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Abstract
We introduce a new NP-complete problem asking
if a “query” hypercube is (not) covered by a set of
other “evidence” hypercubes. This comes down to
a form of constraint reasoning asking for the satis-
fiability of a CNF formula where the logical atoms
are inequalities over single variables, with possibly
infinite variable domains. We empirically inves-
tigate the location of the phase transition regions
in two random distributions of problem instances.
We introduce a solution method that iteratively con-
structs a representation of the non-covered part of
the query cube. In particular, the method is not
based on backtracking. Our experiments show that
the method is, in a significant range of instances,
superior to the backtracking method that results
from translation to SAT, and application of a state-
of-the-art DP-based SAT solver.
This paper is an extended abstract. More details can
be found in the long version of the paper [Hoffmann
and Kupferschmid, 2005].

We introduce a new NP-complete problem asking if there
is a point in a given n-dimensional “query” hypercube that is
not covered by – contained in the union of – a set of other n-
dimensional “evidence” hypercubes. An n-dimensional hy-
percube is a cross product of n intervals. Intervals in our con-
text are defined as statements of the form l < [≤] x < [≤] u
where “x” is a variable, “l” and “u” are members of x’s do-
main, and “<” is a total order defined over this domain.1

Definition 1 Let QCOVER denote the following problem:
Given an n-dimensional hypercube Q, and a set E of n-
dimensional hypercubes, is there a point in Q that is not con-
tained in

⋃
E∈E E?

Covering problems of this kind arise, e.g., in the context
of regression planning with numeric state variables [Koehler,
1998]. More generally, QCOVER is a form of constraint rea-
soning asking for the satisfiability of a CNF formula where
the logical atoms are inequalities over single variables, with
possibly infinite variable domains. The correspondence is the

1By square parentheses “symb1 [symb2]” we denote alternative
possibilities, i.e. that symb2 can be substituted for symb1.

following. A QCOVER instance is a constraint problem with
n variables xd. The query hypercube specifies a region in-
side which the solution must lie, the evidence cubes spec-
ify regions inside which the solution must not lie. A hyper-
cube corresponds to a conjunction of inequalities of the form
c < [≤, >,≥] xd. So the complement of a hypercube (of
an evidence hypercube) corresponds to a disjunction of such
inequalities, and the overall problem is a conjunction of dis-
junctive constraints. Vice versa, any conjunction of such dis-
junctive constraints can be expressed as hypercubes (if a dis-
junctive constraint does not mention a variable xd, then the
interval in dimension d is the whole variable domain).

Proposition 1 QCOVER is NP-complete.

We empirically explore two random distributions of
QCOVER instances. The first one, which we call Random
QCOVER, chooses the end points for all intervals uniformly
from a set of m possible values. The second one, which we
call Random 3-QCOVER, is similar to the fixed clause-length
model for generating random 3SAT instances [Mitchell et al.,
1992]. It always selects the query cube to be the cross-product
of the (whole) variable domains, and, in the evidence cubes,
assigns the whole variable domains to all but 3 randomly cho-
sen dimensions. For both distributions, we investigate the lo-
cation of the phase transition regions. As it turns out, Random
3-QCOVER shows a typical phase transition behaviour while
Random QCOVER shows no such behaviour, see Figure 1.
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Figure 1: Typical plot of the proportion of unsatisfiable in-
stances against k for (a) Random QCOVER and (b) Random
3-QCOVER.

By 50% point, we denote the number k of evidence cubes
at which our random instances have (empirically) equal prob-
ability of being satisfiable or unsatisfiable. The 50% point
depends on n and m. We use instances from the 50% points
to evaluate different solution methods.



Today, in most cases the empirically most efficient solution
methods for satisfiability problems are backtracking meth-
ods. Such methods are depth-first searches that split, in each
search node, the search space along the possible values of a
variable. A polynomial propagation of constraints is used to
determine conflicts early on in the search tree, and analysis
of conflicts is used to prune unnecessary branches. Meth-
ods of this kind have proved successful for solving constraint
satisfaction problems. In particular, the modern descendants
of the Davis Putnam procedure still constitute the state-of-
the-art in determining the solvability of propositional CNF
formulas. In our work, we have implemented a backtracking
method for QCOVER by plugging a straightforward transla-
tion to SAT into Chaff [Moskewicz et al., 2001].2 To contrast
this method, we have also developed an algorithm, named
cube elimination, that, instead of backtracking over possible
variable values, iteratively constructs a representation of the
non-covered part of the query cube. See Figure 2.

procedure cube elimination(Q, E)
Q := {Q}
for all E ∈ E do

Q′ := ∅
for all Q′ ∈ Q do

Q′ := Q′ ∪ minimal cover(Q′ \ E)
endfor
Q := Q′

if Q = ∅ then answer “unsatisfiable”, return ∅ endif
endfor
answer “satisfiable”, return Q

Figure 2: Cube elimination.

The algorithm maintains a set Q of hypercubes that ini-
tially contains only the query cube itself. Then iteratively all
evidence cubes E are “eliminated” by subtracting them from
all cubes Q in Q. The result Q \ E of such a subtraction is
not necessarily a hypercube; we represent it as a set of hyper-
cubes, computed by the minimal cover procedure. The latter
is a simple for-loop over all dimensions, returning a set of
hypercubes that covers exactly Q \ E, and that is minimal in
the sense that there is no smaller set of hypercubes covering
exactly Q \ E (the worst-case size of the set is 2n).

In SAT, where all variables are boolean and have only two
possible values, cube elimination comes down to transform-
ing the CNF into a DNF. This seems a hopeless approach,
but, for our Random QCOVER distribution, our experiments
show that cube elimination is often superior to the backtrack-
ing method implemented by Chaff. Figure 3 shows our re-
sults for the Random QCOVER distribution, in terms of (nr.
of search decisions made by Chaff) divided by (total nr. of
cubes generated by cube elimination). Clearly, cube elimina-
tion becomes superior as the value of m increases. This is
particularly true in the unsatisfiable instances where the cube
elimination search space is, in the largest instances, around
5 orders of magnitude smaller than that of backtracking. It

2The translation implements the multiple-valued variable for
each dimension by a set of boolean variables a that cover (only)
the relevant case distinctions in that dimension. Binary exclusion
clauses of the form ¬a ∨ ¬a′ ensure that, by unit propagation, only
one variable a can be set to 1 at a time.

should be noted that cube elimination produces a representa-
tion of all satisfying assignments in the satisfiable cases.

 1
 2

 3
 4

 5
 6

n
25

125
500

2000
10000

FLOAT

m

 0.01

 0.1

 1

 10

 100

(a)

 1
 2

 3
 4

 5
 6

n
25

125
500

2000
10000

FLOAT

m

 0.1

 1

 10

 100

 1000

 10000

 100000

(b)
Figure 3: Search space size quotient Chaff vs. cube elimi-
nation in Random QCOVER, averaged over (a) all instances,
(b) only unsatisfiable instances. The z-axis is log-scaled, the
plain z = 1 is included for orientation.

In the Random 3-QCOVER distribution, we found back-
tracking to be generally superior to cube elimination. For
lack of space, we ommit the details. In spirit, cube elimina-
tion is somewhat similar to the “bucket elimination” frame-
work defined by Rina Dechter [1999]. The cube elimination
algorithm is easiest to understand, and was originally moti-
vated by, viewing the satisfiability problem we consider as a
geometrical problem. This opens up the question if geomet-
rical interpretations of other satisfiability problems can lead
to interesting new methods for these problems.
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