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Abstract

We investigate how inverse features can be added
to a boolean complete description logic with path-
functional dependencies in ways that avoid un-
decidability of the associated logical implication
problem. In particular, we present two condi-
tions that ensure the problem remains EXPTIME-
complete. The first is syntactic in nature and limits
the form that dependencies may have in argument
terminologies. The second is a coherence condi-
tion on terminologies that is sufficiently weak to al-
low the transfer of relational and emerging object-
oriented normalization techniques.

1 Introduction
For many applications, there is considerable incentive to en-
hance the modeling utility of feature based description logics
(DLs) with an ability to capture richer varieties of uniqueness
constraints such as keys and functional dependencies [De-
Haan et al., 2003; Khizder et al., 2000; Stanchev and Wed-
dell, 2003; Toman and Weddell, 2004b]. Unfortunately, in
combination with feature or role inversion, the associated log-
ical implication problem quickly becomes undecidable [Cal-
vanese et al., 2001]. We investigate conditions under which
inverse features can be added to a boolean complete DL with
path-functional dependencies (PFDs) [Weddell, 1989] with-
out any consequent impact on the complexity of the associ-
ated logical implication problem.

Two conditions are presented that ensure this problem re-
mains EXPTIME-complete. The first is syntactic in nature
and imposes a prefix condition on PFDs that occur in ar-
gument terminologies. The condition complements and ex-
tends the results in [Calvanese et al., 2001] which considered
the problem of adding keys and functional dependencies to a
DL with predicates in place of roles. The second is a coher-
ence condition on terminologies that allows unrestricted use
of PFDs, and is sufficiently weak to allow the formal speci-
fication of arbitrary relational or object-oriented schema, in-
cluding those that fail to satisfy normalization conditions.�
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This latter observation is important since it enables an in-
cremental development of terminologies that encode schema.
One can begin, for example, with a “relational” terminol-
ogy that fails to satisfy the conditions of Boyce-Codd Normal
Form. (The approach used in [Calvanese et al., 2001] is not
generally capable of handling such anomalous cases.) Stan-
dard normalization algorithms and methodology can then em-
ploy reasoning services based on our results. Thus, our DL to-
gether with coherence is better equipped to enable the transfer
of results in normalization and emerging object design theory
for relational and object-oriented data models [Biskup et al.,
1996; Biskup and Polle, 2000].

1.1 Related Work

Our coherence condition derives from a similar condition pro-
posed in [Biskup and Polle, 2003] to enable the develop-
ment of a sound and complete axiomatization for an object-
oriented data model, which essentially adds inclusion depen-
dencies to a data model defined earlier in [Weddell, 1989].
The DL we consider in this paper is a further generaliza-
tion; thus, our EXPTIME-completeness result settles an open
problem on the decidability of the implication problem for
their model.

In [Calvanese et al., 2001], the authors consider a DL with
(relational) functional dependencies together with a general
form of keys called identification constraints. They show
that their dialect is undecidable in the general case, but be-
comes decidable when unary functional dependencies are dis-
allowed. We show undecidability in a simpler setting, in par-
ticular without the use of number restrictions. Our prefix
condition on PFDs complements and extends their decidabil-
ity result to more general PFDs, and our coherency condition
serves as an alternative method for regaining decidability.

A form of key dependency with left-hand-side feature
paths is considered for a DL coupled with various concrete
domains [Lutz et al., 2003; Lutz and Milicic, 2004]. The au-
thors explore how the complexity of satisfaction is influenced
by the selection of a concrete domain together with various
syntactic restrictions on the key dependencies themselves. In
contrast, we consider a DL that admits more general kinds
of key constraints (and functional dependencies) for which
identifying values can be defined on arbitrary domains.



The remainder of the paper is organized as follows. We begin
by introducing the DL dialect

���������
that will be the focus

of the remainder of the paper. The dialect is feature based
and therefore more functional in style as opposed to the more
common role based derivatives of

�����
. As a consequence, it

becomes straightforward to incorporate dependencies into the
logic for capturing PFDs. In Section 3, we show that the com-
bination of inverse features and arbitrary PFDs in

���������
leads to the undecidability of its associated logical implica-
tion problem. Our main results then follow in Section 4 in
which we consider two ways to recover decidability based
on a prefix restriction condition for PFDs in argument termi-
nologies and on a coherency condition for terminologies. Our
summary comments follow in Section 5.

2 Preliminaries

Definition 1 (Description Logic
���	�����

) Let 
 and � be
sets of feature names and primitive concept names, respec-
tively. A path expression is defined by the grammar “ ����������� �������� ” for

��� 
 . We define derived concept descriptions
by a second grammar on the left-hand-side of Figure 1. A
concept description obtained by using the final production of
this grammar is called a path-functional dependency (PFD).

An inclusion dependency
�

is an expression of the form� �"!
. A terminology # consists of a finite set of inclu-

sion dependencies.
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Figure 1: SYNTAX AND SEMANTICS OF
���������

.

The semantics of expressions is defined with respect to a
structure $]/ L % (a' , where / is a domain of “objects” and$ � ')( an interpretation function that fixes the interpretations
of primitive concepts � to be subsets of / and primitive
features

�
to be total functions $ � '](b�>/cQ / . The in-

terpretation is extended to path expressions, $d���D'+(e�gf B � B ,$ ��� ���',(h�i$Y���')(kj>$ � ')( and derived concept descriptions
�

and
!

as defined on the right-hand-side of Figure 1.

An interpretation satisfies an inclusion dependency
�g�l!

if$ � ')(m-[$ ! ',( . The logical implication problem asks if #n� ��o�p!
holds; that is, if $ � ')(m-q$ ! ',( for all interpretations

that satisfy all constraints in # .

For the remainder of the paper, we use the following abbrevi-
ated notation: ?��� ��r is shorthand for ? � 1 � ? � 5 �s�M�s� ? � P ��r ,
and Ga�� H

1 ��r
for G � P H

1 ���s�M� G � 5 H
1 � G � 1 H

1 ��r
for ��t�� 1 ��� 5 � %M%M% ��� P � ��� . We also identify single feature names

�
with path descriptions

��� �u� and allow concatenation of path
descriptions, ��I��\v to denote their composition ���jw�O�v .

In addition, we classify constraints by the description on
their right-hand side as PFDs, when the right-hand side is of
the form

� �a�O 1 L �s�M� L �� P Q;�� , and as simple constraints
otherwise.

3 Undecidability of xzy9{�|8x Implication
We show a reduction of the unrestricted tiling problem to
the
���	�����

implication problem using a construction sim-
ilar to that presented in [Calvanese et al., 2001]. An unre-
stricted tiling problem } is a triple $,~ Lu�hLM� ' where ~ is a
finite set of tile types and

�hLM� -g~i�z~ two binary rela-
tions. A solution to ~ is a mapping �4� N � N Q�~ such
that $��s$+� L\� ' L �s$]���[� LY� 'Y' � � and $��s$+� L\� ' L �s$+� L\� ���s'\' � �
for all � � N. This problem is ���� -complete [Berger, 1966;
van Emde Boas, 1997].
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Figure 2: DEFINING A GRID.

The first step in the reduction is to establish an integer grid.
This can be achieved, for example, as follows.

1. Introduce four disjoint concepts, � 1 , � 5 , ��� , and ��� ,
denoting cell edges.

� W 3 ��� �0� �+¡^¢¤£¦¥ � ¥ �9§©¨OL
2. Grid cells are mapped to concepts ª and « that have

four incoming
�

and ¬ features, respectively.

ª � 
�M®
W+¯ � G
�aH 1 � � W « � 

�M®
W+¯ � G°¬
H 1 � � W

3. To ensure that squares are formed, add the following.

� 1�� � 5 � � Qi± 3 � 5 �Y±	Q � 3 � 5 �+¬FQi² 3 � 5 �d²ZQ`¬
� 5 � ���a� � Qi² 3 ���a�Y²JQ � 3 ���a�+¬FQi± 3 ���R�Y±	Q`¬
��� � ���a� � Qi± 3 ���a�Y±	Q � 3 ���a�+¬FQi² 3 �����d²ZQ`¬
� � � � 1 �Y²JQi± 3 � 1 �Y²JQ � 3 � 1 �+¬FQi± 3 � 1 �Y±	Q`¬

4. And force squares to extend to the right and up by in-
cluding the following.

� 1 � ? ��� ª L ��� � ?�¬ � « L � 5 � ?O¬ � « L ��� � ? �O� ª



The accumulated effect of these inclusion dependencies on an
interpretation is illustrated in Figure 2.

The adjacency rules for the instance } of the tiling problem
can now be captured, e.g., as follows:

� 1 3 ?O¬ � ~ W � ? ��� �
������� �	��
��� ~ � L � 5 3 ? ��� ~

W � ?�¬ � �
������� �	��
���� ~ � L

��� 3 ? ��� ~ W � ?O¬ � �
������� �	��
��� ~ � L ��� 3 ?O¬ � ~

W � ? ��� �
������� �	��
���� ~ �

where ~ W corresponds to a tile type � W � ~ ; we assume~ W 3 ~ � �b� for all � ¥ � . The above constraints form a
terminology #�� associated with an unrestricted tiling prob-
lem } .

Theorem 2 A tiling problem } admits a solution iff # ���� �ª 3 $ � ������� ~ W ' �l� .

Thus, the
���	�����

implication problem is undecidable for
unrestricted terminologies.

4 On Recovering Decidability
In this section, we present two ways to recover decidability
for the

���	�R�¦�
logical implication problem based on a syn-

tactic prefix condition for PFDs occurring in argument ter-
minologies and on a coherency condition for terminologies.
Decidability in both cases is shown by exhibiting a reduc-
tion of logical implication problems in

���������
to decidabil-

ity problems of monadic sentences in the Ackermann prefix
class.

Definition 3 (Monadic Ackerman Formulae) Let � W be
monadic predicate symbols and

B L T W L�� W
variables. A

monadic first-order formula in the Ackermann class is a
formula of the form G �^1 �M�s� G � PC? B GOT 1 �M�s� GOT�� ��� where

�
is a

quantifier-free formula over the symbols � W .
Every formula with the Ackermann prefix can be converted
to Skolem normal form: by replacing variables

� W
by Skolem

constants and T W by unary Skolem functions not appearing in
the original formula. This, together with standard boolean
equivalences, yields a finite set of universally-quantified
clauses containing at most one variable (

B
).

It is known that an Ackerman sentence has a model if and
only if it has a Herbrand model; this allows us to use syntactic
techniques for model construction. To establish the complex-
ity bounds we use the following result for the satisfiability of
Ackermann formulae:

Proposition 4 ([Fürer, 1981]) The complexity of the satisfi-
ability problem for Ackerman formulae is EXPTIME-com-
plete.

4.1 Prefix-restricted PFDs
Recall that the first of our conditions is syntactic and applies
to the argument PFDs occurring in a terminology. This condi-
tion complements and extends the results in [Calvanese et al.,
2001]. However, because of “accidental common prefixes”,

it is not sufficient to follow the approach in [Calvanese et al.,
2001] of simply requiring unary PFDs to resemble keys. Non-
unary PFDs can also cause trouble, as the following example
illustrates.

Example 5 Consider the ² -ary PFD

� 1 � � 5 � ��� � 1�L �M�s� L �O� � PRQi± �
This PFD has a logical consequence � 1 � � 5 � � Q ± and
thus we can construct tiling similar to the one presented in the
previous section.

The problem with the above ² -ary PFD is that all the ² paths
in the precondition have the same prefix,

�
. To avoid this

problem, it suffices to impose the following prefix condition.

Definition 6 (Prefix-restricted PFDs) Letr �K��D�� 1 L �M�s� L �Oa�� P QS�� v
be an arbitrary PFD where �O is the maximal common prefix
of the path expressions

A ��R�� 1KL �s�M� L ��a�OuP E . The PFD is
prefix-restricted if either �O v is a prefix of �� or �� is a prefix
of �O v .
The above restriction allows us to recover an almost tree-
model property for the logic. By using this restriction, we
are able to construct special interpretations that satisfies all
constraints in a given terminology but falsify a PFD con-
straint whenever an interpretation exists at all—essentially,
the interpretation has the shape of two trees rooted by the
two elements of the domain that provide an counterexample
to the given PFD. To capture the effect of equalities implied
by PFDs, the two trees are allowed to share nodes that are in
the range of the same path function applied to the respective
roots. In addition, we are able to bound the indegree branch-
ing in such an interpretation.

Definition 7 (Rank of Implication Problem) Let # be a���	�����
terminology,

�
a constraint. We define !#"�$&%D$,# L � '

to be the number of occurrences of the G ��H 1 ��r concept con-
structors in # and

�
.

The !#"�$&% $)# L � ' limits the maximal number of different pre-
decessors needed to satisfy all constraints in the terminology.
The above observations provide the necessary tools for de-
scribing a single Herbrand interpretation with a fixed branch-
ing outdegree using monadic sentences that simulate the (spe-
cial) interpretation showing that # �� � � .

In the Herbrand interpretation, each term represents two
elements, a left element and a right element of the original
interpretation, unless these two elements are made equal by
the effect of a PFD. We use the following unary predicates
and function symbols:

Unary function symbols
�

(representing a feature
�

) and� 1 L �M�s� L ��'�(*)�+ ��,-� .�
 (representing the possible inverses of�
) for each feature

� � 
 . These function symbols are
used, together with the constant

£
denoting the two roots



in the original interpretation, to form terms. We over-
load the notation for path descriptions and use ��s$ £ ' to
denote terms as well.

Predicates
��� $���' and

��� $���' true for � representing ele-
ments that exist in the left and right parts of the original
interpretation; these emulate partiality of the inverses.

Predicates � �� $ ��' and � �� $���' that are true for � that represent
elements belonging to the description

r
in the respective

parts of the original interpretation.

Predicates
!��	� $���' true for � whenever the two elements de-

noted by � agree on �� in the original interpretation.

To ensure a finite number of assertions, we assume in the fol-
lowing that concept descriptions and features

�
are subcon-

cepts of concepts or are features appearing in # and
�

. We
call the following collection of assertions � , (assertions with
a superscript 
 stand for a pair of assertions, one with 
 sub-
stituted by � and one by � ):

1. Totality of features: each object must have one outgoing
feature

�
.������������������������ �����!�

for
�#"$ �&%'��()�+*

������ � ��� % �����!�,�-� � �����
2. Functionality of features: Each element has at most one

outgoing feature
�

.�����./��� � ������0�� � ��� ���&%'�����!�!�
3. Rules of equality: equalities propagate through function

application, equal nodes have the same predecessors,
must exist, and must belong to the same descriptions.����1����2 ��� �����!��03��4/���5���6�!�!�,�7��8:9<;=�����>�-8:9?;=��� �����!�!�
����1����2 ���@%������!��0���4>���@%A�����!�!�,�B� 8 9<;@���&%A�����!�>C 8 9?;=���6�!�
����D8 9<; ���6�>�B��� 2 ����� 03� 4 �����!�
����D8E9<;@���6�>�B��F:2G ���6�>CHF�4G �����!�

4. Concept formation—boolean constructors: enforce the
excluded-middle law and the correct behavior of con-
junction.
����������������7��F:�I ������J�F:�K I �����!������������������./��F:�I ������0�F:�K I �����!������� � �������7��F �I�L!MNI,O �����>C-��F �I�L ���6�P03F �I5O ���6�!�!�

5. Concept formation—value restrictions: assert value re-
strictions for pairs of neighboring nodes.����1������������0�������� �����!�!�,�7��F:�QC�DR I �����>CSF:�I ��� �����!�!�
����1��� � ��� % �����!��03� � �����!�,�B��F �Q �DR I ��� % �����!�>CHF �I �����!�

6. Concept formation—existential restrictions: satisfy ex-
istential restrictions for inverses. Note that in the case
of the left and right sides of the interpretations agreeing,
the appropriate predecessor can be on either side of the
interpretation (first two assertions).����D8E9<;@��� �����!�,�B��F:�TK�VU L R I ���5���6�!�>C

��� 2 ������0�F 2I �����!��JW��� 4 ���6�P03F 4I �����!�!JX ���Y���&%A���5���6�!�P03F:�I ���&%Z��� �����!�!�!�!�
������������ �����!��0�.[8\9<;@��� �����!�,�7��F:�TK�NU L R I ��� �����!�>C

��� � ������0�F �I ���6�!�!J
X ���]���&%Z��� �����!�^0�F:�I ���&%A���5���6�!�!�!�!�

�� � � � ������0_�`"$ � ��()�>�B��F �TK� U L R I �����>CX ���]���&%Z���6�P03F:�I ���&%Z���6�!�!�!�
7. Satisfaction of simple constraints in the terminol-

ogy (GCDs): enforce simple subsumption constraints
present in # .�� � F:�I�L �����,�-F:�I,O ����� for a �]b a �Eced

8. Satisfaction of prefix-restricted PFDs by inverses: disal-
low violations of prefix-restricted PFDs due to existence
of multiple inverse features agreeing on a node.�� � ./��� 2 ������0�� 4 ������03.[8 9<; ���6�P0�8 9<; ��� �����!�!0

F:2T	f!gDfhgji U L R G>L ���6�!�P03F�4Tkfhgkfhgli U L R G,O �����!�
�� � ./��� 2 ������0�� 4 ������03.[8 9<; ���6�P0�8 9<; ��� �����!�!0

F:2T	f!gDfhgji U L R G,O ���6�!�P03F�4Tkfhgkfhgli U L R G>L �����!�
�� � ./�����m����� 03F:�TkfhgDfhg i U L R G>L �����!0���Y���&%A���5���6�!�!�P03F:�TkfhgDfhgji U L R G,O ���@%A��� �����!�!�!�
�� � ./��� � ����� 03F �TkfhgDfhgji U L R G,O �����!0

� � ��� % ���5���6�!�!�P03F �TkfhgDfhgji U L R G>L ��� % ��� �����!�!�!�
�� � ./�����m���@%A�����!��0�F:�Tkfhgkf!gli U L R G>L ���@%A�����!�!0

� � ���	n@���6�!�P03F �Tkfhgkfhgli U L R G,O ���	n@�����!�!�
for all

r 18� r 5 �R�� 1 L �M�s� L �� P Q �� � # such that��R��Yv � ��Yv v is the common prefix of �� 1KL �s�M� L ��YP .
9. Path agreements: extend the simple equality to asser-

tions of two nodes agreeing on a path; this is necessary
to avoid exponential blowup in the length of the path de-
scriptions in the PFDs.�� �l����2P������03��4/������0��#"$ �&%'��()�!���

� 8 �DR�fhg �����/C 8 fhg ���5���6�!�!�
�� �l��� 2 ��� % ���6�!�o0[� 4 ��� % �����!�!�,�B��8 �+R�fhg ��� % �����!�>CH8 fhg �����!�
where �� ranges over all prefixes of path descriptions in# ’s PFDs.

10. Prefix-restricted PFDs: enforce PFDs between the left
and right parts of the interpretation.�� � F:2Tkfhg i U L R I�L ���6�P03F�4Tkfhgli U L R I,O ������08 fhg�L ���6�P0��	�	�p0�8 fhgjq �����,��8 f!g �����
�� � F�4Tkfhg i U L R I�L ���6�P03F:2Tkfhg i U L R I,O �����!08 fhg�L ���6�P0��	�	�p0�8 fhgjq �����,��8 f!g �����
for all

r 1 � r 5 �K�O&v �O 1 L �M�s� L ��Yv^��YPRQS��Yv^�� � # .
The above assertions simulate the constraints implied by# . To capture the violation of the constraint

�
we

set � . � A&��� $ £ ' L � �� L $ £ ' L ��� $ £ ' L :-� �� O $ £ ' L ![r!s $ £ 'uE for�
ordinary and � . � A@��� $ £ ' L ��� $ £ ' L � �� L $ £ ' L � �� O $ £ ' L!��	� L $ £ ' L �s�M� L !_�	� q $ £ ' L : !_�	� $ £ 'uE for

�
a PFD.

Theorem 8 Let # be a
���	�R�¦�

terminology and
�

a con-
straint. Then #S� � � if and only if � ,#t � . is not satisfiable.

Proof (sketch): Consider a model u of � ,vt � . . We con-
struct an interpretation w=�n$]/ L $ � ']( ' as follows: Let �Y� $ £ ' ,� � $ £ ' , and � � $ £ ' be distinct values for each term �s$ £ ' .



/�� A � � $ £ '��@u � � ! r!s $��s$ £ 'Y'�E tA � � $ £ '��@u � � ��� $��s$ £ '\' � : !_r!s $��s$ £ 'Y'�E tA � � $ £ '��@u � � ��� $��s$ £ '\' � : !_r!s $��s$ £ 'Y'�E
$ � ')( � A $ � � $ £ ' L � $�� � $ £ 'Y'Y'�� � � $ £ ' L � $�� � $ £ 'Y' � / E tA $ � W $ � � $ £ 'Y' L � � $ £ 'Y'�� � � $ £ ' L � W $�� � $ £ '\' � / E tA $ � � $ £ ' L � $��Y� $ £ 'Y'��s� � $ £ ' L � $��Y� $ £ 'Y' � / E tA $ � � $ £ ' L � $��Y� $ £ 'Y'�� � � $ £ ' L � $��Y� $ £ 'Y' � / E

for 
 � A £ L � L �¦E ,
$ r ',(4� A �Y� $ £ '��@u � � ��� $ �s$ £ 'Y' � � �� $��s$ £ 'Y'�E tA � � $ £ '�� u � � ��� $��s$ £ 'Y' � � �� $ �s$ £ 'Y'uE tA � � $ £ '��@u � � ��� $��s$ £ 'Y' � � �� $ �s$ £ '\'uE

It is easy to verify that this interpretation satisfies all con-
straints in # and violates

�
. Thus # �� � � .

Conversely, given an interpretation w such that wS��g# and
w �� � � , we construct a model of � , t � . as follows.

For
� � r 1 � r 5 �D�� 1KL �M�M� L ��YPUQ;�� a PFD, there must

be elements � 1ML � 5 � / such that � 1 � $ r 1 ')( and � 5 �$ r 1 ')( such that $Y�� W ',(Z$�� 1 '�� $Y�� W ')(J$�� 5 ' for
£ ¥ � § ² but$Y���')(J$�� 1 ' ��`$\�OK',(J$�� 5 ' .

We first define a part of the interpretation that consists of suc-
cessors of � 1 and � 5 :A&��� $\�OC$ £ 'Y' L � �� $Y��s$ £ 'Y'���$Y���',(J$�� 1 ' � $ r ',(FE tA&��� $\��s$ £ '\' L � �� $\�� $ £ 'Y'�� $\�OK',(�$�� 5 ' � $ r ',(FE tA ! �	� i $\�OC$ £ 'Y'�� $Y��R���v�',(J$�� 1 'J� $Y�����YvN')(J$�� 5 'uE - u
This part of u violates

�
and satisfies all constraints in #

with the exception of the G � H
1 � �

. We extend u to satisfy
the existential restrictions as follows:

for ��s$ £ ' such that
! r!s $Y��s$ £ 'Y' �� u and

� � $Y��s$ £ 'Y' . We
chose � § ! "�$ %a$,# L � ' predecessors of $Y���'](J$�� 1 ' that
satisfy all implied existential restrictions. and identify
these with the terms

� 1 $\��s$ £ '\' L �s�M� L � �&$\�OC$ £ 'Y' and set
� � $ � W $Y��s$ £ 'Y'\' L � �� ��� � � �	� � � 
	
	


L � �� � U L
	 ��� $Y��C$ £ '\' � u
for all the chosen

r�
predecessors of $Y��K')(�$�� 1 ' for

£2¥
� § � . For all the terms

� W $Y��s$ £ 'Y' we extract a tree inter-
pretation from w . Similarly, we extend u on the right
side.

for ��s$ £ ' such that
! r!s $\��s$ £ '\' � u we follow the same

steps as above for the left part only.

Note that since w satisfies # all (translations of) ordinary con-
straints are satisfied and no pair of nodes on the left/right sides
can violate a prefix-restricted PFD thus satisfying constraints
generated from PFDs (8-10 above).

For
� � r 1 � r 5 a simple constraint, there must be an

element � � / such that � � $ r 1 ',( and � �� $ r 5 ')( . We
define u using the same process as above noting that the
two roots � 1 and � 5 are already equal in w . �
As a side-effect of the above construction, we can now trans-
form an arbitrary interpretation that satisfies # and violates

�
to an almost-tree interpretation informally referred to above
in order to motivate the monadic assertions in � , and � . .

The translation, in itself polynomial, therefore provides
an EXPTIME decision procedure by appealing to Proposi-
tion 4. Completeness follows from EXPTIME-hardness of
the implication problem for the

AC� 1�3z�95 L ? ��� � E fragment
[Toman and Weddell, 2001; 2004b].

Corollary 9 The implication problem for
���	�R�¦�

with
prefix-restricted PFDs is EXPTIME-complete.

Using similar techniques, the G �RH 1 ��r concept constructor
can be generalized to more general number restrictions re-
quiring lower and upper bounds (coded in binary) on the num-
ber of

�
predecessors while still maintaining the complexity

bound.

4.2 Coherent Terminologies
The second of our conditions for recovering decidability is to
impose a coherency condition on terminologies themselves.
The main advantage of this approach is that we thereby regain
the ability for unrestricted use of PFDs in terminologies. The
disadvantage is roughly that there is a “single use” restriction
on using feature inversions in terminologies.

Definition 10 (Coherent Terminology) A terminology # is
coherent if

#S� ��$]G � H
1 � � ' 3 $+G � H

1 � ! ' � G � H
1 � $ �p34! '

for all descriptions
� L !

that appear as subconcepts of con-
cepts that appear in # , or their negations.

Note that we can syntactically guarantee that # is coherent
by adding the $]G �IH 1 � � ' 3 $+G �aH 1 � ! ' � G �IH 1 � $ �`3 ! ' as-
sertions to # for all descriptions

� L !
that appear in # . This

restriction allows us to construct interpretations of non-PFD
descriptions that have the following property:

Definition 11 An interpretation $+/ L $ � '](a' is coherent if, for
any
� � 
 , description

�
and
B L T � / , T � $ � ']( if

B �
$ � ',( and $ � ')(	$ B '���$ � ',(	$]T°' .
Lemma 12 Let # be a coherent terminology,

�
a simple con-

straint, and w an interpretation such that w[��=# and w �� � � .
Then there is a coherent interpretation w v such that w v � �i#
and w v �� � � .
Proof (sketch): Consider distinct

B L T � / ( such that (i)
B �

$ � 1 ',( , (ii) T � $ � 5 ',( , and (iii) $ � ')(J$ B '>�n$ � ')(J$]T°' . Then,
since # is coherent,

B � $ � 1 3�� 5 ')( . For,
B � $ � 1 3 : � 5 ')(

leads to $ � W ',(J$ B ' � $+G � W H
1 � $ �61�3 : �95 ' 3 G � W H

1 � �95 ',( , a
contradiction. Thus, as models of

�9�����
have the tree model

property, we can remove the farther of
B

or T and all its de-
scendants, where the distance is measured from the node fal-
sifying

�
in w . The resulting interpretation still satisfies #

and falsifies
�

. Repeating this process yields a coherent inter-
pretation. �
By restricting logical implication problems for

���	�����
to

cases in which terminologies are coherent, it becomes possi-
ble to apply reductions to satisfiability problems for Acker-
man formulae.



Theorem 13 Let # be a coherent
���	�����

terminology.
Then the implication problem # � � � is decidable and
EXPTIME-complete.

Proof (sketch): We use a reduction similar to the one for
prefix-restricted terminologies. However, as the terminology
is coherent, in the left and right parts of the interpretation
objects can never have more then one incoming feature with
the same name and thus a single inverse

� 1
for
� � 
 is

always sufficient to model this situation using the monadic
formulas. Also, the left and right sides of the interpretation
vacuously satisfy all PFDs (and thus the assertions in item 8
can be dropped). The interaction between PFDs and inverses
is now completely captured by the auxiliary

!��	�
predicates.

For details see [Toman and Weddell, 2004a]. �
Note that we cannot consider coherent interpretations only as
then all PFDs would be vacuously satisfied—no two nodes
could possibly agree on a common path. This would make all
PFDs trivial coherent consequences (i.e., when only coherent
interpretations are considered). Our coherency restriction on
terminologies is weaker: it only postulates that we can avoid
multiple

�
predecessors if we wish to do so.

5 Summary and Future Work
We have presented a pair of conditions, one syntactic and one
semantic, under which it becomes possible to combine fea-
ture inversion with path-functional dependencies in a boolean
complete description logic while still ensuring that the associ-
ated logical implication problem is EXPTIME-complete; the
problem is shown to be undecidable otherwise. The second of
these conditions resolves an open issue on decidability of an
analogous implication problem in [Biskup and Polle, 2003].

A natural extension of the description logic presented here
allows regular languages ( � ) to replace path expressions,
yielding the ?5� � � , G�� � � , GP� H 1 � � , and

� ��� Q � v con-
structors, and developing a decision procedure using the ap-
proach in [Toman and Weddell, 2004b]. One of the main ap-
plications of such an extension we envision is describing data
structures for purposes of query optimization, extending [Liu
et al., 2002] to inductive data types.

Another direction of research considers weaker restrictions
on
���	�����

terminologies that still guarantee decidability,
e.g., relaxing our coherence condition with respect to the
unary PFDs actually present in a terminology.
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