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Abstract

Stochastic complexity of a data set is defined as the
shortest possible code length for the data obtainable
by using some fixed set of models. This measure is
of great theoretical and practical importance as a
tool for tasks such as model selection or data clus-
tering. In the case of multinomial data, comput-
ing the modern version of stochastic complexity,
defined as the Normalized Maximum Likelihood
(NML) criterion, requires computing a sum with
an exponential number of terms. Furthermore, in
order to apply NML in practice, one often needs to
compute a whole table of these exponential sums.
In our previous work, we were able to compute this
table by a recursive algorithm. The purpose of this
paper is to significantly improve the time complex-
ity of this algorithm. The techniques used here are
based on the discrete Fourier transform and the con-
volution theorem.

1 Introduction
The Minimum Description Length (MDL)principle devel-
oped by Rissanen[Rissanen, 1978; 1987; 1996] offers a well-
founded theoretical formalization of statistical modeling. The
main idea of this principle is to represent a set of models
(model class) by a single model imitating the behaviour of
any model in the class. Such representative models are called
universal. The universal model itself does not have to belong
to the model class as often is the case.

From a computer science viewpoint, the fundamental idea
of the MDL principle iscompression of data. That is, given
some sample data, the task is to find a description orcode
of the data such that this description uses less symbols than
it takes to describe the data literally. Intuitively speaking,
this approach can in principle be argued to produce the best
possible model of the problem domain, since in order to be
able to produce the most efficient coding of data, one must
capture all the regularities present in the domain.

The MDL principle has gone through several evolutionary
steps during the last two decades. For example, the early re-
alization of the MDL principle, the two-part code MDL[Ris-
sanen, 1978], takes the same form as the Bayesian BIC cri-
terion[Schwarz, 1978], which has led some people to incor-

rectly believe that MDL and BIC are equivalent. The latest
instantiation of the MDL isnot directly related to BIC, but
to the formalization described in[Rissanen, 1996]. Unlike
Bayesian and many other approaches, the modern MDL prin-
ciple does not assume that the chosen model class is correct.
It even says that there is no such thing as a true model or
model class, as acknowledged by many practitioners. The
model class is only used as a technical device for constructing
an efficient code. For discussions on the theoretical motiva-
tions behind the modern definition of the MDL see, e.g.,[Ris-
sanen, 1996; Merhav and Feder, 1998; Barronet al., 1998;
Grünwald, 1998; Rissanen, 1999; Xie and Barron, 2000;
Rissanen, 2001].

The most important notion of the MDL principle is the
Stochastic Complexity (SC), which is defined as the shortest
description length of a given data relative to a model classM.
The modern definition of SC is based on the Normalized
Maximum Likelihood (NML) code[Shtarkov, 1987]. Unfor-
tunately, with multinomial data this code involves a sum over
all the possible data matrices of certain length. Computing
this sum, usually called theregret, is obviously exponential.
Therefore, practical applications of the NML have been quite
rare,

In our previous work[Kontkanenet al., 2003; 2005], we
presented a polynomial time (quadratic) method to compute
the regret. In this paper we improve our previous results and
show how mathematical techniques such as discrete Fourier
transform and convolution can be used in regret computation.
The idea of applying these techniques for computing a sin-
gle regret term was first suggested in[Koivisto, 2004], but as
discussed in[Kontkanenet al., 2005], in order to apply NML
to practical tasks such as clustering, a whole table of regret
terms is needed. We will present here an efficient algorithm
for this specific task. For a more detailed discussion of this
work, see[Kontkanen and Myllym̈aki, 2005].

2 NML for Multinomial Data
The most important notion of the MDL is theStochastic Com-
plexity (SC). Intuitively, stochastic complexity is defined as
the shortest description length of a given data relative to a
model class. To formalize things, let us start with a definition
of a model class. Consider a setΘ ∈ R

d, whered is a pos-
itive integer. A class of parametric distributions indexedby
the elements ofΘ is called amodel class. That is, a model



classM is defined as

M = {P (· | θ) : θ ∈ Θ}. (1)

Consider now a discrete data set (or matrix)x
N =

(x1, . . . ,xN ) of N outcomes, where each outcomexj is
an element of the setX consisting of all the vectors of the
form (a1, . . . , am), where each variable (or attribute)ai takes
on valuesv ∈ {1, . . . , ni}. Given a model classM, theNor-
malized Maximum Likelihood (NML)distribution[Shtarkov,
1987] is defined as

PNML(xN | M) =
P (xN | θ̂(xN ),M)

RN
M

, (2)

where θ̂(xN ) denotes themaximum likelihoodestimate of
dataxN , andRN

M
is given by

RN
M =

∑

x
N

P (xN | θ̂(xN ),M), (3)

and the sum goes over all the possible data matrices of sizeN .
The termRN

M
is called theregret. The definition (2) is intu-

itively very appealing: every data matrix is modeled using
its own maximum likelihood (i.e., best fit) model, and then a
penalty for the complexity of the model classM is added to
normalize the distribution.

The stochastic complexity of a data setx
N with respect to a

model classM can now be defined as the negative logarithm
of (2), i.e.,

SC(xn | M) = − log
P (xN | θ̂(xN ),M)

RN
M

(4)

= − log P (xN | θ̂(xN ),M) + logRN
M. (5)

As in [Kontkanenet al., 2005], in the sequel we focus on
a multi-dimensional model class suitable for cluster analysis.
The selected model class has also been successfully applied
to mixture modeling[Kontkanenet al., 1996], case-based
reasoning[Kontkanenet al., 1998], Naive Bayes classifica-
tion [Grünwald et al., 1998; Kontkanenet al., 2000b] and
data visualization[Kontkanenet al., 2000a].

Let us assume that we havem variables,(a1, . . . , am), and
we also assume the existence of a special variablec (which
can be chosen to be one of the variables in our data or it can
be latent). Furthermore, given the value ofc, the variables
(a1, . . . , am) are assumed to be independent. The resulting
model class is denoted byMT . Suppose the special vari-
able c hasK values and eachai hasni values. The NML
distribution for the model classMT is now

PNML(xN | MT ) =

[

K
∏

k=1

(

hk

N

)hk m
∏

i=1

K
∏

k=1

ni
∏

v=1

(

fikv

hk

)fikv

]

·
1

RN
MT ,K

, (6)

wherehk is the number of timesc has valuek in x
N , fikv is

the number of timesai has valuev whenc = k, andRN
MT ,K

is the regret term. In[Kontkanenet al., 2005] it was proven

that an efficient way to compute the regret term is via the
following recursive formula:

RN
MT ,K =

N
∑

r=0

N !

r!(N − r)!

( r

N

)r
(

N − r

N

)N−r

· Rr
MT ,k1

· RN−r
MT ,k2

, (7)

wherek1 + k2 = K.
As discussed in[Kontkanenet al., 2005], in order to ap-

ply NML to the clustering problem, we need to compute a
whole table of regret terms. This table consists of the terms
Rn

MT ,k for n = 0, . . . , N andk = 1, . . . ,K, whereK is the
maximum number of clusters.

The procedure of computing the regret table starts by fill-
ing the first column, i.e., the casek = 1, which is trivial
(see[Kontkanenet al., 2005]). To compute the columnk,
for k = 2, . . . ,K, the recursive formula (7) can be used by
choosingk1 = k − 1, k2 = 1. The time complexity of filling
the whole table isO

(

K · N2
)

. For more details, see[Kon-
tkanenet al., 2005; Kontkanen and Myllym̈aki, 2005].

In practice, the quadratic dependency on the size of data
limits the applicability of NML to small or moderate size data
sets. In the next section, we will present a novel, significantly
more efficient method for computing the regret table.

3 The Fast NML Algorithm
In this section we will derive a very efficient algorithm for
the regret table computation. The new method is based on
the Fast Fourier Transform algorithm. As mentioned in the
previous section, the calculation of the first column of the
regret table is trivial. Therefore, we only need to considerthe
case of calculating the columnk given the firstk−1 columns.
Let us define two sequencesa andb by

an =
nn

n!
Rn

MT ,k−1
, bn =

nn

n!
Rn

MT ,1, (8)

for n = 0, . . . , N . Evaluating the convolution ofa andb

gives

(a ∗ b)n =
n

∑

h=0

hh

h!
Rh

MT ,k−1

(n − h)n−h

(n − h)!
Rn−h

MT ,1 (9)

=
nn

n!

n
∑

h=0

n!

h!(n − h)!

(

h

n

)h (

n − h

n

)n−h

· Rh
MT ,k−1

Rn−h
MT ,1 (10)

=
nn

n!
Rn

MT ,k, (11)

where the last equality follows from the recursion for-
mula (7). This derivation shows that the columnk can be
computed by first evaluating the convolution (11), and then
multiplying each term byn!/nn.

The standardconvolution theoremstates that convolutions
can be evaluated via the (discrete) Fourier transform, which in
turn can be computed efficiently with the Fast Fourier Trans-
form algorithm (see[Kontkanen and Myllym̈aki, 2005] for
details). It follows that the time complexity of computing the



whole regret table drops toO (N log N · K). This is a ma-
jor improvement overO

(

N2 · K
)

obtained by the recursion
method of Section 2.

4 Conclusion And Future Work
The main result of this paper was a derivation of a novel algo-
rithm for the regret table computation. The theoretical time
complexity of this algorithm allows practical applications of
NML in domains with very large datasets. With the earlier
quadratic-time algorithms, this was not possible.

In the future, we plan to conduct an extensive set of em-
pirical tests to see how well the theoretical advantage of the
new algorithm transfers to practice. On the theoretical side,
our goal is to extend the regret table computation to more
complex cases like general graphical models. We will also
research supervised versions of the stochastic complexity, de-
signed for supervised prediction tasks such as classification.
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lymäki, J. Rissanen, and H. Tirri. Efficient computation of
stochastic complexity. In C. Bishop and B. Frey, editors,
Proceedings of the Ninth International Conference on Ar-
tificial Intelligence and Statistics, pages 233–238. Society
for Artificial Intelligence and Statistics, 2003.

[Kontkanenet al., 2005] P. Kontkanen, P. Myllym̈aki,
W. Buntine, J. Rissanen, and H. Tirri. An MDL frame-
work for data clustering. In P. Grünwald, I.J. Myung,
and M. Pitt, editors,Advances in Minimum Description
Length: Theory and Applications. The MIT Press, 2005.

[Merhav and Feder, 1998] N. Merhav and M. Feder. Univer-
sal prediction.IEEE Transactions on Information Theory,
44(6):2124–2147, October 1998.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data de-
scription.Automatica, 14:445–471, 1978.

[Rissanen, 1987] J. Rissanen. Stochastic complexity.Jour-
nal of the Royal Statistical Society, 49(3):223–239 and
252–265, 1987.

[Rissanen, 1996] J. Rissanen. Fisher information and
stochastic complexity.IEEE Transactions on Information
Theory, 42(1):40–47, January 1996.

[Rissanen, 1999] J. Rissanen. Hypothesis selection and test-
ing by the MDL principle.Computer Journal, 42(4):260–
269, 1999.

[Rissanen, 2001] J. Rissanen. Strong optimality of the nor-
malized ML models as universal codes and informa-
tion in data. IEEE Transactions on Information Theory,
47(5):1712–1717, July 2001.

[Schwarz, 1978] G. Schwarz. Estimating the dimension of a
model.Annals of Statistics, 6:461–464, 1978.

[Shtarkov, 1987] Yu M. Shtarkov. Universal sequential cod-
ing of single messages.Problems of Information Trans-
mission, 23:3–17, 1987.

[Xie and Barron, 2000] Q. Xie and A.R. Barron. Asymp-
totic minimax regret for data compression, gambling, and
prediction. IEEE Transactions on Information Theory,
46(2):431–445, March 2000.


