An Improved Decision-DNNF Compiler

Jean-Marie Lagniez and Pierre Marquis
CRIL, U. Artois & CNRS, F-62300 Lens, France,
e-mail: {lagniez, marquis}@cril.univ-artois.fr

Abstract

We present and evaluate a new compiler, called D4, targeting the Decision-DNNF language. As the state-of-the-art compilers C2D and Dsharp targeting the same language, D4 is a top-down tree-search algorithm exploring the space of propositional interpretations. D4 is based on the same ingredients as those considered in C2D and Dsharp (mainly, disjoint component analysis, conflict analysis and non-chronological backtracking, component caching). D4 takes advantage of a dynamic decomposition approach based on hypergraph partitioning, used sparingly. Some simplification rules are also used to minimize the time spent in the partitioning steps and to promote the quality of the decompositions. Experiments show that the compilation times and the sizes of the Decision-DNNF representations computed by D4 are in many cases significantly lower than the ones obtained by C2D and Dsharp.

1 Introduction

Knowledge compilation (KC) is acknowledged as a challenging approach for circumventing the intractability of many practical reasoning problems based on propositional representations (see [Cadoli and Donini, 1998; Darwiche, 2014; Marquis, 2015] for surveys). Since its very beginning, research on KC has been developed following a number of directions, including the identification of the compilability of some problems, the definition and the study of new target languages for KC, the design and the evaluation of compilers, and the use of the KC languages, compilers and reasoners in various applications.

As the previous works [Darwiche, 2004; Muise et al., 2012; Oztok and Darwiche, 2014; 2015a], we are concerned with the third research direction in this paper: our objective is to describe a new compiler, called D4. D4 is a top-down compiler associating with every input CNF formula an equivalent Decision-DNNF representation. Like the state-of-the-art compilers C2D and Dsharp targeting the same language, D4 is a tree-search algorithm exploring the whole space of propositional interpretations. Accordingly, D4 takes advantage of the techniques used in C2D and Dsharp for efficiency reasons (mainly, disjoint component analysis, conflict analysis and non-chronological backtracking, component caching). However, the decomposition heuristics used for guiding the exploration of the search space in D4 differs from the ones considered in C2D and in Dsharp, while trying to keep the best of them. Thus, like Dsharp, D4 computes a dynamic decomposition of the input CNF formula under the current partial assignment (disjoint components are not computed prior to the search as with C2D). However, like C2D, D4 partitions the dual hypergraph associated with the input CNF formula under the current partial assignment to find a decomposition (while the branching heuristics of Dsharp is based on the VSADS score of the variables). What is brand new in D4 is that the decomposition is achieved in a parsimonious way (hypergraph partitioning is not used at each decision step) and that some simplification rules are used to minimize the time spent in the partitioning steps and to promote the quality of the resulting decompositions. In order to assess D4 and to compare it with C2D and Dsharp, we performed experiments on many benchmarks, coming from several families. The results obtained clearly show the benefits offered by D4.

The rest of the paper is organized as follows. After some formal preliminaries (Section 2), our compiler D4 is presented in Section 3. An empirical evaluation is provided in Section 4, before the concluding section (Section 5). The runtime code of D4, the benchmarks used, and some additional empirical results are available on line from https://www.cril.univ-artois.fr/KC/.

2 Formal Preliminaries

We consider a propositional language PROP* defined from a finite set PS of propositional symbols and the standard connectives. PROP* is interpreted in a classical way. For every formula Σ in PROP*, Var(Σ) is the set of propositional variables occurring in Σ. A CNF formula Σ is a conjunction of clauses, where a clause is a disjunction of literals. Every CNF is viewed as a set of clauses, and every clause is viewed as a set of literals. For every literal ℓ, var(ℓ) denotes the variable x of ℓ (var(x) = x and var(¬x) = x), and ¬ℓ denotes the complementary literal of ℓ (i.e., for every variable x, ¬x = ¬x and ¬¬x = x). The conditioning of a CNF for-
mula Σ by a literal $\ell = x$ (resp. $\ell = \neg x$) is the CNF formula $\Sigma | \ell$ obtained by removing from Σ every clause containing x (resp. $\neg x$) and removing from the remaining clauses every occurrence of $\neg x$ (resp. x).

The dual hypergraph of a CNF formula Σ is $DH(\Sigma) = (N_d, H_d)$ where $N_d = \Sigma$ and $H_d = \{ \delta \in \Sigma \mid x \in \text{Var}(\delta) \} \cup \{ x \in \text{Var}(\Sigma) \}$. The nodes of N_d correspond to the clauses of Σ and the hyperedges of H_d are labelled by sets of variables of Σ (for each variable x, the corresponding hyperedge is the set of clauses $Cls_\Sigma(x)$ of Σ containing x).

Example 1 Let $\Sigma = (a \lor b) \land (a \lor \neg c) \land (a \lor \neg d) \land (b \lor \neg c) \land (b \lor \neg d)$. We have $DH(\Sigma) = (N_d, H_d)$, with $N_d = \{ n_1, n_2, n_3, n_4, n_5 \}$ (n_1 (resp. n_2, n_3, n_4, n_5) corresponds to $a \lor b$ (resp. $a \lor \neg c$, $a \lor \neg d$, $b \lor \neg c$, $b \lor \neg d$) and $H_d = \{ \{ n_1, n_2, n_3 \}, \{ n_1, n_4, n_5 \}, \{ n_2, n_4 \}, \{ n_3, n_5 \} \}$ (labelled respectively by $\{ a \}$, $\{ b \}$, $\{ c \}$, and $\{ d \}$).

BCP denotes a Boolean Constraint Propagator [Zhang and Stuckel, 1996; Moskewicz et al., 2001], which is a key component of many solvers. BCP(Σ) returns \emptyset if there exists a unit refutation from the clauses of the CNF formula Σ, and it returns the set of literals (unit clauses) which are derived from Σ using unit propagation in the remaining case. As a side effect, BCP "virtually" simplifies Σ by conditioning it by the unit clauses which are generated. For efficiency reasons, such a simplification is not "physically" performed on the CNF (instead the set of literals derived using unit propagation is maintained).

d-DNNF is the language consisting of the Boolean circuits with a single output (its root), where each input is a literal or a Boolean constant, and each internal gate is either a decomposable \land gate of the form $N = \land(N_1, \ldots, N_k)$ ("decomposable" means here that for each $i, j \in \{ 1, \ldots, k \}$ with $i \neq j$ the subcircuits of N rooted at N_i and N_j do not share any common variable) or deterministic \lor gate of the form $N = \lor(N_1, \ldots, N_k)$ ("deterministic" means here that for each $i, j \in \{ 1, \ldots, k \}$ with $i \neq j$ the subcircuits of N rooted at N_i and N_j are jointly inconsistent).

Decision-DNNF is defined in the same way, except that deterministic \lor gates are replaced by decision gates of the form $N = ite(x, N_1, N_2)$. x is the decision variable at gate N, it does not occur in the subcircuits N_1, N_2, and ite is a ternary connective whose semantics is given by $ite(X, Y, Z) = (\neg X \land Y) \lor (X \land Z)$ ("ite" means "if ... then ... else: ... if X then Z else Y".

Example 2 (Example 1 cont’d) The Decision-DNNF representations given on Figure 1 are equivalent to the CNF formula Σ considered in Example 1 (the nodes labelled by \land are decomposable \land nodes and the circled nodes are decision nodes).

Decision-DNNF representations, also known as decomposable decision graphs [Fargier and Marquis, 2006], can be turned in linear time into specific d-DNNF representations. Indeed, when one replaces in a Decision-DNNF representation a decision node of the form $N = ite(x, N_1, N_2)$ by $N = (\neg x \land N_1) \lor (x \land N_2)$, the two \land nodes which are conveyed by the replacement are decomposable ones (x appears neither in N_1 nor in N_2) and the \lor node is deterministic ($(\neg x \land N_1) \land (x \land N_2)$ is inconsistent).

3 An Improved Decision-DNNF Compiler: D4

Our top-down compiler D4 associates with every input CNF formula Σ an equivalent Decision-DNNF representation. It elaborates over C2D and Dsharp.

In C2D [reasoning.cs.ucla.edu/c2d/] [Darwiche, 2001; 2004], the generation of the decision nodes in the resulting Decision-DNNF representation is guided by a decomposition tree (dtree) of the input CNF instance Σ, which is computed first. Both the time required to generate a Decision-DNNF representation of Σ and the size of the representation are linear in the size of Σ, yet exponential in the width of the dtree which is used.

In Dsharp (www.haz.ca/research/dsharp/) [Muise et al., 2012], the generation of the decision nodes is not guided by a decomposition tree, but a dynamic decomposition approach is considered instead. During the search, the variable selected by the branching heuristics is one with a maximal Variable State Aware Decaying Sum (VSADS) score [Sang et al., 2005], as in the (exact) model counter sharpSAT (sites.google.com/site/marchthurley/sharpsat) [Thurley, 2006] and Cachet (www.cs.rochester.edu/~kautz/Cachet/index.htm) [Sang et al., 2004]. Implicit BCP is used at each decision point in order to find some failed literals, i.e., literals which are falsified in every model of the formula corresponding to the decision point. The literals which belong to clauses that became binary in the most recent call to BCP are selected as candidates for failed literals. A conflict clause is learned for each failed literal found. Dsharp also incorporates a restricted form of backbone detection, based on BCP.

As it is the case for the previous compilers C2D and Dsharp [Huang and Darwiche, 2007; Muise et al., 2012], the Decision-DNNF representation of Σ which is computed by D4 corresponds to the trace of a solver. We used our own solver solve, which is based on the state-of-the-art SAT solver MiniSAT 2.2.2 [Eén and Sörensson, 2003]. solve is called at each decision point, and if a model is found, instead of stopping, the search backtracks up to the level of the last decision node which has been created. Assumptions are exploited in solve, so that the clauses which are learnt at each call to solve can be kept for the subsequent calls. D4 exploits the same techniques as the ones used in C2D and Dsharp for efficiency reasons (mainly, disjoint component analysis, conflict analysis and non-chronological backtracking, component caching²). However, the decomposition heuristics used by

²In our cache implementation, following the approach already
The pseudo-code of D4, Algorithm 2 provides the pseudo-code of the compiler D4. The compilation of a given CNF formula \(\Sigma \) is achieved by calling D4(\(\Sigma \), \(\emptyset \)).

Algorithm 1: D4(\(\Sigma \), \(LV \))

<table>
<thead>
<tr>
<th>input</th>
<th>a CNF formula (\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>the root node (N) of a Decision-DNNF representation of (\Sigma)</td>
</tr>
</tbody>
</table>

1. \(S \leftarrow \text{solve}(\Sigma) \);
2. if \(S = \{ \emptyset \} \) then return leaf(\(\bot \));
3. if \(Var(\Sigma) = \emptyset \) then return aNode(\(S, [\text{leaf}(\top)] \));
4. if cache(\(\Sigma \)) \(\neq \) nil then return aNode(\(S, [\text{cache}(\Sigma)] \));
5. \(\text{comps} \leftarrow \text{connectedComponents}(\Sigma) \);
6. \(LN_d \leftarrow [\] ;
7. foreach \(c \in \text{comps} \) do
8. \(LV_c \leftarrow \text{restrict}(LV, \text{Var}(c)) \);
9. if \(LV_c = \emptyset \) or \(\#(\text{Var}(S) \cap \text{Var}(c)) \geq \frac{1}{4} \#(\text{Var}(\Sigma)) \) then
10. \(LV_c \leftarrow \text{sort}(\text{HGP}(c)) \);
11. \(v \leftarrow \text{head}(LV_c) \);
12. \(LV_c \leftarrow \text{tail}(LV_c) \);
13. \(N_d \leftarrow \text{ite}(v, D4(c \setminus v, LV_c), D4(c \setminus v, LV_c)) \);
14. \(LN_d \leftarrow \text{add}(N_d, LN_d) \);
15. \(N_\land \leftarrow \text{aNode}(S, LN_d) \);
16. \(\text{cache}(\Sigma) \leftarrow N_\land \);
17. return \(N_\land \);

At line 1, \text{solve} is called on \(\Sigma \). \(S \) is equal to \(\{ \emptyset \} \) if \(\Sigma \) is inconsistent, and in this case a Decision-DNNF representation of it (leaf(\(\bot \))) is generated at line 2. Otherwise \(S \) is equal to BCP(\(\Sigma \)) (please keep in mind that BCP simplifies \(\Sigma \)).

The second base case is addressed at line 3: If \(\Sigma \) (once simplified by BCP) contains no variable, then a \(\land \) node is generated: aNode(\(\{ t_1, \ldots, t_k \}, [N_1, \ldots, N_m] \) generates a \(\land \) node with \(k + m \) children: the \(k \) literals from the set \(\{ t_1, \ldots, t_k \} \) and the \(m \) nodes from the list \([N_1, \ldots, N_m] \). Hence aNode(\(S, [\text{leaf}(\top)] \)) returns a \(\land \) node gathering all the literals of \(S \) (completed by a \(\top \) leaf for handling the case \(S \) is empty). At line 4, one first determines whether the current formula \(\Sigma \) has already been encountered or not during the search. One takes advantage of the cache function which associates CNF formulae with Decision-DNNF representations given by their root nodes. If \(\Sigma \) has already been found, then the algorithm simply returns the root node of the corresponding stored Decision-DNNF representation.

At line 5 connectedComponents returns a set \(\text{comps} \) of CNF formulae, the connected components of \(\Sigma \). The loop at line 7 considers every element \(c \) of \(\text{comps} \) successively. For a given \(c \), the variables of \(LV \) are restricted to those in \(c \). One then tests at line 9 whether the resulting list \(LV_c \) is empty or not, and if the number of literals obtained by applying BCP on \(\Sigma \) when projected onto the set of variables of the current component \(c \) is large enough (at least 10% of the number of variables of \(c \)). If at least one of the two conditions is satisfied, then one updates the current list \(LV_c \) of variables. HGP(\(c \)) computes a cutset of the dual hypergraph of \(c \) after applying to it some simplification rules. The variables of this cutset are sorted according to their VSADS score (the largest score first) to produce an updated list sort(HGP(\(c \))). Then one selects the first variable \(v \) of \(LV_c \) (line 10) and remove it from \(LV_c \) (line 11). A decision node \(N_d \) with decision variable \(v \) is computed next, via two recursive calls to D4 corresponding to the two ways of conditioning \(v \) in \(c \) (line 12). \(N_d \) is then added to the list \(LN_d \) of nodes at line 13, which has been initialized to the empty list before the loop (line 6). Then a \(\land \) node \(N_\land \) gathering the literals of \(S \) and the decision nodes of \(LN_d \) is generated (line 14), and added to the cache (associated with the entry \(\Sigma \)) (line 15), and finally returned as the result of the main call (line 16).

Dynamic decomposition based on hypergraph partitioning. Like Dsharp, D4 computes a dynamic decomposition of the input formula under the current partial assignment (disjoint components are computed during the search and not prior to the search). However, like C2D - dt_method 1, D4 partitions the dual hypergraph associated with the current formula to find a decomposition. Basically, the HGP procedure takes advantage of the PaToH partitioner – Partitioning Tools for Hypergraph, v. 3.2 (http://bmi.osu.edu/˜umit/software.html) [Catalyürek and Aykanat, 2011] to do the job. PaToH is similar to hMETIS (the partitioner exploited by C2D) but, unlike hMETIS, it runs on the 64 bit architecture used for our experiments. Given the dual hypergraph \(DH(\Sigma) = (N_d, H_d) \) of \(\Sigma \), PaToH roughly looks for a subset \(C \) of \(H_d \) containing as few elements as possible such that removing the cutset \(C \) from \(H_d \) leads to a hypergraph containing at least two disjoint components having sizes as close as possible (see Catalyürek and Aykanat, 2011) for more details). When the variables corresponding to the elements of \(C \) are assigned (whatever the way they are assigned) it is guaranteed that the current formula conditioned by the corresponding assignment has at least two disjoint components, so that a decomposable \(\land \) node can be generated in the compiled form.

When C2D - dt_method 1 is used, a dtree is computed entirely at start using hypergraph partitioning: a first cutset \(C \) of the dual hypergraph \((N_d, H_d) \) of \(\Sigma \) is computed, and then one recursively looks for a decomposition of each of the two hypergraphs (the resulting connected components) obtained from the removal of \(C \) in \((N_d, H_d) \), until a hypergraph with a single node is obtained. Contrastingly, the decomposition process followed by D4 is dynamic: for each assignment of the variables of corresponding to the hyperedges of \(C \), the hypergraph associated with \(\Sigma \) conditioned by the assignment (and possibly simplified further thanks to BCP) is a candidate for a further decomposition. The variables of \(C \) are ordered according to their VSADS score (the ones with a maximal score being considered first as in Dsharp). That way, D4 tries to keep the best of the decomposition heuristics used by...
the two compilers C2D and Dsharp.
Each of the static and dynamic decomposition approaches
has some pros and some cons. On the one hand, computing
a static decomposition as in C2D -dt_method 1 limits the
number of calls to the hypergraph partitioner since there is
no need to compute a cutset for each assignment. This prop-
erty is not shared when a dynamic decomposition approach is
considered, as in D4. However, limiting the number of calls to
the hypergraph partitioner is important since hypergraph par-
titioning is time consuming. Especially, profiling the code of
D4, we observed that in average for the instances considered
in our experiments at least 50% of the computation time of D4
is consumed by PaToH (and for some instances the part of the
time consumed by PaToH exceeds 90%). On the other hand,
the static decomposition approach does not lead in general to
the most efficient decompositions; indeed, for each cutset C,
the chosen assignment of the variables corresponding to the
hyperedges of C (and the additional propagations which can
be made from it) can have a huge impact both on the size and
the structure of the resulting formula once simplified, so that
a different, and actually much better, decomposition can be
reached for it, compared to the ones associated with the other
assignments of the variables of C.

Example 3 (Example 1 cont’d) C = \{\{n_1, n_2, n_3\}, \{n_1, n_4, n_5\}\} is a cutset of DH(\Sigma): removing the elements of C from \(H_d\) leads to two disjoint hypergraphs since the remaining
hyperedges \{n_2, n_4\}, \{n_3, n_5\} do not share any node. \{n_1, n_2, n_3\} (resp. \{n_1, n_4, n_5\}) are labelled by the sets of variables \{a\} (resp. \{b\}), thus assigning those two variables a and b in \(\Sigma\) (whatever the assignment) leads to two disjoint components (one of them consists of the clause \(b \lor \neg c\) simplified by the assignment and the other one of the clause \(b \land \neg d\) simplified by the assignment). This can be observed on Figure 1 (left). However, one can also observe on Figure 1 (right)
that assigning all the variables corresponding to the hyper-
edges of C is not necessary to generate disjoint components:
setting a to false is enough to get some disjoint components,
independently of the way b will be assigned. Thus consider-
ing b (which corresponds to the remaining hyperedge of C)
as the next branching variable when a has been set to false
is not guaranteed to be the best choice. For each connected
component resulting from the assignment of a to false, some
new decompositions should be looked for.

Improving the hypergraph partitioning steps. In order to
circumvent the complexity of the hypergraph partitioning
steps, the strategy used in D4 is twofold. On the one hand,
we avoid calling HGP at each recursion step or each time
a decision node must be generated. Thus, a new partition is
computed only if the condition at line 9 is satisfied, i.e., when
the current list of variables \(LV_C\) is empty, or when the num-
er of propagations obtained via BCP (projected onto the set
of variables of the current component c) is "large enough".
On the other hand, we designed some specific rules which
are used inside HGP and aim at simplifying the hypergraph
(both in terms of the number of its nodes and in terms of
the number of its hyperedges) associated with the current formula
c before calling PaToH on it. The simplification achieved can also lead PaToH to find better decompositions. It guar-
antees that the CNF formula BCP(c \mid \gamma_c) contains at least
two disjunct components when \(\gamma_c\) is any total assignment
of the variables from the list \(LV_C\) computed at line 9. One
first exploits an algorithm for the detection of literal equiva-
lences based on BCP. This algorithm, which is a by-product
of the algorithm equivSimpl reported in [Lagniez and Mar-
quis, 2014], is used for determining for each literal \(\ell\) appear-
ing in the current formula c a list of equivalent literals (its
equivalence class). Those lists are generated by computing
for each \(\ell\), BCP(\(c \cup \{\ell\}\)) and BCP(\(c \cup \{\neg \ell\}\)).\(^3\) Once this has
been done, for each \(\var(
\ell)\), the variables \(v_i, \ldots, v_s\) associated
with the literals of the equivalence class of \(\ell\) (but \(\var(\ell)
\)) itself) are suppressed from the labels of the hyperedges
of \(DH(c)\), the hyperedges without any label are then removed
from this set, and the hyperedge Cls_c(\(\var(\ell)\)) is replaced
by \(\text{Cls}_c(\var(\ell)) \cup \bigcup_{\ell \in \text{Cls}_c(\gamma)} \text{Cls}_c(\gamma)\). When all \(\var(\ell)\) have been
considered, two rules are applied on the resulting hypergraph
in a systematic fashion in order to simplify it further. The sim-
plification process stops when no rule can be applied or when
the current hypergraph has a single hyperedge. The first rule
concerns the nodes of this hypergraph. Suppose that the cur-
rent set of nodes contains two distinct nodes \(n_i, n_j\) such that
every hyperedge of the current set of hyperedges containing
\(n_i\) also contains \(n_j\). Then \(n_i\) can be safely removed from the
current set of nodes, and from the hyperedges which contain
it. The labels of the hyperedges containing \(n_i\) are marked
and added to the labels of the hyperedges containing \(n_j\). The
second rule concerns the unmarked labels of hyperedges of size
1 which can obviously be removed.

Example 4 Let \(\Sigma = \{\neg a \lor b\} \land \{\neg b \lor c\} \land \{\neg c \lor a\} \land \{a \lor c \lor d\}\). We have \(DH(\Sigma) = (\text{D}_d, \text{H}_d)\), with
\(\text{D}_d = \{n_1, n_2, n_3, n_4\}\) \((n_1 \text{ resp. } n_2, n_3, n_4)\) corresponds to
\(\neg a \lor b\) (resp. \(\neg b \lor c\), \(\neg c \lor a\), \(a \lor c \lor d\))
and \(\text{H}_d = \{(n_1, n_3, n_4), \{n_1, n_2\}, \{n_2, n_3, n_4\}, \{n_4\}\}\) (labelled
respectively by \{a\}, \{b\}, \{c\}, and \{d\}). The first step leads to
identify the equivalence class of a as \{a, b, c\}. The resulting
hypergraph is \((\{n_1, n_2, n_3, n_4\}, \{n_1, n_2, n_3, n_4\}, \{n_4\}\}\). The
set of labels of \(\{n_1, n_2, n_3, n_4\}\) is \{a\} and the set of labels
of \(n_4\) is \{d\}. Then the nodes \(n_1, n_2, n_3, n_4\) are removed,
a is marked and added to the set of labels of \(\{n_4\\}\) which
becomes \{a, d\}. Finally, label d is removed from this set.
The resulting hypergraph is thus \((\{n_4\}, \{\{n_4\}\}\) where \(\{n_4\}\)
is labelled by \{a\}.

4 Empirical Evaluation
We have considered 703 CNF instances from the SAT LIBr
y www.cs.ubc.ca/~hoos/SATLIB/index-ubc.html, gathered into 8 data sets, as follows: BN (Bayesian networks) (192), BMC (Bounded Model Checking) (18),
Circuit (41), Configuration (35), Handmade (58), Planning
(248), Random (104), Qif (7) (Quantitative Information Flow
Flow

\(^3\)Running this algorithm is also useful for determining that some
literals are fixed in c, while they are not necessarily detected as such
when running BCP on c. Thus, if \(\text{BCP}(c \cup \{\ell\}) = \emptyset\), then we
have \(c \models \neg \ell\); if \(\ell' \in \text{BCP}(c \cup \{\ell\})\) and \(\ell' \in \text{BCP}(c \cup \{\neg \ell\})\), then
\(c \models \ell\). In D4, such literals are used to simplify c for the subsequent computations.
Figure 2: Comparing D4 with C2D, Dsharp, and a version of D4 where PaToH is applied at each decision node.
The experiments have been conducted on Intel Xeon E5-2643 (3.30 GHz) processors with 32 GiB RAM on Linux CentOS. A time-out of 1h and a memory-out of 7.6 GiB has been considered for each instance.

We have computed the compilation times and the sizes of the corresponding Decision-DNNF compiled forms obtained by using D4, C2D -dt_method 1, and Dsharp, on each instance. The results are reported on the scatter plots given in Figure 2. Each dot represents an instance; the time (in seconds) needed to solve it or the size (in number of edges) of the resulting compiled form, using the compiler corresponding to the x-axis (resp. y-axis), is given by its x-coordinate (resp. y-coordinate). Logarithmic scales are used for both coordinates. In part (a) and (b) of the figure, the x-axis corresponds to D4 while the y-axis corresponds to C2D. In part (a) compilation times are reported while in part (b), sizes of compiled forms are reported. Parts (c) and (d) present the corresponding results when Dsharp is used instead of C2D. In (d) the number of edges reported for Dsharp is the number of edges in the compressed representations.

The experimental results obtained show that the compilation times of D4 are significantly lower than the ones obtained by C2D and Dsharp on many instances. More importantly, the sizes of the Decision-DNNF representations computed by D4 are substantially lower for the great majority of instances (sometimes by several orders of magnitude) than the ones obtained by C2D and Dsharp.

An important issue was to determine the very reasons of the efficiency of D4 compared to C2D and Dsharp. Indeed, beyond its specific decomposition heuristics, D4 is based on a more recent SAT solver than the ones considered in those two compilers. Does this explain the computational benefits achieved by D4? In order to answer this question, we developed a Dsharp-like compiler based on D4, and we evaluated this compiler on the same benchmarks set and considering the same resource bounds as above. It turns out that the Dsharp-like compiler has been able to solve 515 instances, which is much more than Dsharp, but far less than the 574 instances solved by D4. So it clearly appears that the gain offered by D4 is not solely due to the use of a solver based on MiniSAT (even if this helps).

Assessing the impact of using PaToH (with default setting, as used in D4) instead of hMETIS was also an issue. Interestingly, a comparison of PaToH and hMETIS has already been done, see http://bmi.osu.edu/umit/PaToH/table1.html. It turns out PaToH and hMETIS have similar performances, especially as to the quality of the decompositions found. Similarly, in order to assess the improvements obtained by limiting the time consumed by PaToH by using it sparingly and after the application of simplification rules (as implemented in D4), we have also compared D4 with a version of it where PaToH is called in an unrestricted fashion (i.e., when the condition at line 9 is true) and no simplification rules are applied before calling PaToH. This version of D4 with "unrestricted" use of PaToH solved "only" 531 instances, and does not lead to size improvements. More detailed results are reported in parts (e) and (f) of Figure 2.

Finally, we wanted to assess the performances of D4 as a model counter, and to compare it with miniC2D, Cachet and sharpSAT on the same benchmarks set and with the same resource bounds, miniC2D (http://reasoning.cs.ucla.edu/miniC2d/) [Oztok and Darwiche, 2015b] is a compiler targeting the language Decision-SDD. While it is based on a more recent SAT solver than the ones used in C2D and Dsharp, it has been able to solve only 414 instances (thus, far less than C2D). Cachet (resp. sharpSAT) solved 525 (resp. 507) instances (over 703) within the time and memory limits. The cactus plots in Figure 3 give for D4, C2D, Dsharp, Cachet, and sharpSAT the number of instances solved in a given time. The results show that while D4 (as a compiler) requires some computational overhead for generating compiled forms, it often proves quite efficient as an exact model counter.

5 Conclusion

We have described D4, a new top-down, tree-search compiler targeting the Decision-DNNF language. In D4, a dynamic decomposition of the input CNF formula under the current partial assignment is computed during the search. This decomposition is based on hypergraph partitioning, used sparingly. Specific hypergraph simplification rules are also used in order to minimize the time spent in each partitioning step and to promote the quality of the decompositions. Experiments have shown that substantial computational savings can be obtained using D4, both in terms of compilation times and (even more) in terms of the sizes of the compiled forms which are generated. D4 also appears as a quite competitive model counter for many instances (despite the computational overhead due to the generation of the compiled form).

4Contrastingly, no reduction rules are applied to the Decision-DNNF representations computed by D4, so that the sizes which are reported correspond to uncompressed representations.
References

