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Abstract
The web is a source of a large amount of argu-
ments and their acceptability statuses (e.g., votes
for and against the arguments). However, rela-
tions existing between the fore-mentioned argu-
ments are typically not available. This study in-
vestigates the utilisation of acceptability semantics
to statistically estimate an attack relation between
arguments wherein the acceptability statuses of ar-
guments are provided. A Bayesian network model
of argument-based reasoning is defined in which
Dung’s theory of abstract argumentation gives the
substance of Bayesian inference. The model cor-
rectness is demonstrated by analysing properties of
estimated attack relations and illustrating its appli-
cability to online forums.

1 Introduction
The internet is full of debates in which several individuals
argue on various issues from different standpoints. Several
arguments and their metadata (e.g., by whom and when as
well as what arguments and votes are put forward) are in-
creasingly available and reusable online. However, it is dif-
ficult for computers and even for individuals to identify re-
lations, such as disputes and support and clarification rela-
tions, which exist between arguments because the existence
of these types of relations is almost context-dependent and
knowledge-dependent. Specifically, the detection of an attack
relation is important because it can potentially impact senti-
ment analysis (or opinion mining) and persuasive technology.
The primary aim of sentiment analysis involves providing an
answer as to the type of opinions that are held by individuals.
In contrast, the detection of an attack relation makes it possi-
ble to proceed further by providing reasons for why individu-
als hold opinions as well as how opinions can be changed.

Detection of an attack relation is one of the main chal-
lenges tackled by argumentation (or argument) mining. Ac-
cording to Moens [Moens, 2013], “Argumentation mining
can be defined as the detection of the argumentative discourse
structure in text or speech and the recognition or functional
classification of the components of the argumentation”. There
are at least two approaches to argumentation mining. The first
approach uses computational linguistics (or natural language

processing) and machine learning. Given textual discourse,
the goal involves identifying individual arguments, their in-
ternal structures, and their interactions [Palau and Moens,
2009; Lawrence and Reed, 2016]. The second approach uses
computational argumentation and machine learning. Given
acceptability statuses of individual arguments, the goal in-
volves identifying an attack relation between the arguments
such as the AF synthesis problem [Niskanen et al., 2016] by
considering realisability [Dunne et al., 2015] and the abstract
structure learning [Riveret and Governatori, 2016] by consid-
ering probability theory.

This study corresponds to the second approach. The last
two decades in computational argumentation witnessed in-
tensive studies that used acceptability semantics to define ac-
ceptability statuses of individual arguments given an attack
relation between those arguments. By contrast, the present
study asks the following question: Given acceptability sta-
tuses of individual arguments, how should acceptability se-
mantics be utilised to identify an attack relation between the
fore-mentioned arguments? This question is practically in-
teresting because these types of statuses are available online
such as “Vote” in online forums, “Like” in Facebook, “Help-
ful” in Amazon customer reviews, and “Useful and clear” in
Stack Overflow.

In the study, a Bayesian network model of argument-based
reasoning is defined. It provides argument-based Bayesian
inference in which Dung’s acceptability semantics [Dung,
1995] defines posterior (or conditional) probabilities of ac-
ceptability statuses of individual arguments given an attack
relation between the same. The Bayesian network model then
treats the acceptability statuses and attack relations as observ-
able and unobservable data, respectively. As a result, the ap-
plication of Bayes’ theorem estimates the existence of attack
relations with respect to unobserved relations by computing
their posterior probabilities given observed acceptability sta-
tuses. The accuracy of correctness of the Bayesian network
model is demonstrated by analysing properties of estimated
attack relations and by illustrating the applicability of the pro-
posed model to online forums.

The contribution of this study includes the following. To
the best of the authors’ knowledge, extant studies did not ex-
plore the use of acceptability semantics for statistical estima-
tion of an attack relation. Dung’s semantics is a classic theory
of argument-based reasoning and Bayes’ theorem is a classic
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theory of statistical reasoning. Therefore, the present study
corresponds to a milestone that allows various advanced stud-
ies that follow Dung to present their findings in the context of
statistical reasoning. Nevertheless, the limitation of this study
is that it is beyond the scope of the study to empirically dis-
cuss as to whether estimated attack relations are compelling
to individuals in practice. For the sake of theoretical justi-
fication that motivates further empirical analysis, the study
focuses on determination of properties of estimated attack re-
lations under specific idealised and restricted conditions.

The study is organised as follows. Section 2 illustrates the
idea of estimation of an attack relation. Section 3 describes
background knowledge of computational argumentation and
Bayesian inference. Section 4 shows the manner in which
computational argumentation provides substance to Bayesian
networks. Section 5 analyses the accuracy of the model, and
finally Section 6 presents the conclusions and discusses re-
lated work.

2 Motivating Example
This section offers a simple example to demonstrate how the
estimation of attack relations can be described as a Bayesian
inference. We consider the analysis of attack relations be-
tween two arguments, a and b, resulting in four hypotheti-
cal attack relations: ∅, {(a, b)}, {(b, a)} and {(a, b), (b, a)}
where (x, y) denotes that argument x attacks argument y.
This yields the following four directed graphs (or abstract ar-
gumentation frameworks (AFs)): AF1 = 〈{a, b}, ∅〉, AF2 =
〈{a, b}, {(a, b)}〉, AF3 = 〈{a, b}, {(b, a)}〉 and AF4 =
〈{a, b}, {(a, b), (b, a)}〉, where each node and edge repre-
sents an argument and an attack relation between arguments,
respectively.

According to the acceptability semantics [Dung, 1995], the
acceptability status of an argument is interpreted differently
for each AF. For example, {a, b} denotes the complete ex-
tension1 of AF1 because no argument is attacked. {a} (resp.
{b}) denotes the complete extension of AF2 (resp. AF3) be-
cause only b (resp. a) is attacked. Finally, ∅, {a} and {b} de-
note the complete extensions of AF4 because the symmetric
attack relation between a and b results in three possible in-
terpretations: the first interpretation is that neither argument
is acceptable; the second interpretation is that only argument
a is acceptable; and the third interpretation is that only argu-
ment b is acceptable.

Figure 1 shows the acceptability statuses of the arguments
in each AF. Each of the four outside boxes represents an AF,
and each of the inside boxes represents a complete extension
defined in the AF. Each of the two circles within an inside box
represents an acceptability status of arguments defined in the
extension. Additionally, x and ¬x denote that “argument x is
acceptable” and “argument x is not acceptable”, respectively.

We next consider an agent for which both arguments are
observed, the casting of vote against a, and the possibility
of identifying an attack relation between the two arguments
from this observation. A novelty of our study is to consider

1Intuitively, an extension is a set of acceptable arguments, de-
fined as a set of arguments such that its elements are defended by
that set. For formal definitions see Section 3.

Figure 1: Abstract argumentation frameworks represented as outside
boxes, their complete extensions as inside boxes and their accept-
ability statuses of arguments as circles.

that the voting agent has a particular AF and that she votes in
accordance with the acceptability semantics. Therefore, the
agent’s vote can be considered as the process of selecting a
ball ¬a from a box in the AF. Intuitively, it is plausible that
¬a comes neither from either AF1 or AF2 and rather from
AF3 or AF4. In addition, we consider a further scenario of
observing 100 votes against both arguments, a and b. Ob-
viously, these votes make only AF4 probable. In order to
formalise these intuitions to discuss AFs these observations
come from, this paper introduces Bayesian inference to cal-
culate posterior probabilities for attack relations given votes.

3 Preliminaries
3.1 Computational Argumentation
An abstract argumentation framework (AF) [Dung, 1995] is
defined as a pair 〈Arg,Att〉 whereArg denotes a set of argu-
ments and Att denotes a binary relation on Arg. Att repre-
sents an attack relation between arguments, i.e., (a, b) ∈ Att
means “a attacks b”. Suppose a ∈ Arg and S ⊆ Arg. S at-
tacks a iff (i.e., if and only if) some member of S attacks a. S
is conflict-free iff S attacks none of its members. S defends
a iff S is conflict-free and S attacks all arguments that attack
a. A characteristic function F : Pow(Arg)→ Pow(Arg) is
defined by F (S) = {a|S defends a}. Given AF, the accept-
ability semantics [Dung, 1995] defines four types of exten-
sions that correspond to intuitively rational sets of arguments.
S is a complete extension iff S is a fixed point of F . S is a
grounded extension iff it is the minimum complete extension
with respect to set inclusion. S is a preferred extension iff
it is a maximal complete extension with respect to set inclu-
sion. S is a stable extension iff it is a complete extension that
attacks all members in Arg \ S.
Example 1. It is assumed that AF = 〈Arg,Att〉 denotes an
abstract argumentation framework where Arg = {a, b, c, d}
and Att = {(b, c), (c, b), (c, d), (d, d)}. Dung’s acceptability
semantics results in the following four types of extensions.
• Preferred extensions: {a, b}, {a, c}
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• Stable extension: {a, c}

• Grounded extension: {a}

• Complete extensions: {a}, {a, b}, {a, c}

A propositional language is introduced to define possible
logical expressions of acceptability statuses of arguments.

Definition 1 (Language). A propositional language LArg as-
sociated with Arg is defined as follows. For all arguments
x ∈ Arg, x is a formula of LArg . When x and y are formulas
of LArg , (x ∧ y), (x ∨ y), (x → y) and ¬x are formulas of
LArg .

In this study, s(AF ), p(AF ), g(AF ) and c(AF ) denote the
sets of all stable, preferred, grounded and complete exten-
sions of AF , respectively.

3.2 Bayesian Inference

For any random variables V , dom(V ) represents the domain
of V . The lowercase v represents a specific value in dom(V ).
The bold uppercase V represents a sequence [V1, V2, ..., Vn]
of random variables Vi, and the bold lowercase v represents
a sequence [v1, v2, ..., vn] of specific values in dom(V ). Ad-
ditionally, P (V = v) (or simply P (v)) represents the prob-
ability that the random variable V takes the value v. Fur-
thermore, P (V ) represents a sequence [P (V = v1), P (V =
v2), ..., P (V = vn)] of the probabilities that the random vari-
able V takes each value vi ∈ dom(V ). Three types of random
variables H,Di(1 ≤ i ≤ n), and X are assumed where H
represents a directly unobservable hypothesis, each Di rep-
resents an observed datum, and X represents an observable
although not yet observed (i.e., unobserved) datum. Bayes’
theorem is given as follows:

P (H|D) =
P (D|H)P (H)

P (D)

It is used for hypothesis estimation and data prediction. With
respect to the estimation, Bayesian inference computes pos-
terior probabilities of all hypotheses given observed data.2 It
is assumed that observed data are i.i.d (independent and iden-
tically distributed). Subsequently, the posterior probability of
hypothesis hi given observed data d is calculated as follows:

P (hi|d) =
P (d|hi)P (hi)

P (d)

=

∏
j P (dj |hi)P (hi)

P (d)

With respect to the prediction, Bayesian inference uses all
hypotheses to compute the posterior probability of an unob-
served datum given observed data. It is assumed that each
hypothesis determines the joint probability distribution of un-
observed data. The posterior probability of unobserved datum

2MAP (Maximum a posteriori) estimate computes only hypothe-
ses with the highest posterior probability. Thus, it uses a best hy-
pothesis while predicting unobserved data.

Figure 2: Bayesian network structure for argument-based reasoning.

xi given observed data d is then calculated by the marginali-
sation of all possible hypotheses hj .

x = argmax
xi

P (xi|d)

= argmax
xi

∑
j

P (xi|hj)P (hj |d)

A Bayesian network is a directed acyclic graph where
each node and edge represents a random variable and an
independence relation between random variables, respec-
tively. Each node V has a conditional probability distribu-
tion P (V |Parents(V )) for the random variable V in which
Parents(V ) denotes the set of random variables from which
an edge exists to V . A full joint probability distribution for
all random variables V in a Bayesian network is calculated
as follows:

P (V ) =
∏
V ∈V

P (V |Parents(V ))

4 Estimation of Attack Relations
Four types of random variables Att, Sem, Ext, and Acc are
assumed to represent attack relations, acceptability seman-
tics, extensions, and acceptability statuses, respectively. It
is assumed that Arg represents a set of arguments. The do-
main of Att is defined as a set of binary relations on Arg,
i.e., dom(Att) ⊆ Pow(Arg × Arg), and the domain of
Sem is defined as a set of the acceptability semantics, i.e.,
Sem ⊆ {s, p, g, c} in which s, p, g, and c represents stable,
preferred, grounded, and complete semantics, respectively.
The domain of Ext is defined as a subset of the power set
of arguments, i.e., dom(Ext) ⊆ Pow(Arg), and the domain
of Acc is defined as a set of a formula and its negation, i.e.,
dom(Acc) = {x,¬x} where x ∈ LArg . The dependencies
among the random variables are defined as follows:
Definition 2 (Bayesian network structure). Let Att, Sem,
Exti, and Accij be random variables of attack relations, se-
mantics, extensions, and acceptability statuses, respectively,
for all i(1 ≤ i ≤ m) and j(1 ≤ j ≤ n). A Bayesian net-
work for argument-based reasoning has the structure shown
in Figure 2.

Bold letters Acc are used to represent the sequence of sets
{Acc11, Acc12,..., Acc1n}, {Acc21, Acc22,..., Acc2n},..., and
{Accm1, Accm2,..., Accmn}, i.e., Acc = [{Accij |1 ≤ j ≤
n}|1 ≤ i ≤ m]. This is followed by defining (un)conditional
probabilities of the random variables. Given two randomly
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chosen arguments, it is reasonable to assume that the possibil-
ity in which an argument attacks the other argument is lower
than the possibility where this is not the case. This is because
they are generally irrelevant. Thus, a higher probability is as-
signed to an attack relation when it involves a relatively small
number of elements.3

Definition 3 (Prior probability of attack relations). Let atti
be an attack relation in which 1 ≤ i ≤ n. The prior proba-
bility of atti is defined as follows:

P (Att = atti) =
1/(|atti|+ 1)∑n

i=1(1/(|atti|+ 1))
.

It should be noted that
∑n

i=1 1/(|atti|+ 1) denotes a con-
stant. Specifically, it is viewed as a normalisation constant for
the distribution P (Att). With respect to a prior probability of
acceptability semantics, different semantics denote the differ-
ent attitudes of an agent for the acceptance of arguments. In
this study, it is assumed that each semantics occurs with the
same probability.

Definition 4 (Prior probability of acceptability semantics).
Let sem be an acceptability semantics. The prior probability
of sem is defined by P (Sem = sem) = 1/|dom(Sem)|.

A set of extensions is uniquely decided for an attack rela-
tion, and a semantics are determined. An agent’s choice of an
extension shows its preference for an outcome of argumenta-
tion. In this study, it is assumed that each extension occurs
with the same probability.

Definition 5 (Posterior probability of extensions). Let ext be
an extension, att be an attack relation, and sem be an ac-
ceptability semantics. The posterior probability of ext given
att and sem is defined as follows:

P (Ext = ext|Att = att, Sem = sem)

=

{
1/|sem(〈Arg, att〉)| ext ∈ sem(〈Arg, att〉)
0 (otherwise).

Given an extension, an acceptability status of each argu-
ment is uniquely determined. Intuitively, it is necessary to
define the posterior probability of its logical expression such
that it corresponds to 1 if and only if the extension satisfies
the formula in terms of the entailment relation |=. However,
this can cause a zero-frequency problem in which a posterior
probability of a dependent variable corresponds to 0 when
only one formula that is not satisfied by the extension is ob-
served. Thus, an m-estimator is used where m samples are
assumed, and a few of the samples are satisfied and other
samples are not satisfied by the extension. It is assumed that
each of the m samples occurs with the same proportion p.

Definition 6 (Posterior probability of acceptability statuses).
Let ext be an extension and acc be an acceptability status.

3Various definitions are possible. For example, the same proba-
bility is assigned to each attack relation, a lower prior probability is
assigned to asymmetric attack relations, or/and a lower prior proba-
bility is assigned to attack relations that form an odd loop.
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Figure 3: Posterior probabilities of the four attack relations given
observed acceptability statuses.

The posterior probability of acc given ext is defined as fol-
lows:

P (Acc = acc|Ext = ext)

=

{
(1 +mp)/(1 +m) ext |= acc

mp/(1 +m) (otherwise).

Whenm equals 2 and p equals 0.5, it is termed as a Laplace
estimator that assumes two formulae acc and ¬acc such that
one formula is satisfied by the extension and the other formula
is not. It considers the probability that acc is selected from
the original one plus acc and ¬acc. As a result, P (Acc =
acc|Ext = ext) = 2/3 if ext |= acc otherwise 1/3.

Example 2. The following domains of random variables are
considered.

dom(Att) = {∅, {(a, b)}, {(b, a)}, {(a, b), (b, a)}}
dom(Sem) = {s, p, g, c}
dom(Exti) = {∅, {a}, {b}, {a, b}}

dom(Acci1) =

{
{a,¬a} if i is odd,
{b,¬b} if i is even.

A situation in which the sequence acc = [{¬a}, {¬b}, {¬a},
{¬b}, · · · , {¬a}, {¬b}] of acceptability statuses is observed
is considered where ¬a and ¬b appear 10 times alternately
and respectively. Figure 3 shows the posterior probabilities
of attack relations with changes in the number of the obser-
vations. Their prior probabilities (i.e., when the number of
data corresponds to 0) are defined based on the Definition
3, i.e., P (∅) = 3/7, P ({(a, b)}) = P ({(b, a)}) = 3/14,
P ({(a, b), (b, a)}) = 1/7. It is observed that the posterior
probability of {(a, b), (b, a)} converges to 1 with an increase
in the observations.

5 Correctness
5.1 General Properties of Estimation
At least two strategies exist to evaluate the accuracy of the
proposal. The first strategy corresponds to an empirical
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evaluation to evaluate as to whether estimated attack rela-
tions are compelling to individuals in practice. The second
strategy corresponds to a theoretical evaluation to evaluate
as to whether the proposed Bayesian network provides ex-
pected attack relations under various conditions. This study
focuses on the theoretical evaluation because it makes it
clear that the proposed Bayesian network merits the empir-
ical evaluation. In the following section, it is assumed that
dom(Att) = Pow(Arg × Arg), dom(Sem) = {s, p, g, c},
dom(Ext) = Pow(Arg), and dom(Acc) = {x,¬x} where
x ∈ LArg . Moreover, it is assumed that Proposition 1 and
Corollary 1 assume that an m-estimator does not exist, and
thus it is assumed that m = p = 0 in Definition 6.

Proposition 1. Let acc be a sequence of acceptability sta-
tuses, and att be an attack relation. P (att|acc) > 0 iff, for
all acc ∈ acc, there exist a semantics ε ∈ {g, p, s, c} and an
extension E ∈ ε(〈Arg, att〉) such that E |= acc.

The following corollary states that an estimation is impos-
sible when an anomaly is observed.

Corollary 1. Let acc be a sequence of acceptability statuses.
If there is acc ∈ acc such that acc is not satisfiable, then
P (att|acc) = 0 holds for all attack relations att but not vice
versa.

The corollary holds because no extension satisfies any un-
satisfiable set of formulas. It should be noted that such an
anomaly is successfully handled under the m-estimator. The
next proposition states that an estimation is useless when an
obvious observation is noted.

Proposition 2. Let acc be a sequence of acceptability sta-
tuses. If acc is a sequence of sets of tautologies, then
P (att|acc) = P (att) holds for all attack relations att but
not vice versa.

This proposition holds because every extension satisfies
any tautology that provides no information for the estimation.
The next proposition concerns a limitation of the estimation.

Proposition 3. Let acc be a sequence of acceptability sta-
tuses. For all attack relations att1 and att2, and acceptabil-
ity semantics ε ∈ {c, p, s, g}, P (att1|acc) ≥ P (att2|acc) if
ε(〈Arg, att1〉) = ε(〈Arg, att2〉) and P (att1) ≥ P (att2).

A positive interpretation of the proposition is that the esti-
mation conforms to the extensions. A negative interpretation
is that the estimation cannot distinguish different attack rela-
tions that result in the same extensions. The next corollary
directly follows from the proposition.

Corollary 2. Let acc be a sequence of acceptability sta-
tuses. For all attack relations att1 and att2, and acceptabil-
ity semantics ε ∈ {c, p, s, g}, P (att1|acc) = P (att2|acc) if
ε(〈Arg, att1〉) = ε(〈Arg, att2〉) and P (att1) = P (att2).

5.2 Estimation Under Data Restriction
In the previous subsection, no restriction is imposed on ob-
served acceptability statuses. In this subsection, they are ide-
alised and an investigation is conducted as to whether the es-
timation provides expected attack relations. The following
theorem states that when acceptability statuses correspond to

extensions of an abstract argumentation framework, the esti-
mated attack relations result in the same extensions that are
provided by the framework.
Theorem 1. For all binary attack relations att∗ on Arg and
acceptability semantics ε ∈ {c, p, s, g}, the following rela-
tion holds:

ε(〈Arg, att∗〉) = ε(〈Arg, argmax
att

P (att|acc)〉),

where acc denotes the sequence of the sets E∪{¬x|x /∈ E},
for all extensions E ∈ ε(〈Arg, att∗〉).

Proof. Let âtt denote an estimated attack relation. It is
shown that if ε(〈Arg, att∗〉) 6= ε(〈Arg, âtt〉) holds then
âtt 6= argmax

att
P (att|acc) holds. Let acc denote [{acc11,...,

acc1n},..., {accm1,..., accmn}]. P (att|acc) is given as fol-
lows:

αP (att|acc) = αP (att)
∑
sem

P (sem)

m∏
i=1

∑
exti

P (exti|att, sem)
n∏

j=1

P (accij |exti),

where α denotes the normalisation constant. Given the
assumption on acc, for all accij , there exists a exti ∈
ε(〈Arg, att∗〉) such that exti |= accij holds. However, this is
not the case with respect to exti ∈ ε(〈Arg, âtt〉). Therefore,
P (att∗|acc) > P (âtt|acc) (and P (âtt|acc) = 0 when
m = p = 0 holds in m-estimator) holds.

A positive interpretation of the theorem is that the Bayesian
network provides reasonable attack relations in the sense that
the estimated attack relations result in the same extensions as
the true attack relation. A negative interpretation is that the
Bayesian network is generally unable to detect the true attack
relation even when acceptability statuses are idealised. How-
ever, the following theorem shows that a certain restriction on
attack relations overcomes this limitation.
Theorem 2. For all symmetric and irreflexive attack relations
att∗ on Arg and acceptability semantics ε ∈ {c, p, s} except
grounded semantics g, the following relation holds:

att∗ = argmax
att

P (att|acc),

where acc denotes the sequence of the sets E∪{¬x|x /∈ E},
for all extensions E ∈ ε(〈Arg, att∗〉).

Proof. This directly follows from the fact that for any two
symmetric and irreflexive abstract argumentation frameworks
AF1 and AF2 with the same set of arguments, if ε(AF1) =
ε(AF1) then AF1 = AF2 for all ε{c, p, s}. Therefore, Theo-
rem 1 guarantees that the estimation results in att∗.

The theorem states that when acceptability statuses are
extensions of an abstract argumentation framework with
a symmetric and irreflexive attack relation, then the esti-
mated attack relation is the same as the framework. How-
ever, this theorem does not hold under the grounded se-
mantics. For example, the proof of Theorem 2 does not
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A. A casino should not be owned by a state 
because it becomes a hotbed of crime 
and causes pathological gambling.

B. No state should enter a 
commercial business 
because efficient and 
effective management 
cannot not be expected 
without competition by 
private companies.

C. A casino has no global 
demand because people who 
enjoy gambling are limited 
and there are many people, 
especially in young adult, 
who do not like gambling.

D. A casino has global 
demand because some 
countries own publicly-
managed gambling sports, 
e.g., horse racing, that is 
making a stable profit.

E. A casino should 
be owned by a 
state because it 
is effective to 
earn foreign 
exchange and  
create new jobs.

Figure 4: Argument on a government-controlled casino.

hold when the grounded semantics is applied to the fol-
lowing: AF1 = 〈{a, b, c}, {(a, b), (b, a), (b, c), (c, b)}〉 and
AF2 = 〈{a, b, c}, {(a, b), (b, a), (a, c), (c, a)}〉. Specifically,
the grounded semantics is subject to Theorem 1.

5.3 Illustration of Its Applicability
The aim of this subsection involves demonstrating the ac-
curacy of this research in terms of its applicability to on-
line forums. The study illustrates and discusses using argu-
ments and their votes to estimate attack relations. A situa-
tion is considered in which individuals argue for and against
a government-controlled casino in an online forum. Figure
4 shows five arguments put forward by the individuals. Ar-
guments connected by the solid line (resp. no line) represent
the fact that individuals acknowledge that there is a symmet-
ric (resp. no) attack relation between the same. Arguments
connected by the dotted line represent that the existence of
attack relations is not clear, and is therefore the subject of
estimation.

Table 1 shows the votes of 20 agents for and against each
of the five arguments. Each + and − represents a positive
and negative vote, respectively, and the blanks represent miss-
ing values. When each vote is linked to an agent, it is ratio-
nal to assume that votes by the same agent occur from the
same extension of the same abstract argumentation frame-
work. Moreover, it is rational to represent each + and− by an
atomic formula and its negation of LArg , respectively, where
Arg = {a, b, c, d, e}. Therefore, the following sequence acc
of acceptability statuses is obtained from every agent:

acc = [{a,¬b, c,¬d,¬e}, {¬a, b,¬c, d, e}, ..., {¬a,¬b, e}],

where each set in the sequence corresponds to each agent’s
votes. Conversely, when each vote is not linked to an agent,
another method involves focusing on the sums of votes for
and against each argument as shown in the right ends of Ta-
ble 1. It is now reasonable to assume that each vote might
not occur from the same extension. Therefore, the follow-
ing sequence of acceptability statuses is obtained from every
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Figure 5: Top 10 posterior probabilities of additional attack relations
given the acceptability statuses from every agent.

vote:

acc = [{a}, ..., {a}, {¬a}, ..., {¬a}, ..., {¬e}, ..., {¬e}],

where each {x} and {¬x} appears equal to the number of
positive (+) and negative (−) votes, respectively, for all argu-
ments X .

With respect to the acceptability statuses from every agent,
the top 10 estimated attack relations are shown in Figure 5
where for all arguments X and Y , {X,Y } corresponds to
the abbreviation of {(X,Y ), (Y,X)}. For the sake of clar-
ity, only symmetric attack relations without an odd loop are
considered in the estimation.

The acceptability statuses discussed in the two examples
are both expressed by literals of the propositional language.
However, it should be noted that the proposed system can
handle statuses expressed by any propositional formulae.

6 Conclusions and Discussion
In this study, a Bayesian approach to argument-based reason-
ing is proposed for statistically estimating the existence of an
attack relation existing between arguments. Dung’s accept-
ability semantics is utilised to infer attack relations from ac-
ceptability statuses of arguments. The results indicate that
the proposed Bayesian network provides reasonable attack
relations under idealised and restricted conditions. The ap-
plicability of the proposed Bayesian network is illustrated by
showing the manner in which votes by agents in online fo-
rums are used to estimate attack relations.

There are extant studies related to computational argumen-
tation to Bayesian inference. Previous studies in these fields
can be considered from at least three directions. The aim of
the first direction involves examining decision making frame-
works for multi-agent systems. For example, Nielsen and
Parsons [Nielsen and Parsons, 2007] deal with a fusion of
Bayesian networks in multi-agent systems. They provide a
framework governed by principles of formal argumentation
that allows agents to finally agree on a single Bayesian net-
work. Saha and Sen [Saha and Sen, 2004] use a Bayesian
network to provide a model of the mental states of agents in
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Table 1: Votes by 20 agents for (denoted by +) or against (denoted by −) 5 arguments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Sum: + −
A + − + + + − + + + − + + − − + − 10 6
B − + + − − − + − − − + + + + + + − − 9 9
C + − + + − − + + − + − 6 5
D − + − + + − + + − − − + − − 6 8
E − + − − + − − + + − − + + − + − + 8 9

argument-based automated negotiation. The aim of the sec-
ond direction involves investigating the conversion of proba-
bilistic domain knowledge from Bayesian networks to struc-
tured arguments. For example, Timmer et al. [Timmer et al.,
2015] attempted to incorporate probability into models of ar-
gumentation and proposed a method to build arguments from
Bayesian networks. Vreeswijk [Vreeswijk, 2005] discussed a
method to extract arguments and attacks from domain knowl-
edge represented by a Bayesian network. The aim of the third
direction involves examining the conversion of probabilistic
domain knowledge from structured arguments to Bayesian
networks. For example, Grabmair et al. [Grabmair et al.,
2010] provided a translation of Carneades models of argu-
mentation into a Bayesian network. Bex and Renooji [Bex
and Renooij, 2016] proposed a method of deriving constraints
on Bayesian network based on argument-based reasoning.

In contrast, the aim of the present study involves identify-
ing an attack relation, i.e., one component of argumentation.
The aim does not involve providing a framework for organ-
ising various components of argumentation. Moreover, the
study provides a Bayesian network model of argument-based
reasoning albeit without the aim of providing a model of rep-
resenting domain knowledge used in argument-based reason-
ing.
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