
Estimating the Size of Search Trees by Sampling with Domain Knowledge

Gleb Belov1,∗, Samuel Esler1, Dylan Fernando1, Pierre Le Bodic1,†, George L. Nemhauser2
1 Faculty of Information Technology, Monash University, Clayton, Australia

2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA

Abstract
We show how recently-defined abstract models of
the Branch & Bound algorithm can be used to ob-
tain information on how the nodes are distributed
in B&B search trees. This can be directly exploited
in the form of probabilities in a sampling algorithm
given by Knuth that estimates the size of a search
tree. This method reduces the offline estimation er-
ror by a factor of two on search trees from Mixed-
Integer Programming instances.

1 Introduction
Tree-search procedures are typically employed to solve prob-
lems that require some degree of enumeration. The efficiency
of the tree search lies in whether it can be performed implic-
itly rather than explicitly, i.e. if parts of the search space can
be discarded without being fully explored. One flaw of im-
plicit enumeration procedures is that it is a priori not clear
how implicit the search will be, and therefore the running
time of these procedures is hard to estimate. Since there
are real-life problems for which current state-of-the-art tree-
search techniques and hardware cannot provide a provably
optimal solution within years, a runtime (or tree-size) esti-
mate would be very beneficial.

Besides informing the user when the program is likely to
terminate, a running time estimate could be used to select
the best search strategy in a short period of time from a few
that have been tested [Lobjois and Lemaı̂tre, 1998]. It could
also inform a restart procedure that needs to know how long
the search is going to take to decide how beneficial a restart
would be. Finally, as more tree-search algorithms become
parallelized, having a reliable estimate of (sub)tree-sizes can
be invaluable for better load balancing and thus faster parallel
computations [Marcos Alvarez et al., 2014].

Although the end goal of this research is to allow online
predictions of the size of search trees, it seems unreasonable
to plan on solving the problem of online prediction without
having first solved the problem of offline prediction. Both
online and offline methods estimate the tree-size given partial
knowledge (i.e. a subtree S) of a tree T . The main difference
∗Authors are ordered alphabetically.
†Corresponding author: pierre.lebodic@monash.edu

is that in an online prediction, the available subtree S depends
on the search procedure, whereas in an offline prediction, S
can be chosen in a way that increases the precision of the esti-
mation method, since there is no real search to be performed.
Note that with this definition, if one supposed that online
tree-size prediction methods were allowed information that is
not provided by the search procedure (e.g. by visiting nodes
not yet traversed by the search), then it would essentially be
equivalent to an offline prediction method. The purpose of
this paper is thus to propose and evaluate an offline tree-size
estimation method, which, with further research, could be ex-
tended to work in an online setting.

1.1 Contributions
Our work builds on the models of the Branch & Bound
(B&B) algorithm given in [Le Bodic and Nemhauser, 2017]
and on the sampling procedure described by [Knuth, 1975].
Essentially, Knuth gives a sampling method that can use
knowledge of the distribution of nodes in a tree to reduce the
variance of tree-size estimates, and Le Bodic and Nemhauser
give some models from which domain knowledge on B&B
trees can be derived with some degree of precision. This pa-
per is technically simple, but establishes how these two meth-
ods can be combined to obtain significant increase in esti-
mation precision. In our experiments, the offline estimation
error is more than halved. The paper thus emphasizes the
complementarity of the two methods. The direct applicability
of our method is limited to those applications for which do-
main knowledge on the distribution of nodes in search trees is
available, but we anticipate that this study will lead to results
similar to those given in [Le Bodic and Nemhauser, 2017] for
other procedures that rely on search trees.

1.2 Related Work
We specifically address previous work on tree-size estimation
related to Knuth’s method [Knuth, 1975] (presented in Sec-
tion 2) or to Mixed-Integer Programming (MIP). For a gen-
eral overview, we refer the reader to [Thayer et al., 2012] and
references therein. This paper is not the first attempt at pre-
dicting tree-sizes for MIPs, but the fact that there is currently
no built-in tree-size prediction in commercial MIP solvers im-
plies that no existing technique satisfies industry standards,
and that further research is needed.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

473

Knuth’s sampling method [Knuth, 1975] has been ex-
tended and applied, notably in [Purdom, 1978], which allows
more than one branch to be investigated, and [Chen, 1992],
who uses stratified sampling. Some results in [Kilby et al.,
2006] further explore Knuth’s method in an online fashion.
In [Lelis et al., 2013], the authors propose an extension of
[Knuth, 1975] and [Chen, 1992] for Branch-and-Bound with
a Depth-First Search (DFS) node selection strategy. However,
in MIP solvers, DFS requires 30% more time than the default
node selection strategy [Achterberg, 2007, p. 79], therefore
such an estimation method would not be practical for MIP
(see discussion in [Cornuéjols et al., 2006, p. 2]).

For MIPs, in [Cornuéjols et al., 2006], a parameter γi is
defined for each level i of the B&B tree, which encodes the
growth rate of nodes between levels. The sequence of γi is
estimated using a model (determined offline) linear in three
auxiliary tree parameters. A more granular progress measure
than the traditional MIP gap, the sum of subtree gaps (SSG),
is proposed in [Özaltın et al., 2011]. The authors use SSG in
a statistical model that can estimate the running time of MIP
solvers.

2 Tree Sampling à la Knuth
In this section we revisit the ideas of [Knuth, 1975]. We sup-
pose that a rooted tree T = (V,A) is given, and that I ⊂ V
denotes the set of inner nodes including the root. Knuth pro-
poses to estimate tree-sizes by randomly sampling T . A sam-
ple is defined as a path from the root r of T to one of its
leaves. To obtain a sample, one simply starts at the root r,
and at each node v randomly selects an arc vw ∈ A (if any)
with some predefined probability p(vw). At each inner ver-
tex v ∈ I , the probabilities satisfy

∑
vw∈A p(vw) = 1. The

cost of processing a node v ∈ V may in general vary, and is
encoded by c(v), and we suppose that for two nodes v and w
at the same depth, the cost function satisfies c(v) = c(w). If
the costs are unitary, i.e. c(v) = 1 for every node v ∈ V ,
then the cost of the tree corresponds to its size.

Algorithm 1 formally describes the sampling process. It
outputs the estimated cost to traverse a tree T given a sin-
gle random sample. At step 2 of the algorithm, variable v
stores the current node, variable D corresponds to the esti-
mated number of nodes at the level of node v, and variable
C corresponds to the estimated cost of exploring T minus the
estimated cost of exploring Tv , the subtree rooted at v, plus
c(v).

Algorithm 1 Knuth’s sampling algorithm

Input: A tree T = (V,A) with root r, p(vw) ∀vw ∈ A.
Output: The estimated cost to traverse the tree.

1: v = r,D = 1, C = c(v).
2: while Node v is not a leaf do
3: Select vw ∈ A with probability p(vw).
4: D = D/p(vw).
5: C = C + c(v)D.
6: v = w.
7: end while
8: Return C.

7/10

5/6

3/4

1/2

1/2

1/4

1/6

3/10

1/2

1/2

Figure 1: Example of a binary tree T . The arc labels are sampling
probabilities that “perfectly” reflect the node distribution of T .

samples 1 2 3 4 5 6

Var. w/ 64 18.67 11.06 8.95 8.09 7.64
w/o 64 14.89 7.64 4.49 1.57 0

Table 1: Variance of the estimated size of T , depending on the num-
ber of samples, with (w/) or without (w/o) replacement, for uniform
probabilities (data is rounded).

2.1 Sampling with Uniform Probabilities
We use the binary tree T depicted in Figure 1 as a running
example, and we suppose costs are unitary, therefore Algo-
rithm 1 estimates the tree-size. In this section, we suppose
that the arc probabilities are 1/2 uniformly (and thus for now
we will disregard the arc labels in Figure 1). Using uniform
probabilities, Algorithm 1 will return 2d+1−1 upon reaching
a leaf at depth d. The probability of a sample reaching a leaf
at depth 2 (resp. 3, 4) is 3/4 (resp. 1/8, 2/16), therefore the
average tree-size of these samples amounts to

3

4
∗ 7 + 1

8
∗ 15 + 1

8
∗ 31 = 11,

the exact size of T . In fact, Knuth (Theorem 1) proves that the
expected tree-size (resp. cost, in the general case) computed
with Algorithm 1 is equal to the actual tree-size (resp. cost),
i.e. it is an unbiased estimator. However, Knuth indicates
that, if one uses uniform probabilities, this sampling method
suffers from a high variance (see also [Kilby et al., 2006]).

Table 1 gives the exact variance of the estimated size of T
depending on the number of samples, with or without replace-
ment. A sample of size 6 drawn from T without replacement
necessarily contains each sample once, and since the tree-size
estimation is unbiased, the exact tree-size is retrieved. In-
deed, drawing each sample once can be viewed as an exhaus-
tive traversal of T . Table 1 clearly illustrates the benefits that
sampling without replacement brings in variance reduction.
Furthermore, since our end goal is to have an online estima-
tion method for the B&B algorithm, which traverses each leaf
once, we only consider sets of samples obtained without re-
placement throughout the paper. Even when sampling with-
out replacement, the variance remains high for a number of
samples smaller than 6. Knuth provides an improved method,
called importance sampling, in the case where some knowl-
edge of T is available in the form of non-uniform sampling
probabilities.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

474

2.2 Importance Sampling
Importance sampling defines the probabilities p(vw), vw ∈
A to reflect the node distribution within T supposing one pos-
sesses knowledge of it, and in turn reduces the variance of the
tree-size estimates.

We consider in this section the example tree T with non-
uniform probabilities, as shown on Figure 1. We refer to these
probabilities as “perfect”, as the exact sizes of all subtrees are
used to define them. At the root node, there are 7 nodes to the
left, and 3 nodes to the right, therefore the probability to go
left is defined as 7/10, and 3/10 to go right. By doing so at
every inner node, the probability to sample left (resp. right) is
always proportional to the size of the left (resp. right) subtree.
Running Algorithm 1 on T with these probabilities, we can
verify that any sample of T perfectly estimates its size. For
example, if Algorithm 1 terminates at the left-most leaf of T ,
it returns

C = 1 +
10

7

(
1 +

6

5
(1 +

4

3
(1 + 2))

)
= 11,

which is the exact size of T . Knuth (Theorem 2) proves
that this property always holds if the probabilities are defined
“perfectly”, and that the size of any tree can thus be estimated
with zero variance using a single sample. This result may
seem “too good to be true”, and in a sense it is, as defining
those “perfect” probabilities requires knowing the exact rela-
tive size of every subtree.

Note that when sampling with uniform probabilities as in
Section 2.1, we implicitly suppose that all leaves of T have
the same depth d as the sampled leaf. Using probabilities
that do not reflect the distribution of nodes in the tree does
not change the nature of the sampling procedure, but it may
greatly affect the precision of the estimates, as illustrated in
Sections 2.1 and 2.2. We show in Section 3 and throughout
how the node distribution of B&B trees for MIP can be ap-
proximated and used as probabilities in importance sampling.

3 Abstract Models for B&B Trees
3.1 Previous Work
In the B&B algorithm for a minimization MIP, a Linear Pro-
gram (LP) in which some of the variables are required to be
integral, an LP relaxation is solved at each node n and pro-
vides a lower bound bn on the optimal value in the (sub)space
of feasible solutions at n [Nemhauser and Wolsey, 1988]. If
the lower bound bn is at least the value V of the best solu-
tion found so far, n can be pruned. Otherwise, a variable i,
required to be integer but fractional in the LP relaxation, is
branched on at n, creating two children v and w, with lower
bounds bv ≥ bn and bw ≥ bn, respectively. The state-of-the-
art branching heuristics try to select i for branching that max-
imizes the (“left” and “right”) lower bound improvements
li = bv−bn and ri = bw−bn, in order to accelerate pruning in
that subtree [Achterberg, 2007]. It is not clear however which
i should be branched on if there are multiple non-dominated
pairs (li, ri), as this choice affects the balance of the tree as
well as its size.

Le Bodic and Nemhauser address this question by design-
ing abstract models to identify the variable that minimizes the

0

2

4

6 9

7

5

7 10

Figure 2: SVB tree of size 9 with branching (2, 5) and V = 6.

B&B tree-size. They define a branching as a couple of values
(l, r) ∈ Z2

+, with l ≤ r, such that given an inner node of
value x ∈ Z+, a branching at that node creates two children
of value x + l and x + r. In the Single Variable Branching
problem (SVB), we are given a branching (l, r) ∈ Z2

+, as
well as a target value V ∈ Z+, and we want to determine
the minimum size of a binary tree that has value 0 at the root,
and for which each node with value less than V is branched
on. SVB models the B&B algorithm in a simplified setting,
where the lower bound improvements l and r are constant
at each node, and the optimal value V is known at the root
node. Le Bodic and Nemhauser give Figure 2 as an example,
for branching (2, 5) and value V = 6. For a branching (l, r)
and a target value V , the size t(V) of the SVB tree is given
by the recursive formula

t(V) =

{
0 if V ≤ 0,

1 + t(V − l) + t(V − r) otherwise.
(1)

Le Bodic and Nemhauser show that the characteristic trino-
mial

xr − xr−l − 1 (2)

associated with the recursive formula (1) has a root ϕ > 1
that characterizes the growth of the SVB tree as the target
value V becomes larger. Formally, they prove

lim
V→∞

t(V + r)

t(V)
= ϕr.

Furthermore, given multiple branchings (li, ri), each a sepa-
rate input to the SVB problem, the branching that has the min-
imum ϕi yields the smallest tree for large enough target val-
ues V . Perhaps surprisingly, the authors show that the value
ϕ encapsulates enough of the complexity of the B&B algo-
rithm that a rule that selects the branching with minimum ϕ
is better than the state-of-the-art branching heuristics in MIP
benchmarks, both in number of nodes in B&B trees and over-
all computing time.

3.2 Extracting Information on Node Distribution
from B&B Models

These results are relevant in the context of sampling, as for a
branching (l, r), we have

lim
V→∞

t(V − l)
t(V)

= ϕ−l, lim
V→∞

t(V − r)
t(V)

= ϕ−r. (3)

In other words, in a SVB tree, the portion to the left (resp.
right) of the tree is ϕ−l (resp. ϕ−r), with increasing precision

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

475

0

8

16

24

32 51

43

35

27

35 54

Figure 3: Example of tree T that closes a target value V = 32 by
branching on (8, 27) at every node.

Sampl. prob. 0.24 0.10 0.15 0.21 0.21 0.09
Estimated t-s 11.6 17.1 11.3 7.20 9.10 15.4

Table 2: Probability of being sampled and estimated tree-size for
each sample (i.e. leaf) of T , from the left to the right (data is
rounded).

as V grows large. Note that, although it is not stated in the
original article, it follows both from (2) and (3) that

ϕ−l + ϕ−r = 1. (4)

In a B&B tree T , for each inner node n ∈ I with branching
(l, r) resulting in children v and w, we define

pk(nv) = ϕ−l, pk(nw) = ϕ−r,

as the probabilities established from domain knowledge, to
be used in Algorithm 1. By contrast, we will denote pu the
uniform probabilities, and we will occasionally use pk and pu
to refer directly to the sampling method that uses one of these
probability schemes. The purpose of the upcoming sections
is to ascertain with what degree of precision pk represents
the distribution of nodes in T , and if and how it can improve
tree-size estimates if used in Algorithm 1.

4 Importance Sampling on SVB Trees
We show with an example how pk can be used to increase
the precision of tree-size estimates in the SVB problem, by
reducing the variance of a sample set. Consider the SVB tree
given in Figure 3, built using branching (l = 8, r = 27),
and closing a target value V = 32. Branching (8, 27) (with
ϕ = 1.04560) has been chosen because it has the property

ϕ−l = 0.69998 ≈ 7

10
ϕ−r = 0.30002 ≈ 3

10

with a five decimal precision, so that these values correspond
closely to the probabilities 7/10 and 3/10 at the root node in
Figure 1. Using ϕ−l and ϕ−r as the left and right arc prob-
abilities at every inner node of T , the probability of drawing
a given sample and the tree-size of this sample as estimated
by Algorithm 1 is given by Table 2. The effect of introducing
arc probabilities that reflect the distribution of the tree can be
seen in row 1 of Table 3: the variance decreases drastically
compared to Table 1. Even though we are dealing with SVB,

samples 1 2 3 4 5 6
(0.70, 0.30) 9.50 3.17 1.55 0.80 0.31 0
(0.61, 0.39) 20.74 7.22 3.59 1.83 0.70 0
(0.73, 0.27) 9.93 2.72 1.34 0.75 0.30 0

Table 3: Variance of the estimated size of T , depending on the num-
ber of samples, without replacement, for three choices of probabili-
ties (data is rounded).

a simplification of the B&B model, we find surprising that
such an increase in precision can be achieved.

There are other choices of branching (l, r) and target value
V that could fit our example tree T in the SVB setting, i.e.
such that the value at every leaf is ≥ V , and the value at
every inner node is < V (e.g. (l = 3, r = 10), V = 12).
One could thus ask how “bad” a branching could get (for pre-
diction purposes) while still fitting the tree T . Observe that,
since it is an SVB tree, two of the leaves of T imply

4l ≥ V, l + r ≥ V,

and their parents imply, respectively,

3l < V, r < V,

therefore

l + r ≥ V > 3l⇒ r > 2l,

4l ≥ V > r ⇒ r < 4l.

Plugging r ∈ (2l, 4l) into (4), which is monotonic, yields
bounds ϕ−l ∈ (0.61, 0.73) (and thus ϕ−r ∈ (0.27, 0.39)).
Row 2 (resp. 3) of Table 3 shows the variance of a set of sam-
ples if one uses 0.61 (resp. 0.73) as the probability to go left
and 0.39 (resp. 0.27) as the probability to go right at every in-
ner node. Row 2 shows that using probabilities (0.61, 0.39),
the variance is worse than for probabilities ≈ (0.70, 0.30)
(row one), but better than for probabilities (0.5, 0.5) (Table
1), which is a good sign that using the ratio ϕ to get proba-
bilities for SVB trees reduces the variance compared to the
simple sampling method. Perhaps surprisingly, row 3 shows
improvement in variance over all previous examples (except
the “perfect” case). The reason for this is that even though
(0.7, 0.3) are the probabilities that perfectly describe the node
distribution at the root r of T , this does not hold at the root
of every subtree of T . Indeed, 0.73 is closer to 5/6 and 3/4
than 0.7 is (refer to Figure 1).

5 Numerical Experiments on MIP B&B Trees
5.1 Data Generation
We have solved the 87 MIP instances of the MIPLIB 2010
“benchmark” test set [Koch et al., 2011] with the MIP solver
SCIP 3.2.1 [Achterberg, 2009], using default settings. Each
B&B tree is then recorded in a file by SCIP using the VBC
format (traditionally used to plot the B&B tree structure). Of
the 87 instances, 8 timed out (after 24 hours), 3 exceeded the
memory limit (4GB), 9 were too small (under 100 leaves),
and 4 were too large (the VBC file several tens of gigabytes
large), leaving 63 instances.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

476

pk pu
aa(T) 0.14 0.24
wa(T) 0.17 0.32

Table 4: Precision error of pk and pu (data is rounded).

5.2 Comparing pk to the Node Distribution in
Trees

We first measure how precisely pk reflects the distribution of
nodes in trees compared to pu. At each inner node v ∈ I we
measure the absolute error

e(v) =

∣∣∣∣p(vw)− size(w)

size(v)− 1

∣∣∣∣ , vw ∈ A

where size() returns the size of the subtree rooted at a node,
and p can be either pk or pu. We use two error measures
for a given tree, the first is the arithmetic average aa(T), the
second is an average weighted by the number of leaves in the
subtree rooted at each inner node:

wa(T) =

∑
v∈I(size(v) + 1)e(v)/2∑

v∈I(size(v) + 1)/2
.

This measure reflects the fact that an error at an inner node
that is the root of a large subtree propagates to each of its
leaves in Algorithm 1. Table 4 gives the average of the error
measures aa(T) and wa(T) over the 63 instances for pk and
pu. Note that the values provided are by definition in [0, 1] for
pk and in [0, .5] for pu. Table 4 clearly shows that pk better
describes the distribution of nodes in (sub)trees than pu. We
now inquire if and how this increase in probability precision
allows for better tree-size estimates.

5.3 Offline Tree-Size Estimation Results
We simulate the sampling of the leaves of a tree T with uni-
form probability and without replacement by placing all the
leaves of T in a list, shuffling the list, and running Algorithm
1 in that order on each item of the list. This is done with 10
different seeds for each of the 63 trees to produce different
permutations of the sampling order, providing a total test set
of 630 leaf lists. For each leaf list, Algorithm 1 is run using
pk, then pu. A leaf’s individual estimate is given by the value
C, and its weight by 1

D , as described in Algorithm 1. The
running estimate after k leaves have been drawn is given by

Ek =

∑
s∈S

Cs

Ds∑
s∈S

1
Ds

,

where S is the set of the first k leaves. Note thatEk with pu is
called “weighted backtrack estimator” in [Kilby et al., 2006].
Figure 4a (on the left) provides the plot of a few instances.
From top to bottom, the first two figures correspond to the
same instance, eilB101, for two different seeds. The differ-
ences between the two plots reflect the high variability of the
sampling method. Nevertheless, pk clearly wins over pu in
both cases. The third plot shows an example where pu outper-
forms pk. The fourth plot shows an instance with a large tree
where the opposite happens. In all four plots and in general,

Offline Online
Method pk pu pk pu

Wins 509 121 43 20
Median error 5.74% 12.20% 34.11% 38.94%

Geometric error 5.45% 13.82 43.01% 1839%

Table 5: Results for pk and pu (data is rounded).

the trend is that the estimation error typically decreases non-
monotonically and (by design) systematically reaches the ex-
act tree-size when all samples are taken into account.

We now present aggregated results over the 63 instances.
As a measure of estimation precision, we use the mean ab-
solute percentage error (MAPE), which is a measure of the
area-under-curve between the Ek’s and exact tree-size. Note
that we use a variation of MAPE, as we do not take Ek into
account for k ≤ 100, i.e. until we have at least 100 leaves, as
the high variance inherent to the sampling method can cause
leaves with extreme overestimates drawn at the very begin-
ning to have a dominating effect on the MAPE, making com-
parisons essentially meaningless. Table 5, column “Offline”,
presents results for each method in number of wins, average
over the 63 instances of the median MAPE error over the 10
seeds, and geometric mean of the MAPE across all 630 in-
stances. The number of wins shows that using pk rather than
pu is preferable on most instances, but not systematically.
The other two measures both show that using pk in Algorithm
1 more than halves the imprecision incurred by the use of pu.

5.4 Online Tree-Size Estimation Results

We have applied the method described in Section 5.3 to the
online setting, where instead of shuffling the leaf list, it is
sorted according to the order in which the leaves are found
(i.e. traversed) by the B&B algorithm. Figure 4b shows
some examples (side-by-side with their offline counterparts).
The first plot shows that pu follows a very peculiar pattern,
whereas pk is quite similar to the offline version. The sec-
ond plot shows how both methods can degrade drastically in
the online case, one of them overestimating, the other under-
estimating. In the third plot, we can see that both methods
essentially predict that the size of the tree will be twice the
number of leaves found so far, which is a trivial lower bound
for a binary tree. Unfortunately, many instances are similar
to the third plot, which renders both methods impractical in
their current form. The results are presented in Table 5, col-
umn “Online”, with the same setup as the offline results, on
the 63 non-permutated instances. Preliminary work has not
allowed us to address this phenomenon satisfactorily. Fur-
ther work is thus required to obtain reliable online estimates.
One possible direction is a method that would in essence al-
low the online case to be treated similarly to the offline case
(e.g. a resampling within the traversed leaves). However,
even though a purely statistical method may be applied suc-
cessfully, it would be beneficial both in theory and practice
if one could obtain knowledge that would explain why the
sampling method behaves so differently online and offline.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

477

(a) Offline tree-size prediction (b) Online tree-size prediction

Figure 4: Tree-size predictions using Algorithm 1 on some instances. The horizontal line indicates the actual tree-size.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

478

References
[Achterberg, 2007] T. Achterberg. Constraint Integer Pro-

gramming. PhD thesis, Technische Universität Berlin,
2007.

[Achterberg, 2009] T. Achterberg. SCIP: Solving constraint
integer programs. Mathematical Programming Computa-
tion, 1(1):1–41, July 2009.

[Chen, 1992] P. C. Chen. Heuristic sampling: A method
for predicting the performance of tree searching programs.
SIAM Journal on Computing, 21(2):295–315, 1992.

[Cornuéjols et al., 2006] G. Cornuéjols, M. Karamanov, and
Y. Li. Early estimates of the size of branch-and-bound
trees. INFORMS Journal on Computing, 18:86–96, 2006.

[Kilby et al., 2006] P. Kilby, J. Slaney, S. Thiébaux, and
T. Walsh. Estimating search tree size. In Proceedings
of the 21st National Conference on Artificial Intelligence
- Volume 2, AAAI’06, pages 1014–1019. AAAI Press,
2006.

[Knuth, 1975] D. E. Knuth. Estimating the efficiency
of backtrack programs. Mathematics of Computation,
29:122–136, 1975.

[Koch et al., 2011] T. Koch, T. Achterberg, E. Andersen,
O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G. Gam-
rath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MI-
PLIB 2010. Mathematical Programming Computation,
3(2):103–163, 2011.

[Le Bodic and Nemhauser, 2017] P. Le Bodic and
G. Nemhauser. An abstract model for branching and
its application to mixed integer programming. Mathemat-
ical Programming, pages 1–37, 2017.

[Lelis et al., 2013] L. H. S. Lelis, L. Otten, and R. Dechter.
Predicting the size of depth-first branch and bound search
trees. In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, IJCAI ’13,
pages 594–600. AAAI Press, 2013.

[Lobjois and Lemaı̂tre, 1998] L. Lobjois and M. Lemaı̂tre.
Branch and bound algorithm selection by performance
prediction. In Proceedings of the Fifteenth National/Tenth
Conference on Artificial Intelligence/Innovative Applica-
tions of Artificial Intelligence, AAAI ’98/IAAI ’98, pages
353–358, Menlo Park, CA, USA, 1998. American Associ-
ation for Artificial Intelligence.

[Marcos Alvarez et al., 2014] A. Marcos Alvarez, Q. Lou-
veaux, and L. Wehenkel. A supervised machine learn-
ing approach to variable branching in branch-and-bound.
Technical report, Université de Liège, 2014.

[Nemhauser and Wolsey, 1988] G. L. Nemhauser and L. A.
Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience, New York, NY, USA, 1988.

[Özaltın et al., 2011] O. Y. Özaltın, B. Hunsaker, and A. J.
Schaefer. Predicting the solution time of branch-and-
bound algorithms for mixed-integer programs. INFORMS
Journal on Computing, 23(3):392–403, July 2011.

[Purdom, 1978] P. W. Purdom. Tree size by partial back-
tracking. SIAM Journal on Computing, 7(4):481–491,
1978.

[Thayer et al., 2012] J. T. Thayer, R. Stern, and L. H. S.
Lelis. Are we there yet? - estimating search progress.
In D. Borrajo, A. Felner, R. E. Korf, M. Likhachev,
C. Linares López, W. Ruml, and N. R. Sturtevant, edi-
tors, Proceedings of the Fifth Annual Symposium on Com-
binatorial Search, SOCS 2012, Niagara Falls, Ontario,
Canada, July 19-21, 2012. AAAI Press, 2012.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

479

