C w.r.t. R and T .
As usual for expressive DLs, subsumption can be reduced to
satisfiability, and reasoning w.r.t. a TBox and role hierarchy
can be reduced to reasoning w.r.t. a role hierarchy only [Hor-
rocks et al., 1999].
2.2 Tableaux Algorithms
The basic idea behind a tableau algorithm is to take an in-
put concept C and role hierarchy R, and to try to prove the
satisfiability of C w.r.t. R by constructing a model I of C
w.r.t. R. This is done by syntactically decomposing C so as
to derive constraints on the structure of such a model. For
example, any model of C must, by definition, contain some
individual x such that x is an element of CI , and if C is of
the form ∃R.D, then the model must also contain an individ-
ual y such that 〈x, y〉 ∈ RI and y is an element of DI ; if D
is non-atomic, then continuing with the decomposition of D
would lead to additional constraints. The construction fails
if the constraints include a clash (an obvious contradiction),
e.g., if some individual z must be an element of both C and
¬C for some concept C. Algorithms are normally designed
so that they are guaranteed to terminate, and guaranteed to
construct a model if one exists; such an algorithm is clearly a
decision procedure for concept satisfiability.

In practice, algorithms often work on a tree shaped graph
that has a close correspondence to a model; this may be be-
cause, e.g., models could be non-finite (although obviously
finitely representable), or non-trees (although usually tree-
like). Typically this will be a labelled graph (usually a tree
or collection of trees) where nodes represent individuals in
the model, and are labelled with a set of concepts of which
they are instances, and edges represent role relationships be-
tween pairs of individuals, and are labelled with a set of role
names.

The decomposition and construction is usually carried out
by applying so called tableaux expansion rules to the concepts
in node labels, with one rule being defined for each of the
syntactic constructs in the language (with the exception of

negation, which is pushed inwards using re-writings such as
de Morgan’s laws, until it applies only to atomic concepts).
For example, the expansion rule for conjunction causes C and
D to be added to any node label already containing C uD (in
order to guarantee termination, side conditions prevent rules
from being applied if they do not change either the graph or
its labelling).

There are two forms of non-determinism in the expansion
procedure. In the first place, many rules may be simultane-
ously applicable, and some order of rule applications must be
chosen. From a correctness perspective, this choice is usually
irrelevant2 (because, if there is a model, then it will be found
by any expansion ordering), but as we will see later, the order
of expansion can have a big effect on efficiency. In the second
place, some rules expand the graph non-deterministically;
e.g., the expansion rule for disjunction causes either C or
D to be added to any node label already containing C t D.
From a correctness perspective, this choice is relevant (be-
cause one choice may lead to the successful construction of
a model, while another one does not), and is usually dealt
with by backtracking search. Although such search must (in
the worst case) consider all possible expansions, the order in
which they are considered can still have a big effect on effi-
ciency.

Two kinds of rule will be of particular interest in the fol-
lowing discussion: non-deterministic rules, such as the t-rule
mentioned above, and generating rules, such as the ∃-rule,
that add new nodes to the graph. Applying these rules is
likely to be more “costly”, as they either increase the size
of the graph or increase the size of the search space, and they
are typically applied with lower priority than other rules.

3 FaCT++ System Architecture
As discussed above, many implementations use a top-down
expansion based on the trace technique. The idea of the top-
down expansion is to apply the ∃-rule with the lowest priority
(i.e., only apply this rule when no other rule is applicable); the
added refinement of the trace technique is to discard fully ex-
panded sub-trees, so that only a single “trace” (i.e., a branch
of the tree) is kept in memory at any one time.

This technique has the advantage of being very simple and
easy to implement—a procedure that exhaustively expands a
node label can be applied to the current node and then, recur-
sively, to each of its successors. It does, however, have some
serious drawbacks. In the first place, for logics with inverse
roles, the top-down method simply breaks down as it relies
on the fact that rules only ever add concepts to the label of
the node to which they are applied or to the label of one of its
successor nodes. The result is that, once the rules have been
exhaustively applied to a given node label, no further expan-
sion of that label will be possible. In the presence of inverse
roles, expansion rules may also add concepts to the labels of
predecessor nodes, which could then require further expan-
sion. Moreover, discarding fully expanded sub-trees may no
longer be possible, as the expansion of a concept added to
the label of a predecessor may cause concepts to be added
to the label of a sibling node that had previously been fully
expanded.

In the second place, the top down method forces non-
deterministic rules to be applied with a higher priority than
generating rules. As the size of the search space caused
by non-deterministic rule expansions is, in practice, by

2Although the correctness of some algorithms requires a priority
ordering for different rules.



far the most serious problem for tableaux based systems
[Horrocks, 1997], it may be advantageous to apply non-
deterministic rules with the lowest priority [Giunchiglia &
Sebastiani, 1996]. In fact, top-down implementations typ-
ically apply non-deterministic rules with a priority that is
lower than that of all of the other rules except the generat-
ing rules [Horrocks & Patel-Schneider, 1999].
ToDo List Architecture The FaCT++ system was designed
with the intention of implementing DLs that include inverse
roles, and of investigating new optimisation techniques, in-
cluding new ordering heuristics. Currently, FaCT++ imple-
ments SHIF , a slightly less expressive variant of SHIQ
where the values in atleast and atmost restrictions can only
be zero or one.3

Instead of the top-down approach, FaCT++ uses a ToDo
list to control the application of the expansion rules. The ba-
sic idea behind this approach is that rules may become appli-
cable whenever a concept is added to a node label. When this
happens, a note of the node/concept pair is added to the ToDo
list. The ToDo list sorts all entries according to some order,
and gives access to the “first” element in the list.

A given tableaux algorithm takes an entry from the ToDo
list and processes it according to the expansion rule(s) rele-
vant to the entry (if any). During the expansion process, new
concepts may be added to node labels, and hence entries may
be added to the ToDo list. The process continues until either
a clash occurs or the ToDo list become empty.

In FaCT++ we implement the ToDo list architecture as a
set of queues (FIFO buffers). It is possible to set a priority
for each rule type (e.g., u and ∃), and a separate queue is im-
plemented for each unique priority. Whenever the expansion
algorithm asks for a new entry, it is taken from the non-empty
queue with the highest priority, and the algorithm terminates
when all the queues are empty. This means that if the ∃-rule
has a low priority (say 0), and all other rules have the same
priority (say 1), then the expansion will be (modulo inverse
roles) top-down and breadth first; if stacks (LIFO buffers)
were used instead of queues with the same priorities, then
the expansion would simulate the standard top-down method.

4 Heuristics
When implementing reasoning algorithms, heuristics can be
used to try to find a “good” order in which to apply infer-
ence rules (we will call these rule-ordering heuristics) and,
for non-deterministic rules, the order in which to explore the
different expansion choices offered by rule applications (we
will call these expansion-ordering heuristics). The aim is to
choose an order that leads rapidly to the discovery of a model
(in case the input is satisfiable) or to a proof that no model
exists (in case the input is unsatisfiable). The usual technique
is to compute a weighting for each available option, and to
choose the option with the highest (or lowest) weight. Much
of the “art” in devising useful heuristics is in finding a suit-
able compromise between the cost of computing the weight-
ings and their accuracy in predicting good orderings.

Such heuristics can be very effective in improving the
performance of propositional satisfiability (SAT) reason-
ers [Freeman, 1995], but finding useful heuristics for descrip-
tion and modal logics has proved to be more difficult. Choos-
ing a good heuristic, or at least not choosing a bad one, is very
important: an inappropriate heuristic may not simply fail to
improve performance, it may seriously degrade it. Even more

3SHIF corresponds to the OWL-Lite ontology language [Hor-
rocks et al., 2003].

problematical is, given a range of possible heuristics, choos-
ing the best one to use for a given (type of) problem.

So far, the heuristics tried with DL reasoners have mainly
been adaptions of those already developed for SAT reason-
ers, such as the well known MOMS heuristic [Freeman,
1995] and Jeroslow and Wang’s weighted occurrences heuris-
tic [Jeroslow & Wang, 1990]. These proved to be largely in-
effective, and even to degrade performance due to an adverse
interaction with backjumping [Baader et al., 2003]. An al-
ternative heuristic, first presented in [Horrocks, 1997], tries
to maximise the effect of dependency directed backtracking
(backjumping) by preferentially choosing expansions that in-
troduce concept with “old” dependencies. Even this heuristic,
however, has relatively little effect on performance with real-
istic problems, e.g., problems encountered when reasoning
with application ontologies.

We conjecture that the standard top-down architecture has
contributed to the difficulty in finding useful heuristics as it
rules out many possible choices of rule-ordering; in particu-
lar, the top-down technique may require generating rules to be
applied with a low priority, and so lead to non-deterministic
rules being applied before deterministic generating rules. In
contrast, the ToDo list architecture gives a much wider range
of possible rule orderings, and so has allowed us to investigate
a range of new rule-ordering heuristics, in particular heuris-
tics that give non-deterministic rules the lowest priority.

Another factor that has contributed to the weakness of SAT
derived heuristics is that they treat concepts as though they
were atoms. This is obviously appropriate in the case of
propositional satisfiability, but not in the case of concept sat-
isfiability where sub-concepts may have a complex structure.
We have also investigated expansion-ordering heuristics that
take into account this structure, in particular a concept’s size,
maximum quantifier depth, and frequency of usage in the
knowledge base.
Implementation in FaCT++ The FaCT++ reasoner uses the
standard backtracking search technique to explore the differ-
ent possible expansions offered by non-deterministic rules
(such as the t-rule). Before applying a non-deterministic
rule, the current state is saved, and when backtracking, the
state is restored before re-applying the same rule (with a dif-
ferent expansion choice). When inverse roles are supported,
it is possible for a sequence of deterministic rule applications
to propagate changes throughout the graph, and it may, there-
fore, be necessary to save and restore the whole graph struc-
ture (in addition to other data structures such as the ToDo
list). FaCT++ trys to minimise the potentially high cost of
these operations by lazily saving the graph, (i.e., saving parts
of the graph only as necessitated by the expansion), but the
cost of saving the state still makes it expensive to apply a
non-deterministic rule, even if the state is never restored dur-
ing backtracking.

As discussed in Section 3, FaCT++ uses a ToDo list ar-
chitecture with separate queues for each priority level. Dif-
ferent rule-ordering heuristics can, therefore, be tried sim-
ply by varying the priorities assigned to different rule types.
Low priorities are typically given to generating and non-
deterministic rules, but the ToDo list architecture allows dif-
ferent priority ordering of these rule types; in contrast, the
top-down architecture forces a lower priority to be given to
generating rules.

FaCT++ also includes a range of different expansion-
ordering heuristics that can be used to choose the order in
which to explore the different expansion choices offered by
the non-deterministic t-rule. This ordering can be on the ba-



sis of the size, maximum quantifier depth, or frequency of us-
age of each of the concepts in the disjunction, and the order
can be either ascending (smallest size, minimum depth and
lowest frequency first) or descending. In order to avoid the
cost of repeatedly computing such values, FaCT++ gathers
all the relevant statistics for each concept as the knowledge
base is loaded, and caches them for later use.

5 Empirical Analysis
In order to evaluate the usefulness of the heuristics imple-
mented in FaCT++, we have carried out an empirical analy-
sis using both real-life ontologies and artificial tests from the
DL’98 test suite [Horrocks & Patel-Schneider, 1998].

Ontologies can vary widely in terms of size and complexity
(e.g., structure of concepts, and types of axiom used). We
used three ontologies with different characteristics in order to
see how the heuristics would perform in each case:
WineFood A sample ontology that makes up part of the

OWL test suit4 [Carroll & De Roo, 2004]; it is small, but
has a complex structure and includes 150 GCIs.

DOLCE A foundational (top-level) ontology, developed in
the WonderWeb project [Gangemi et al., 2002]; it is of
medium size and medium complexity.

GALEN The anatomical part of the well-known medical
terminology ontology [Rogers et al., 2001]; it is large
(4,000 concepts) and has a relatively simple structure,
but includes over 400 GCIs.

FaCT++ separates the classification process into satisfia-
bility testing (SAT) and subsumption testing (SUB) phases;
the results from the SAT phase are cached and used to speed
up subsequent tests via a standard “model-merging” optimi-
sation [Horrocks & Patel-Schneider, 1999]. FaCT++ allows
different heuristics to be used in the two phases of the pro-
cess; this is because the tests have different characteristics: in
the SAT phase, nearly all of the tests are satisfiable (ontolo-
gies typically do not give names to unsatisfiable concepts),
while in the SUB phase, up to one in four of the tests are un-
satisfiable. We measured the time (in CPU seconds) taken by
FaCT++ to complete each phase.

In addition to the ontologies, we used artificially generated
test data from the DL’98 test suite. Artificial tests are in some
sense corner cases for a DL reasoner designed primarily for
ontology reasoning, and these tests are mainly intended to in-
vestigate the effect of hard problems with very artificial struc-
tures on the behaviour of our heuristics. For this purpose we
selected from the test suite several of the tests that proved to
be hard for FaCT++.

Each of these tests consists of a set of 21 satisfiability test-
ing problems of similar structure, but (supposedly exponen-
tially) increasing difficulty; the idea of the test is to determine
the number of the largest problem that can be solved within a
fixed amount of processing time (100 seconds of CPU time in
our case). The names of the tests are of the form “test p”
or “test n”, where “test” refers to the kind of problem
(e.g., the “ph” tests are derived from encodings of pigeon
hole sorting problems), and “p/n” refers to whether the prob-
lems in the test set are satisfiable (n) or unsatisfiable (p). For
these tests we have reported the number of the largest prob-
lem solved in less than 100 seconds (21 means that all the
problems were solved), along with the time (in CPU seconds)
taken for the hardest problem that was successfully solved.

4This ontology therefore has a much weaker claim to being “real-
life”.

For all the tests, FaCT++ v.0.99.2 was used on Pentium
4 2.2 GHz machine with 512Mb of memory, running Linux.
Times were averaged over 3 test runs.
5.1 Rule-ordering Heuristics
In these tests we tried a range of different rule-ordering strate-
gies. Each “strategy” is shown as a sequence of letters spec-
ifying the priorities (highest first) of the different rule types,
where “O” refers to the t-rule, “E” to the ∃-rule, and “a” to
any other rule type. E.g., “aO” describes the strategy where
the t-rule has the lowest priority, and all other rules have an
equal higher priority.
Ontology tests The results of using different rule-ordering
strategies with the various ontologies are shown in Table 1.
All ontologies were tested with the best disjunction-ordering
heuristic, as determined in separate tests (see below).

KB DOLCE WineFood GALEN
SAT SUB SAT SUB SAT SUB

a 0.74 0.74 0.22 2.44 99.44 1678.11
aO 0.64 0.68 0.14 1.64 29.80 569, 64

aEO 0.58 0.57 0.15 1.67 9.88 173.79
aE 0.60 0.58 0.27 2.87 13.35 205.32

aOE 0.61 0.59 0.27 2.93 13.22 201.40

Table 1: Ontology tests with different rule-orderings
The first thing to note is that rule-orderings have relatively

little effect on the DOLCE and WineFood ontologies; in con-
trast, the performance of the best and worst strategies dif-
fers by a factor of almost 10 in the GALEN tests. Even in
the GALEN case, however, the difference between the “-O”
strategies (i.e., those that assign the lowest priority to the t-
rule) and “-E” strategies (i.e., those that assign the lowest pri-
ority to the ∃-rule) is relatively small. In most cases the best
result is given by the “aEO” strategy, i.e., by assigning the
lowest priority to the t-rule and the next lowest priority to the
∃-rule, and even when “aEO” is not the best strategy, the dif-
ference between it and the best strategy is very small. More-
over, the difference between the “aEO” and “aOE” strategies
is small in most cases, and never more than a factor of 2.
DL98 tests The results of using different rule-ordering strate-
gies with the DL98 tests are shown in Table 2. The first thing
to note from these results is that rule-ordering heuristics can
have a much more significant effect than in the ontology tests:
in some cases the performance of the best and worst strategies
differs by a factor of more than 100. In most tests, the “-E”
strategies give the best results, with the difference between
“-O” and “-E” strategies being much more marked than in
the case of the ontology tests. In the case of the d4 n test,
however, performance is dramatically improved (by a factor
of 20) when an “-O” strategy is used.

test br n br p d4 n ph n ph p
last time last time last time last time last time

a 8 16.7 9 20.5 20 94.8 11 99.0 7 15.5
aO 11 38.2 11 38.1 21 0.8 10 10.8 7 32.1

aEO 11 38.8 11 39.0 21 0.8 10 10.9 7 32.9
aE 11 17.1 12 18.3 21 15.7 11 97.4 7 15.2

aOE 11 19.3 12 21.1 21 16.1 11 99.5 7 15.9

Table 2: DL-98 tests with different rule-ordering strategies

5.2 Expansion-ordering Heuristics
In these tests we tried a range of different expansion-ordering
heuristics. Each heuristic is denoted by two letters, the first of



which indicates whether the ordering is based on concept size
(“S”), maximum depth (“D”) or frequency of usage (“F”), and
the second of which indicates ascending (“a”) or descending
(“d”) order. In each group of tests we used the best rule-
ordering heuristic as determined by the tests in Section 5.1.
Ontology tests For the ontology tests, we tried different or-
derings for the SAT and SUB phases of classification. The
results are presented in Tables 3, 4 and 5; the first figure in
each column is the time taken by the SAT phase using the
given ordering, and the remaining figures are the subsequent
times taken using different SUB phase orderings.

For DOLCE (Table 3), the difference between the best and
worst orderings was a factor of about 4, and many possible or-
derings were near optimal. For WineFood (Table 4), the dif-
ference between the best and worst orderings was a factor of
about 2, and using Sd for SAT tests and Dd for SUB tests gave
the best result, although several other orderings gave similar
results. For GALEN (Table 5), the difference between the
best and worst orderings was so large that we were only the
orderings given allowed tests to be completed in a reasonable
time. The best result was given by using Da for both phases.

SAT Sa Da Fa Sd Dd Fd
SUB 1.29 1.28 1.24 0.61 0.6 0.6
Sa 2.53 2.52 2.52 2.46 2.45 2.41
Da 2.53 2.53 2.53 2.44 2.44 2.41
Fa 0.91 0.91 0.89 0.97 0.98 0.88
Sd 0.61 0.60 0.60 0.59 0.59 0.59
Dd 0.60 0.60 0.60 0.60 0.59 0.60
Fd 1.33 1.34 1.33 1.30 1.34 1.33

Table 3: DOLCE test with different expansion-orderings

SAT Sa Da Fa Sd Dd Fd
SUB 0.26 0.29 0.19 0.13 0.13 0.20
Sa 3.15 3.57 3.27 3.21 3.21 3.68
Da 3.54 3.57 3.44 3.20 3.40 3.47
Fa 3.67 3.57 2.32 2.12 2.41 2.35
Sd 1.77 1.80 1.71 1.80 1.80 1.83
Dd 1.69 1.77 1.87 1.66 1.78 1.78
Fd 2.30 2.26 2.75 3.14 3.54 2.76

Table 4: WineFood test with different expansion-orderings

SAT Sa Da
SUB 18.76 9.88
Sa 276.90 276.16
Da 185.79 172.89
Fd 1049.74 943.06

Table 5: GALEN test with different expansion-orderings
DL98 tests Table 6 presents the results for the DL98 tests.
Each column shows the times taken using different expan-
sion orderings to solve the hardest problem that was solvable
within the stipulated time limit using any ordering.

In almost every test, the difference between the best and
worst strategies is large: a factor of more than 300 in the d4 n
test. Moreover, strategies that are good in one test can be very
bad in another (the Sd and Dd strategies are the best ones in
the branch tests (br n and br p), but (by far) the worst in the
d4 n test), and this is not strongly dependent on the satisfi-
ability result (in the br tests, all strategies perform similarly
in both satisfiable and unsatisfiable cases). The Fd strategy is,
however, either optimal or near optimal in all cases.

order br n br p d4 n ph n ph p
test 11 test 12 test 21 test 10 test 7

Sa 22.6 24.8 0.9 8.1 29.5
Da 22.6 24.8 0.9 >300 24.5
Fa >300 >300 32.0 22.9 20.2
Sd 17.0 18.3 >300 38.7 24.7
Dd 17.1 18.3 >300 19.7 19.3
Fd 22.2 25.1 0.8 6.2 15.3

Table 6: DL98 tests with different Or strategies

5.3 Analysis
The different rule-ordering heuristics we tried had relatively
little effect on the performance of the reasoner when classify-
ing the DOLCE and WineFood ontologies. With the GALEN
ontology, any strategy that gave a lower priority to the ∃- and
t-rules worked reasonably well, and the aEO strategy was
optimal or near-optimal in all cases. The crucial factor with
GALEN is giving low priority to the ∃-rule. This is due to
the fact that GALEN is large, contains many GCIs and also
contains existential cycles in concept inclusion axioms (e.g.,
C v ∃R.D and D v ∃R−.C); as a result, the graph can grow
very large, and this increases both the size of the search space
(because GCI related non-determinism may apply on a per-
node basis) and the cost of saving and restoring the state dur-
ing backtracking search. Giving a low priority to the ∃-rule
minimises the size of the graph and hence can reduce both the
size of the search space and the cost of saving and restoring.
This effect is less noticeable with the other ontologies be-
cause their smaller size and/or lower number of GCIs greatly
reduces the maximum size of graphs and/or search space. In
view of these results, FaCT++’s default rule-ordering strategy
has been set to aEO.5

The picture is quite different in the case of the DL’98 tests.
Here, different strategies can make a large difference, and no
one strategy is universally near optimal. This is to be ex-
pected, given that some of the tests include very little non-
determinism, but are designed to force the construction of
very large models (and hence graphs), while others are highly
non-deterministic, but have only very small models. Given
that these extreme cases are not representative of typical real-
life ontologies, the test results may not be directly relevant to
a system designed to deal with such ontologies. It is inter-
esting, however, to see how badly the heuristics can behave
in such cases: in fact the standard aEO strategy is near opti-
mal in two of the tests, and is never worse than the optimal
strategy by a factor of more than 2.

The expansion-ordering heuristics had a much bigger
effect on ontology reasoning performance (than the rule-
ordering heuristics). In the case of DOLCE and WineFood,
almost any strategy that uses Sd or Dd in the SUB phase is
near optimal. For GALEN, however, using Da in both phases
gives by far the best results. This is again due to the character-
istic structure of this ontology, and the fact that preferentially
choosing concepts with low modal depth tends to reduce the
size of the graph. Unfortunately, no one strategy is univer-
sally good (Da/Da is best for GALEN but worst for DOLCE
and WineFood); currently, Sd/Dd is the default setting, as the
majority of real life ontologies resemble DOLCE and Wine-
Food more than GALEN), but this can of course be changed

5Top-down architectures necessarily give lowest priority to the
∃-rule, and generally give low priority to t-rule, which is why they
work relatively well with ontologies.



by the user if it is known that the ontology to be reasoned with
will have a GALEN-like structure.

For the DL’98 tests, the picture is again quite confused:
the Sd strategy (the default in the SAT phase) is optimal in
some tests, but bad in others—disastrously so in the case of
the d4 n test. As in the ontology case, the only “solution”
offered at present is to allow users to tune these settings ac-
cording to the problem type or empirical results.

6 Discussion and Future Work
We have described the ToDo list architecture used in the
FaCT++ system along with a range of heuristics that can be
used for rule and expansion ordering. We have also presented
an empirical analysis of these heuristics and shown how these
have led us to select the default setting currently used by
FaCT++.

These default settings reflect the current predominance of
relatively small and simply structured ontologies. This may
not, however, be a realistic picture of the kinds of ontology
that we can expect in the future: many existing ontologies (in-
cluding, e.g., WineFood) pre-date the development of OWL,
and have been translated from less expressive formalisms.
With more widespread use of OWL, and the increasing avail-
ability of sophisticated ontology development tools, it may be
reasonable to expect the emergence of larger and more com-
plex ontologies. As we have seen in Section 5.1, heuristics
can be very effective in helping us to deal efficiently with
such ontologies, but choosing a suitable heuristic becomes of
critical importance.

In our existing implementation, changing heuristics re-
quires the user to set the appropriate parameters when using
the reasoner. This is clearly undesirable at best, and unre-
alistic for non-expert users. We are, therefore, working on
techniques that will allow us to guess the most appropriate
heuristics for a given ontology. The idea is to make an initial
guess based on an analysis of the syntactic structure of the on-
tology (it should be quite easy to distinguish GALEN-like on-
tologies from DOLCE and WineFood-like ontologies simply
by examining the statistics that have already been gathered
for use in expansion-ordering heuristics), with subsequent ad-
justments being made based on the behaviour of the algorithm
(e.g., the size of graphs being constructed).

Another limitation of the existing implementation is that a
single strategy is used for all the tests performed in the clas-
sification process. In practice, the characteristics of differ-
ent tests (e.g., w.r.t. concept size and/or satisfiability) may
vary considerable, and it may make sense to dynamically
switch heuristics depending on the kind of test being per-
formed. This again depends on having an effective (and
cheap) method for analysing the likely characteristics of a
given test, and syntactic and behavioural analyses will also
be investigated in this context.
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