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Abstract

This paper proposes a new method to rank the cases
classified by a decision tree. The method applies
a posteriori without modification of the tree and
doesn’t use additional training cases. It consists
in computing the distance of the cases to the deci-
sion boundary induced by the decision tree, and to
rank them according to this geometric score. When
the data are numeric it is very easy to implement
and efficient. The distance-based score is a global
assess, contrary to other methods that evaluate the
score at the level of the leaf. The distance-based
score gives good results even with pruned tree, so
if the tree is intelligible this property is preserved
with an improved ranking ability. The main reason
for the efficacity of the geometric method is that in
most cases when the classifier is sufficiently accu-
rate, errors are located near the decision boundary.

1 Introduction
Decision Trees (DT) are a very popular classification tool be-
cause they are easy to build and they provide an intelligible
model of the data, contrary to other learning methods. The
need for intelligibility is very important in artificial intelli-
gence for applications that are not fully automatic, if there
is an interaction with the end-user, expert or not. This is
the reason why DT algorithm are widely used for classifica-
tion purpose (see Murthy[1998] for examples of real world
applications). But for some applications knowing the class
of each case is not sufficient to make a decision, one needs
to compare the cases to one another in order to select the
most promising examples. This is often the case in marketing
applications, allocation of resources or of grants, etc. (See
[Zadrozny and Elkan, 2001] for a description of the chari-
table donation problem). The traditional idea in this case is
to look for the probability of each case to belong to the pre-
dicted class, rather than just the class. The cases are then
ranked according to the probability-based score. Unfortu-
nately, methods that are highly suitable for probability esti-
mate produces generally unintelligible models. This is the
reason why some recent works aim at improving decision tree
probability estimate. Smoothing methods are particularlyin-
teresting for that purpose. They consist in replacing the raw

conditional probability estimate at the leaf by some corrected
ratio that shifts the probability toward the prior probability
of the class. The raw conditional probability estimate at the
leaf is defined bypr(c|x) = k

n
, wherek is the number of

training cases of the class label classified by the leaf, andn
is the total number of training cases classified by the leaf.
It is the same for all the cases that are classified by a leaf.
The most general type of correction generally used are the
m-estimatepm (see equation (1)), which uses the prior prob-
ability of the class and a parameterm, and the Laplace cor-
rectionpL which is a particular case ofm-correction when
all the C classes have the same priors (see[Cestnik, 1990;
Zadrozny and Elkan, 2001]).

pm(c|x) =
k + p(c).m

n + m
pL(c|x) =

k + 1

n + C
(1)

The main interest of smoothing methods is that they don’t
modify the structure of the tree. But in order to improve the
probability estimate, these methods are often applied to un-
pruned trees (see[Provost and Domingos, 2003]), so the in-
telligibility of the model is very much reduced, although itis
one of the main interest of decision trees compared to other
classifiers (like Naive Bayes, Neural Networks for instance).
Ensemble methods like bagging are also used successfully to
rank cases, although the margin is nota priori an estimate of
the class membership. Nevertheless, ensemble methods loose
also the intelligibility of the model.

The method we propose here aims firstly at preserving the
intelligibility of the model, so the objective is to improvethe
ranking without modifying the tree itself. This method is
based on the computation of the distance of the cases from
the decision boundary (the boundary of the inverse image of
the different classes in the input space), when it is possible
to define a metric on the input space. The distance of a case
from the decision boundary defines a score that is specific to
each case, unlike other methods for which the score is de-
fined at the level of the leaf and so it is shared by all cases
classified by the same leaf. In other geometric methods, like
Support Vector Machine (SVM) it has been proved that the
distance to the decision boundary can be used to estimate the
posterior probabilities (see Platt[2000] for the details in the
two-class problem): an additional database is needed in order
to calibrate the probabilities. But since in many applications



Size of ∆N N

Database dataset (UT-PT) (UT)

bupa 345 19.53±0.68 30.52±0.55
glass 214 2.90±0.16 6.25±0.15
ionosphere 351 5.22±0.25 11.00±0.2
iris 151 1.49±0.12 4.94±0.11
letter 20000 31.71±0.76 61.10±0.58
newThyroid 215 2.95±0.19 7.25±0.13
optdigits 5620 9.14±0.35 19.35±0.3
pendigits 10992 8.91±0.35 23.33±0.3
pima 768 32.88±1.11 47.2±0.96
sat 6435 13.67±0.40 24.73±0.31
segmentati 210 1.48±0.13 4.66±0.09
sonar 208 6.30±0.24 11.36±0.15
vehicle 846 8.04±0.29 18.10±0.25
vowel 990 2.50±0.19 8.56±0.14
wdbc 569 5.10±0.23 10.03±0.18
wine 178 1.43±0.10 4.22±0.09

Table 1: Comparison of the size of pruned (PT) and uncollapsed
unpruned (UT) trees: Mean and standard deviation of the difference
of the number of leavesN over 100 resamples.

we don’t need the exact posterior probability, it is generally
possible to use directly the score induced by the distance to
rank and to select the most interesting cases.

The paper is organized as follow: Section 2 examines from
the intelligibility viewpoint the methods applied to decision
trees to rank cases or to estimate posterior probabilities.Sec-
tion 3 presents our method for obtaining a distance-based
score, and it explains why it is interesting from a theoreti-
cal point of view. Section 4 presents the experimental re-
sults which have been drawn from the numerical databases of
the UCI repository, in comparison with the results obtained
from the smoothing methods applied on the same databases.
We make further comments about geometric score and hybrid
method in the concluding section.

2 Decision Tree methods for ranking: the
intelligibility viewpoint

The success of Decision Trees as classification method is for
a good part due to the intelligibility of the model produced
by the algorithms. Pruning methods[Breimanet al., 1984;
Bradley and Lovell, 1995; Espositoet al., 1997] produce
shorter trees with at least the same performance than longer
trees, since the generalization performance are enhanced.
They also produce shorter tree on purpose, seeking for a com-
promise between accuracy (or other performance criteria) and
the size of the tree. Table 1 shows that unpruned trees can
be very large compared to pruned trees with similar accuracy
(the mean absolute difference over the databases is 0.38% and
it is always less than 2.3%). Because of this size problem, itis
desirable to improve the probability estimate given by DT, in
order to allow a compromise between size and ranking ability.

With smoothing methods the probability estimate is the
same for all the examples classified by a leaf. In order to
produce more specific probability estimates, other methods
learn directly the probability class membership at the leaf.
For instance,[Smythet al., 1995] use kernel-based density

estimator at the leaf, without modification of the tree struc-
ture. This method improves significantly the class probability
estimates. But the practical use of kernel density estimator is
limited to very low dimension, and the setting of parameters
is not easy. Kohavi[1996] builds Naive Bayes classifiers at
the level of the leaf, using its own induction algorithm. The
objective of the tree partition is not to separate the classes but
to segment the data so that the conditional independence as-
sumption is better verified. The size of the tree is limited to
cover each leaf with enough data. In our experiment the size
of the Naive Bayes Trees (NBT) is comparable to the size of
the pruned trees (but the segmentation of the space is com-
pletely different). With different objectives and structures,
the interpretation of DT and NBT cannot compare easily.

Other methods try to correct the probability estimate at
each nodes by propagating a case through the different pos-
sible path from each node. These methods, like fuzzy trees
[Umanoet al., 1994], fuzzy split [Quinlan, 1993], or more
recently [Ling and Yan, 2003] deal with a different issue:
Managing the uncertainty in the input case and in the train-
ing database. Generally the computation of the probability
estimate is very complex and in some cases difficult to under-
stand: a lot of nodes can be involved, although non-convex
area of the input space corresponding to one class can be di-
vided arbitrarily into several leaves. So from the point of view
of intelligibility these methods are not totally convincing.

We propose here to keep the structure of the pruned tree
but to rank the cases accordingly to their distance from the
decision boundary which is defined by the tree.

3 Distance ranking methods for decision trees
We consider here axis-parallel DT (ADT) operating on nu-
merical data: Each test of the tree involves a unique attribute.
We noteΓ the decision boundary induced by the tree.Γ con-
sists of several pieces of hyperplanes which are normal to
axes.

We consider a multi-class problem, with a class of interest
c (the positive class). Letx be a case,c(x) the class label
assigned tox by the tree,d = d(x,Γ) the distance ofx from
the decision boundaryΓ. We use the distance of an example
from the decision boundary to define its geometric score.

3.1 Global and local geometric ranking
Definition 1 Geometric score

The geometric scoreg(x) of x is the distance ofx from the
decision boundary ifc(x) = c and its opposite otherwise.

g(x) =

{

d(x,Γ) if c(x) is the positive class,
−d(x,Γ) otherwise.

(2)

Theorem 1 Global geometric ranking
The geometric score induce a quasi-order� over the ex-

amples classified by the tree.

x � y ⇔ g(x) ≥ g(y) (3)

Cases are ranked in decreasing order relatively to the geomet-
ric score. The most promising cases have the highest geomet-
ric score, which means that their predicted class is the positive
one and that they are far from the decision boundary.



With the geometric score, examples are ranked individu-
ally, not leaf by leaf.

The geometric score is specific to each example, so it is
also possible to first rank the leaves with a smoothing method
(or an equivalent method that ranks the leaves, not the cases)
and then to rank the cases inside a leaf.

Theorem 2 Local geometric ranking
The geometric score induce a quasi-order�L over the ex-

amples classified by a leaf.

x �L y ⇔ or

{

p(c|x) > p(c|y)

p(c|x) = p(c|y) andg(x) ≥ g(y).
(4)

With the local geometric score, the leaves are ranked ac-
cording to the probability estimate, then inside each leaf (or
inside each group of leaves with the same output probability
estimate), examples are ranked according to their geometric
score.

The distance of a casex to the decision boundary is com-
puted with the algorithm described in[Alvarez, 2004]. It con-
sists in projectingx onto all the leavesf which class label
differs fromc(x). The nearest projection gives the distance.

Algorithm 1 distanceFrom(x,DT)
0. d = ∞;
1. Gather the setF of leavesf which classc(f) 6= c(x);
2. For eachf ∈ F do: {
3. computepf (x) = projectionOntoLeaf(x,f );
4. computedf (x) = d(x, pf (x));
5. if (df (x) < d) thend = df (x) }
6. Returnd = d(x,Γ)

Algorithm 2 projectionOntoLeaf(x,f = (Ti)i∈I )
1. y = x;
2. For i = 1 to size(I) do: {
3. if y doesn’t verify the testTi thenyu = b }

whereTi involves attributeu with threshold valueb
4. Returny

The projection onto a leaf is straightforward in the case of
ADT since the area classified by a leaff is a hyper-rectangle
defined by its tests. The complexity of the algorithm is in
O(Nn) in the worst case whereN is the number of tests of
the tree andn the number of different attributes of the tree.

3.2 Theoretical viewpoint
We expect geometric ranking to give interesting results when
errors occur near the decision.

If this property is verified, positive cases (cases which class
is the class of interest) that are not recognized have negative
geometric score but with a small absolute value. False pos-
itive, that is negative cases classified as positive have also
small (but positive) geometric score. On the contrary, true
positive have higher geometric score and true negative have
negative geometric score with high absolute value. So inde-
pendently from the score estimated at the leaf, the geometric
score tends to bring side by side false negative and false pos-
itive, and to repel true positive and true negative. This canbe
seen on a Receiver Operating Characteristic (ROC) curve (in
the way described in[Adams and Hand, 1999]). The ratio of

positive examples is plotted against the ratio of all other (neg-
ative) examples as the score varies. With methods that give
constant probability estimates at the leaf, the points are plot-
ted from one leaf to another. The affine interpolation between
consecutive points assumes that examples are selected ran-
domly inside a leaf (or a set of leaves with the same score). If
we use a ROC curve to visualize the ranking, geometric rank-
ing will be very good at the beginning of the curve, as seen in
Figure 1.
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Figure 1: ROC curves of different ranking method (WD Breast-
Cancer sample). The local geometric ranking curve intersects the
basicm-estimate curve at leaf points.

Since DT algorithms are generally designed to maximize
accuracy, it is not unreasonable to hypothesize that errorslie
near the decision boundary. In a very ideal case, it is even
possible to demonstrate that this hypothesis is true.

A DT builds a partition in the input space. In a two class
problem, it is possible to associate to a DT a unique function
g : E 7→ {0, 1} such thatg(x) is the predicted class ofx. (But
several decision trees are associated to the same function).
We consider an ideal case of statistical decision, where the
joint distributionP of observations would be uniform on the
graph of the indicator functionf of a setS in E = [0, 1]n. We
also suppose that the size of all the maximal hypercubes inS
andE\S has a lower boundν > 0 (to prevent pathological
situation forS and its boundary). In this case, decision trees
built on samples drawn fromP can approachf as closely as
wanted if the size of the sample can grow indefinitely. For
this particular case of functionf , errors are located near the
decision boundary.

Theorem 3 Proximity of errors. For a DT which associated
functiong is close enough tof , errors are near the decision
boundary∂g of g.

If we noteA the area wheref − g 6= 0 (set of errors),Ȧ
the interior ofA, and if we considerǫ small enough so that
ǫ < νn, we have:

(
∫

E

|f − g| < ǫ and x ∈ Ȧ

)

⇒ d(x, ∂g) < αn
n

√
ǫ . (5)



Proof. Let x be in Ȧ, we considerB(x, d
2
) the maximal

hypercube centered atx in its connected component. The
volume ofB is included into

∫

E
|f − g|, so we have:dn <

ǫ < νn. So the size ofB is smaller thanν andd < n

√
ǫ. The

boundary ofB, ∂B, encounters the decision boundary off −
g on at least two meeting points of two different hyperplanes,
sinceB is maximal. Iff is not constant onB, then both∂f
and∂g crossB, and so necessarilyd(x, ∂g) < d

2

√
n. If f is

constant onB, since the size ofB is smaller thanν, at least
one of the meeting point lies on∂g (otherwise the size ofB
would be smaller than the lower bound of the maximal balls).
So once againd(x, ∂g) ≤ d

2

√
n <

√
n

2

n

√
ǫ. •

Even if real conditions are very far from this ideal case
(in first place, generallyf doesn’t exist), we can test if the
hypothesis of proximity of errors is generally verified. Table
2 shows the mean of the difference of the mean distance of
correctly classified cases (hits) and errors from the decision
boundary. We also computed for each sampleλ, the inverse
of the coefficient of variation for the difference of the means
defined by (6), wheredh andσh are the mean and the standard
deviation of the distance of correctly classified examples from
the decision boundary, andde andσe the same magnitude for
error examples.

λ =
dh − de

√

σ2

h + σ2
e

(6)

Table 2 shows the percentage of the samples for whichλ ≥ 2,
which is the97.5% confidence coefficient under the normal
assumption (the test is unilateral). We can see that errors are
closer from the decision boundary for a majority of databases.
Datasets for which this property is not verified have generally
a low mean accuracy (62% for bupa and69% for sonar). If
we consider only the samples for which the accuracy is better
than70%, the proportion shifts to29% and50% respectively.

∆ of the % of samples
Database means λ with λ ≥ 2

bupa 0.009±0.002 0.86±0.12 17
glass 0.038±0.011 2.28±0.34 51
ionosphere 0.037±0.006 1.36±0.19 35
iris 0.092±0.003 5.34±0.28 95
newThyroid 0.059±0.002 3.46±0.14 91
optdigits 0.542±0.008 24.87±1.45 100
pendigits 0.339±0.005 24.6±1.24 100
pima 0.036±0.001 4.15±0.15 94
sat 0.135±0.005 12.59±0.56 100
segment. 0.181±0.005 7.28±0.2 98
sonar 0.027±0.003 1.44±0.14 34
vehicle 0.026±0.004 4.75±0.49 55
vowel 0.215±0.003 16.88±0.74 100
wdbc 0.113±0.002 10.24±0.29 100
wine 0.152±0.004 6.73±0.39 97.7

Table 2:Comparison of the mean distance of errors and hits to the
decision boundary, over the test bases of 100 samples per database.
The mean of the difference is estimated for each sample. (Bad re-
sults are bold)

A corollary of theorem 3 is that if a tree is not accurate, er-
rors may lie everywhere, not only near the decision boundary.

In this case the geometric score cannot be good. So we expect
the geometric score to be better with more accurate trees.

4 Experimental Results
4.1 Experimental Design
We have studied the geometric ranking on the database of the
UCI repository[Blake and Merz, 1998] that have numerical
attributes only and no missing values. We are not directly
concerned in this study with the problem of the prevalence of
the positive class, since our method doesn’t build the decision
tree: it applies on the grown tree. So we didn’t pay any par-
ticular attention to the relative frequency of the classes in the
datasets. We chose as positive class either the class with the
lowest frequency in the database, either a class which grouped
together several classes when it was more logical. When the
classes were equiprobable and with no particular meaning
we chose it randomly. Although there is a lot of work on
the analysis of multi-class problem, for simplicity we have
treated multi-class problem as a two class problem (class of
the examples were modified before growing the trees).

For each database, we divided 100 bootstrap samples into
separate training and test sets in the proportion 2/3 1/3, re-
specting the prior of the classes (estimated by their frequency
in the total database). Even if it is not the best way to build
accurate trees for unbalanced dataset or different error costs,
here we are not interested in building the most accurate or
efficient tree, we just want to study the effect of geometric
ranking on pruned trees. For the same reason we grow trees
with the default options of j48 (Weka’s[Witten and Frank,
2000] implementation of C4.5) although in many cases dif-
ferent options would build better trees. For unpruned trees
we disabled the collapsing function.

We used Laplace correction and m-estimate smoothing
methods to correct the raw probability estimate at the leaf
for reduced-error pruned tree and normal pruned tree. The
value ofm was chosen such thatm × p(c) = 10 wherep(c)
is the prior probability of the class of interest (as suggested in
[Zadrozny and Elkan, 2001]).

We used two different metrics in order to compute the dis-
tance from the decision boundary, the Min-Max (MM) metric
and the standard (s) metric. Both metrics are defined with the
basic information available on the data: An estimate of the
range of each attributei or an estimate of its meanEi and
of its standard deviationsi. The new coordinate system is
defined by (7).

yMM
i =

xi − Mini

Maxi − Mini

or ys
i =

xi − Ei

si

. (7)

The parameters of the metric are estimated on each sample.
The choice of the metric has a very limited effect on the geo-
metric score; If we measure the difference between the Area
Under the ROC curve (AUC) , for each database, it is always
less than2 10−3 ± 9 10−4, except for the thyroid and vehicle
databases (less than410−3) and the glass database (9.510−3).

4.2 Comparison between distance-based ranking
and smoothing methods

The geometric score is only used to rank the examples with-
out changing the tree structure. It is not used to estimate the



Red.-Error Normal No
Dataset pruning pruning pruning NBTree

bupa 0.46±0.48 -0.14±0.47 -0.82±0.50 0.08±0.79
glass 1.78±0.72 -0.39±0.75-1.87±0.73 -2.01±0.83
iono. -1.11±0.4 -2.30±0.4 -2.85±0.42 -5.14± 0.72
iris 4.69±0.40 3.85±0.35 3.67±0.37 1.56±0.43
letter 0.18±0.09 0.37±0.07-0.26±0.05 0.40±0.12
thyroid 4.48±0.43 3.08±0.38 2.54±0.38 -2.13±0.62
optdig. 0.53±0.08 0.34±0.06 0.07±0.06 -0.12±0.06
pendig. 0.46±0.04 0.40±0.03 0.28±0.03 0.58±0.05
pima 1.34±0.43 -0.98±0.25 -1.07±0.30 2.25±0.55
sat 1.01±0.09 0.89±0.07 0.46±0.05 0.97±0.09
segment. 8.16±0.75 5.27±0.63 5.31±0.64 3.25±0.61
sonar 2.55±0.47 1.99±0.51 1.80±0.49 -5.01±1.03
vehicle 0.35±0.16 0.64±0.14-0.12±0.16 0.78±0.30
vowel 4.18±0.34 3.09±0.29 2.83±0.26 0.78±0.44
wdbc 3.75±0.24 2.24±0.18 2.15±0.18 2.09±0.22
wine 5.35±0.45 3.32±0.30 2.91±0.30 -0.06±0.25

Table 3:Absolute difference of the AUC between global geometric
ranking with standard metric and smoothing methods at the leaf. The
last column shows the difference between global geometric ranking
on Red.-error pruning tree with NBTree. (All mean values and stan-
dard deviations are×100. Insignificant values are italic. Bad results
are bold)

posterior probability of an example, so the appropriate mea-
sure of performance in that case is the AUC. Table 3 shows
the difference between global geometric ranking and Laplace
or m-estimate correction at leaf.

Apart from a few cases, global geometric ranking gives
better values than either Laplace or m-estimate correction
(with a 95% confidence coefficent). The differences are rel-
atively small (from0.004 to 0.08), but since they are ab-
solute values the improvement can be important. We have
also shown the difference of the AUC between global geo-
metric ranking on reduced-error pruned tree and NBTree.

Table 4 shows the difference between local geometric rank-
ing and smoothing correction at leaf. Local geometric rank-
ing is always better (with a95% confidence coefficent) than
smoothing method alone, except in one case which is not sig-
nificant. But like for global ranking, the improvement can
vary a lot (absolute value from0.002 to 0.078).

As we said in the theoretical viewpoint section, we expect
geometric ranking to outperform smoothing method at the be-
ginning of the ROC curve. To measure the relative behavior
of ROC curves for increasing value of the negative ratio, we
have computedAUC(x), 0 ≤ x ≤ 0.5, the integral func-
tion of the ROC curve, with a0.001 step value, for the global
geometric score (g) and the smoothing correction (s). Ta-
ble 5 shows for normal pruned trees theshows the maximum
absisse valuex such thatAUCg(y) ≥ AUCs(y) with a con-
fidence coefficient of 0.95 (under the normal assumption) for
everyy ≤ x. For all smaller values of the negative ratio, the
global geometric ranking outperforms the other method (in
term of AUC).

We can see in Table 5 that for most bases, the global
geometric ranking methods is rather efficient at the begin-
ning of the ROC curve, even when on the total range it per-
forms badly (like for the Pima database, see Table 3). The

Reduced-error Normal
Dataset pruning pruning Unpruned

bupa 1.75±0.23 0.88±0.09 0.69±0.09
glass 4.21±0.44 3.39±0.34 2.61±0.31
iono 0.04±0.29 0.51±0.17 0.49±0.18
iris 3.71±0.25 3.31±0.26 2.92±0.25
letter 0.19±0.09 0.36±0.07 0.13±0.02
thyroid 3.62±0.39 2.70±0.29 2.33±0.27
optd. 0.67±0.06 0.43±0.04 0.27±0.03
pend. 0.34±0.03 0.28±0.02 0.20±0.02
pima 2.59±0.26 0.87±0.07 0.55±0.05
sat 1.09±0.08 0.89±0.06 0.45±0.04
segment. 7.78±0.72 4.83±0.54 4.34±0.49
sonar 3.02±0.29 2.81±0.21 2.70±0.2
vehicle 0.53±0.09 0.60±0.07 0.49±0.05
vowel 3.83±0.3 2.85±0.26 2.56±0.23
wdbc 3.75±0.22 2.14±0.14 2.04±0.14
wine 5.11±0.4 3.14±0.26 2.80±0.24

Table 4:Absolute difference of the AUC between local geometric
ranking with standard metric and the best smoothing method. (All
mean values and standard deviations are×100. Insignificant values
are italic. There is no bad value.)

experiment partially confirms the theoretical viewpoint con-
cerning the fact that geometric score gives interesting results
when misclassified examples are near the decision bound-
ary. This is particularly true for the bupa (liver-disorder)
and ionosphere databases. Table 2 shows that these datasets
doesn’t verify the hypothesis of proximity of errors on a ma-
jority of samples, and actually the global geometric score give
bad results for these datasets.

Concerning the improvement of the geometric ranking
when the accuracy of the tree is better, the experiment is not
conclusive. If we compute Table 3 and Table 4 for a subset
of the samples, the best quartile for tree accuracy, the global
geometric ranking is not improved (results are not signifi-
cant). But local geometric ranking gives always better results
than on the total sample, except on the glass and ionosphere
database (for which the hypothesis of proximity of errors is
not much improved on the subset of the samples).

5 Conclusion
We have presented in this article a geometric method to rank
cases that are classified by a decision tree. It applies to every
axis-parallel tree that classifies examples with numericalat-
tributes. We were not concerned here with the problem of
growing the tree (problem with unbalanced datasets or dif-
ferent misclassification costs which lead to pre-processing of
the data or new pruning methods). The geometric method
doesn’t depend on the type of splitting or pruning criteria that
is used to build the tree. It only depends on the shape of de-
cision boundary induced by the tree. It consists in ranking
the case according to their distance to the decision boundary,
taking into account the class of interest and the class that is
predicted by the decision tree. Theoretical arguments suggest
that this method is interesting when the misclassified exam-
ples lie near the decision boundary, and this was partially con-
firmed by the experimentation. The combination of geomet-



MM metric Standard metric
Dataset m-estimate Laplace m-estimate Laplace

bupa 0.001 0.001 0.001 0.001
glass 0.1 0.1 0.05 0.05
iono 0.02 0.02 0.02 0.02
iris ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

thyroid ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

optdigits 0.01 0.01 0.01 0.01
pendigits ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

pima 0.02 0.35 0.03 0.37
sat ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

segment. ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

sonar ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

vehicle ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

vowel ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

wdbc ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

wine ≥ 0.5 ≥ 0.5 ≥ 0.5 ≥ 0.5

Table 5:Abscissa below which the global geometric ranking AUC
is always greater. (Bad results are bold).

ric ranking and smoothing methods almost always improve
the global ranking (measured with the AUC). Different kind
of experiment should be performed in order to compare geo-
metric ranling (and particularly local geometric ranking)to
NBTree or other algorithm: since the structure of the trees
are different, the choice of pruning method can be important.

The main limit of the method is that it is limited to numer-
ical attributes. It could be extended to ordered attributes, but
without the definition of a utility function it cannot be used
with attributes that have unordered modalities.

Further work is in progress in order to understand more
precisely when the geometric ranking should perform well.
Following the idea from[Smythet al., 1995], we think that
density estimator could be used on the distance itself rather
than on the attribute of the cases, in order to deal with 1-
dimension estimator (which are very efficient). Another in-
teresting point is the definition of a geometric score for real
multi-class problem (with no particular class of interest). Ac-
tually the algorithm that computes the distance to the decision
boundary computes already the distance of an example to the
different classes, so these distances could be used for thatpur-
pose.
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