
Generalized Planning: Non-Deterministic Abstractions
and Trajectory Constraints

Blai Bonet
Univ. Simón Bolı́var
Caracas, Venezuela
bonet@ldc.usb.ve

Giuseppe De Giacomo
Sapienza Univ. Roma

Rome, Italy
degiacomo@dis.uniroma1.it

Hector Geffner
ICREA

Univ. Pompeu Fabra
Barcelona, Spain

hector.geffner@upf.edu

Sasha Rubin
Univ. Federico II

Naples, Italy
rubin@unina.it

Abstract
We study the characterization and computation of
general policies for families of problems that share
a structure characterized by a common reduction
into a single abstract problem. Policies µ that solve
the abstract problem P have been shown to solve all
problems Q that reduce to P provided that µ termi-
nates in Q. In this work, we shed light on why this
termination condition is needed and how it can be
removed. The key observation is that the abstract
problem P captures the common structure among
the concrete problems Q that is local (Markovian)
but misses common structure that is global. We
show how such global structure can be captured by
means of trajectory constraints that in many cases
can be expressed as LTL formulas, thus reducing
generalized planning to LTL synthesis. Moreover,
for a broad class of problems that involve integer
variables that can be increased or decreased, tra-
jectory constraints can be compiled away, reduc-
ing generalized planning to fully observable non-
deterministic planning.

1 Introduction
Generalized planning, where a single plan works for mul-
tiple domains, has been drawing sustained attention in the
AI community [Levesque, 2005; Srivastava et al., 2008;
Bonet et al., 2009; Srivastava et al., 2011a; Hu and Levesque,
2010; Hu and De Giacomo, 2011; Bonet and Geffner, 2015;
Belle and Levesque, 2016]. This form of planning has the
aim of finding generalized solutions that solve in one shot an
entire class of problems. For example, the policy “if block x
is not clear, pick up the clear block above x and put it on the
table” is general in the sense that it achieves the goal clear(x)
for many problems, indeed any block world instance.

In this work, we study the characterization and computa-
tion of such policies for families of problems that share a
common structure. This structure has been characterized as
made of two parts: a common pool of actions and obser-
vations [Hu and De Giacomo, 2011], and a common struc-
tural reduction into a single abstract problem P that is non-
deterministic even if the concrete problems Pi are determin-
istic [Bonet and Geffner, 2015]. Policies µ that solve the ab-

stract problem P have been shown to solve any such problem
Pi provided that they terminate in Pi. In this work, we shed
light on why this termination condition is needed and how it
can be removed. The key observation is that the abstract prob-
lem P captures the common structure among the concrete
problems Pi that is local (Markovian) but misses common
structure that is global. We show nonetheless that such global
structure can be accounted for by extending the abstract prob-
lems with trajectory constraints; i.e., constraints on the inter-
leaved sequences of actions and observations or states that are
possible. For example, a trajectory constraint may state that a
non-negative numerical variableX will eventually have value
zero in trajectories where it is decreased infinitely often and
increased finitely often. Similarly, a trajectory constraint can
be used to express fairness assumptions; namely, that infinite
occurrences of an action, must result in infinite occurrences
of each one of its possible (non-deterministic) outcomes. The
language of the partially observable non-deterministic prob-
lems extended with trajectory constraints provides us with a
powerful framework for analyzing and even computing gen-
eral policies that solve infinite classes of concrete problems.

In the following, we first lay out the framework, discuss
the limitations of earlier work, and introduce projections and
trajectory constraints. We then show how to do generalized
planning using LTL synthesis techniques, and for a specific
class of problems, using efficient planners for fully observ-
able non-deterministic problems.

2 Framework
The framework extends the one by Bonet and Geffner [2015].

2.1 Model
A partially observable non-deterministic problem (PONDP)
is a tuple P = 〈S, I,Ω, Act, T,A, obs, F 〉 where

1. S is a set of states s,
2. I ⊆ S is the set of initial states,
3. Ω is the finite set of observations,
4. Act is the finite set of actions,
5. T ⊆ S is the set of goal states,
6. A : S → 2Act is the available-actions function,
7. obs : S → Ω is the observation function, and
8. F : Act× S → 2S \ {∅} is the partial successor function

with domain {(a, s) : a ∈ A(s)}.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

873

In this work we assume observable goals and observable
action-preconditions; these assumptions are made uniformly
when we talk about a class of PONDPs P:
Definition 1. A class P of PONDPs consists of a set of
PONDPs P with 1) the same set of actions Act, 2) the same
set of observations Ω, 3) a common subset TΩ ⊆ Ω of goal
observations such that for all P ∈ P , s ∈ T if and only if
obs(s) ∈ TΩ, and 4) common subsets of actions Aω ⊆ Act,
one for each observation ω ∈ Ω, such that for all P in P and
s in P , A(s) = Aobs(s).

Example. Consider the class P of problems that involve a
single non-negative integer variable X , initially positive, and
an observation function obs that determines if X is 0 or not
(written X = 0 and X 6= 0). The actions Inc and Dec
increment and decrement the value of X by 1 respectively,
except when X = 0 where Dec has no effect. The goal is
X = 0. The problems in P differ on the initial positive value
for X that may be known, e.g., X = 5, or partially known,
e.g., X ∈ [5, 10].

PONDPs are similar to Goal POMDPs [Bonet and Geffner,
2009] except that uncertainty is represented by sets of states
rather than by probabilities. Deterministic sensing is not re-
strictive [Chatterjee and Chmelı́k, 2015]. For fully observable
non-deterministic problems (FONDP) the observation func-
tion obs(s) = s is usually omitted. The results below apply
to fully observable problems provided that Ω is regarded as
a set of state features, and obs(·) as the function that maps
states into features.

2.2 Solutions
Let P = 〈S, I,Ω, Act, T,A, obs, F 〉 be a PONDP. A state-
action sequence over P is a finite or infinite sequence of the
form 〈s0, a0, s1, a1, · · ·〉 where each si ∈ S and ai ∈ Act.
Such a sequence reaches a state s if s = sn for some
n ≥ 0, and is goal reaching in P if it reaches a state in
T . An observation-action sequence over P is a finite or in-
finite sequence of the form 〈ω0, a0, ω1, a1, · · ·〉 where each
ωi ∈ Ω and ai ∈ Act. Let us extend obs over state-action
sequences: for τ = 〈s0, a0, s1, a1, . . .〉, define obs(τ) =
〈obs(s0), a0, obs(s1), a1, . . .〉. A trajectory of P is a state-
action sequence over P such that s0 ∈ I , and for i ≥ 0,
ai ∈ A(si) and si+1 ∈ F (ai, si). An observation trajectory
of P is an observation-action sequence of the form obs(τ)
where τ is a trajectory of P .

A policy is a partial function µ : Ω+ → Act where
Ω+ is the set of finite non-empty sequences over the set Ω.
A policy µ is valid if it selects applicable actions, i.e., if
〈s0, a0, s1, a1, . . .〉 is a trajectory, then for the observation
sequence xi = 〈obs(s0), . . . , obs(si)〉, µ(xi) is undefined,
written µ(xi) = ⊥, or µ(xi) ∈ A(si). A policy that depends
on the last observation only is called memoryless. We write
memoryless policies as partial functions µ : Ω→ Act.

A trajectory τ = 〈s0, a0, s1, a1, . . .〉 is generated by
µ if µ(obs(s0) . . . obs(sn)) = an for all n ≥ 0 for
which sn and an are in τ . A µ-trajectory of P is a
maximal trajectory τ generated by µ, i.e., either a) τ is
infinite, or b) τ is finite and cannot be extended with
µ; namely, τ = 〈s0, a0, s1, a1, . . . , sn−1, an−1, sn〉 and

µ(obs(s0) . . . obs(sn)) = ⊥. If µ is a valid policy and ev-
ery µ-trajectory is goal reaching then we say that µ solves (or
is a solution of) P .

A transition in P is a triplet (s, a, s′) ∈ S ×Act× S such
that s′ ∈ F (a, s). A transition (s, a, s′) occurs in a trajectory
〈s0, a0, s1, a1, . . .〉 if for some i ≥ 0, s = si, a = ai, and
s′ = si+1. A trajectory τ is fair if a) it is finite, or b) it is
infinite and for all transitions (s, a, s′) and (s, a, s′′) in P for
which s′ 6= s′′, if one transition occurs infinitely often in τ ,
the other occurs infinitely often in τ as well. If µ is a valid
policy and every fair µ-trajectory is goal reaching then we say
that µ is a fair solution to P [Cimatti et al., 2003].

2.3 The Observation Projection Abstraction
Bonet and Geffner [2015] introduce reductions as functions
that can map a set of “concrete PONDPs problems” P into a
single, often smaller, abstract PONDP P ′ that captures part
of the common structure. A general way for reducing a class
of problems into a smaller one is by projecting them onto
their common observation space:

Definition 2. Let P be a class of PONDPs (over actionsAct,
observations Ω, and the set of goal observations TΩ). Define
the FONDP P o = 〈So, Io, Acto, T o, Ao, F o〉, called the ob-
servation projection of P , where

H1. So = Ω,
H2. ω ∈ Io iff there is P ∈ P and s ∈ I s.t. obs(s) = ω,
H3. Acto = Act,
H4. T o = TΩ,
H5. Ao(ω) = Aω for every ω ∈ Ω,
H6. for a ∈ Ao(ω), define ω′ ∈ F o(a, ω) iff there exists

P ∈ P , (s, a, s′) in F s.t. obs(s) = ω and obs(s′) = ω′.

This definition generalises the one by Bonet and Geffner
[2015] which is for a single PONDP P , not a class P .

Example (continued). Recall the class P of problems with
the non-negative integer variable X . Their observation pro-
jection P o is the FONDP with two states, that correspond to
the two possible observations, and which we denote asX > 0
and X = 0. The transition function F o in P o for the action
Inc maps the state X = 0 into X > 0, and the state X > 0
into itself; and for the action Dec it maps the state X = 0
into itself, and X > 0 into both X > 0 and X = 0. The
initial state in P o is X > 0 and the goal state is X = 0.

The following is a direct consequence of the definitions:

Lemma 3. Let P be a class of PONDPs and let τ be a tra-
jectory of some P ∈ P . Then (1) τ is goal reaching in P iff
the observation-action sequence obs(τ) is goal reaching in
P o. Furthermore, if µ is a valid policy for P o, then (2) µ is a
valid policy for P and (3) if τ is a µ-trajectory then obs(τ) is
a µ-trajectory of P o.

2.4 General Policies
A main result of Bonet and Geffner (2015, Theorem 5) is that:

Theorem 4. Let µ be a fair solution for the projection P o of
the single problem P . If all the µ-trajectories in P that are
fair are also finite, then µ is a fair solution for P .

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

874

One of the main goals of this work is to remove the termi-
nation (finiteness) condition so that a policy µ that solves the
projection P o of a class of problems P will generalize auto-
matically to all problems in the class. For this, however, we
will need to extend the representation of abstract problems.

Example (continued). The policy µ that maps the obser-
vation X > 0 into the action Dec (namely, “decrease X if
positive”) is a fair solution to P o, and to each problem P in
the class P above. The results of Bonet and Geffner [2015],
however, are not strong enough for establishing this gener-
alization. What they show instead is that the generalization
holds provided that µ terminates at each problem P ∈ P .

3 Trajectory Constraints
In the example, the finiteness condition is required by Theo-
rem 4 because there are other problems, not in the class P ,
that also reduce to P o but which are not solved by µ. Indeed,
a problem P ′ like any of the problems inP but where theDec
action increases X rather than decreasing it when X = 5 is
one such problem: one that cannot be solved by µ and one on
which µ does not terminate (when, initially, X ≥ 5). These
other problems exist because the abstraction represented by
the non-deterministic problem P o is too weak: it captures
some properties of the problems in P but misses properties
that should not be abstracted away. One such property is that
if a positive integer variable keeps being decreased, while be-
ing increased a finite number of times only, then the value of
the variable will infinitely often reach the zero value.1 This
property is true for the class of problems P but is not true for
the problem P ′, and crucially, it is not true in the projection
P o. Indeed, the projection P o captures the local (Markovian)
properties of the problems in P but not the global properties.
Global properties involve not just transitions but trajectories.

We will thus enrich the language of the abstract problems
by considering trajectory constraints C, i.e., restrictions on
the set of possible observation or state trajectories. The con-
straintCX that a non-negative variableX decreased infinitely
often and increased finitely often, will infitenly often reach
the value X = 0 is an example of a trajectory constraint. An-
other example is the fairness constraint CF ; namely, that infi-
nite occurrences of a non-deterministic action in a state imply
infinite occurrences of each one of its possible outcomes fol-
lowing the action in the same state.

3.1 Strong Generalization over Projections
Formally, a trajectory constraint C over a PONDP P is a set
of infinite state-action sequences over P or a set of infinite
observation-action sequences over P . A trajectory τ satisfies
C if either a) τ is finite, or b) if C is a set of state-action
sequences then τ ∈ C, and if C is a set of observation-action
sequences then obs(τ) ∈ C. Thus trajectory constraints only
constrain infinite sequences.

A PONDP P extended with a set of trajectory constraints
C, written P/C, is called a PONDP with constraints. Solu-
tions of P/C are defined as follows:

1The stronger consequent of eventually reaching the zero value
and staying at it also holds for the problems in P . However, we
prefer to use this weaker condition as it is enough for our needs.

Definition 5 (Solution of PONDP with constraints). A policy
µ solves P/C iff µ is valid for P and every µ-trajectory of P
that satisfies C is goal reaching.

This notion of solution does not assume fairness as be-
fore (as in strong cyclic solutions); instead, it requires that
the goal be reached along all the trajectories that satisfy the
constraints. Still if C = CF is the fairness constraint above,
a fair solution to P is nothing else than a policy µ that solves
P extended with CF ; i.e. P/CF . When C contains all trajec-
tories, the solutions to P and P/C coincide as expected.

We remark that a trajectory constraint C over the observa-
tion projection P o of P is a trajectory constraint over every P
in P . The next theorem says that a policy that solves P o/C
also solves every P/C.

Theorem 6 (Generalization with Constraints). If P o is the
observation projection of a class of problems P and C is a
trajectory constraint over P o, then a policy that solves P o/C
also solves P/C for all P ∈ P .

Proof. Suppose that µ solves P o/C. Let P be a problem in
P . By Lemma 3 (2), µ is a valid policy for P ∈ P . To see
that µ solves P/C, take a trajectory τ of P that satisfies C,
i.e., obs(τ) ∈ C. By Lemma 3 (3), obs(τ) is a µ-trajectory
of P o. By assumption obs(τ) is goal reaching. By Lemma 3
(1), τ is goal reaching.

Say that P satisfies the constraint C if all infinite trajecto-
ries in P satisfy C. Then, an easy corollary is that:

Corollary 7. Let P o be the observation projection of a class
P of PONDPs, let C be a trajectory constraint over P o, and
let P be a problem in P . If P satisfies C, then a policy that
solves P o/C also solves P .

More generally, ifC andC ′ are constraints over P , say that
C implies C ′ if every infinite trajectory over P that satisfies
C also satisfies C ′. We then obtain that:

Corollary 8. Let P o be the observation projection of a class
P of PONDPs, and let C ′ be a trajectory constraint over P o.
If P is a problem in P , C is a constraint over P , and C
implies C ′, then a policy that solves P o/C ′ also solves P/C.

Trajectory constraints in P o are indeed powerful and can
be used to account for all the solutions of a class P .

Theorem 9 (Completeness). If P o is the observation projec-
tion of a class of problems P , and µ is a policy that solves all
the problems in P , then there is a constraint C over P o such
that µ solves P o/C.

Sketch. Define C to be the set of observation sequences of
the form obs(τ) where τ varies over all the trajectories of
all P ∈ P . Suppose µ solves every P in P . First, one can
show that µ is valid in P o using the assumption that action
preconditions are observable (i.e., Ao(ω) = Aω = A(s) for
all s such that obs(s) = ω). Second, to see that µ solves
P o/C take a µ-trajectory τ of P o that satisfies C. By defi-
nition of C, there is a trajectory τ ′ in some P ∈ P such that
obs(τ ′) = τ . It is not hard to see that τ ′ is a µ-trajectory of
P . Thus, since τ ′ is goal-reaching and goals are uniformly
observable (Definition 1), then τ is goal reaching.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

875

Example (continued). The problems P above with integer
variable X and actions Inc and Dec and goal X = 0, are
all solved by the policy µ “if X > 0, do Dec”. However,
the observation projection P o is not solved by µ as there are
trajectories where the outcome of the action Dec in P o, with
non-deterministic effects X > 0 |X = 0, is always X > 0.
Bonet and Geffner [2015] deal with this by taking µ as a fair
solution to P and then proving termination of µ in P (a sim-
ilar approach is used by Srivastava et al. [2011b]). The theo-
rem and corollary above provide an alternative. The policy µ
does not solve P o but solves P o with constraint CX , where
CX is the trajectory constraint that states that if the action
Dec is done infinitely often and the action Inc is done finitely
often then infinitely often X = 0. Theorem 6 implies that µ
solves P/CX for every P in the class. Yet, since P satisfies
CX , Corollary 7 implies that µ must solve P too. The gen-
eralization also applies to problems P where increases and
decreases in the variable X are non-deterministic as long as
no decrease can makeX negative. In such a case, if CF is the
trajectory constraint over P that says that non-deterministic
actions are fair, from the fact that CF implies CX in any such
problem P , Corollary 8 implies that a policy µ that solves
P o/CX must also solve P/CF ; i.e., the strong solution to
the abstraction P o over the constraint CX , represents a fair
solution to such non-deterministic problems P .

4 Generalized Planning as LTL Synthesis
Suppose that we are in the condition of Theorem 6. That is
we have a class of problems P whose observation projection
is P o, and a constraint C over P o. Let’s further assume that
C is expressible in Linear-time Temporal Logic (LTL). Then
we can provide an actual policy that solves P o/C, and hence
solves P/C for all P ∈ P . We show how in this section.

For convenience, we define the syntax and semantics of
LTL over a set Σ of alphabet symbols (rather than a set of
atomic propositions). The syntax of LTL is defined by the
following grammar: Ψ ::= true | l | Ψ ∧ Ψ | ¬Ψ | ◦Ψ |
ΨUΨ, where l ∈ Σ. We denote infinite strings α ∈ Σω by
α = α0α1 · · · , and write α≥j = αjαj+1 The semantics
of LTL, α |= Ψ, is defined inductively as follows: α |= true;
α |= l iff α0 = l; α |= Ψ1∧Ψ2 iff α |= Ψi, for i = 1, 2; α |=
¬Ψ iff α 6|= Ψ; α |= ◦Ψ iff α≥1 |= Ψ; and α |= Ψ1 UΨ2

iff there exists j such that α≥j |= Ψ2 and for all i < j we
have that α≥i |= Ψ1. We use the usual shorthands, e.g., ♦Φ
for trueUΦ (read “eventually”) and �Φ for ¬♦¬Φ (read
“always”). Define mod(Ψ) = {α ∈ Σω : α |= Ψ}.

Assume that the trajectory constraint C is expressed as an
LTL formula Ψ, i.e., Σ = Ω ∪ Act and mod(Ψ) = C. Let
Φ

.
= Ψ ⊃ ♦T o where ♦T o is the reachability goal of P o

expressed in LTL. To build a policy solving P o/C proceed as
follows. The idea is to think of policies µ : Ω+ → Act as (Ω-
branching Act-labeled) trees, and to build a tree-automaton
accepting those policies such that every µ-trajectory satisfies
the formula Φ. Here are the steps:

1. Build a nondeterministic Büchi automaton Ab for the for-
mula Φ (exponential in Φ) [Vardi and Wolper, 1994].

2. Determinize Ab to obtain a deterministic parity word
automaton (DPW) Ad that accepts the models of Φ

1

1

3 2

X!=0

Inc

Dec

X!=0

Dec

2

X!=0

Dec

Dec

Inc

Inc

Inc

all

X=0

X=0

X=0
X!=0

X=0

Figure 1: DPW (with priorities written in the states) for
[♦�¬Inc ∧ �♦Dec ⊃ �♦(X = 0)] ⊃ ♦(X = 0).

(exponential in Ab, and produces linearly many priori-
ties) [Piterman, 2007]. An infinite word α is accepted
by a DPW A iff the largest priority of the states visited
infinitely often by α is even.

3. Build a deterministic parity tree automatonAt that accepts
a policy µ iff every µ-trajectory satisfies Φ (polynomial in
Ad and P o, and no change in the number of priorities).
This can be done by simulating P o and Ad as follows:
from state (s, q) (of the product of P and Ad) and read-
ing action a, launch for each s′ ∈ F (a, s) a copy of the
automaton in state (s′, q′) in direction s′ where q′ is the
updated state of Ad.

4. Test At for non-emptiness (polynomial in At and expo-
nential in the number of priorities ofAt) [Zielonka, 1998].

This yields the following complexity (the lower-bound is in-
herited from Pnueli and Rosner [1989]):

Theorem 10. Let P o/C be the observation projection with
trajectory constraint C expressed as the LTL formula Ψ.
Then solving P o/C (and hence all P/C with P ∈ P) is
2EXPTIME-complete. In particular, it is double-exponential
in |Ψ|+ |T o| and polynomial in |P o|.

This is a worst-case complexity. In practice, the automaton
At may be small also in the formula Φ

.
= Ψ ⊃ ♦T o.

Example (continued). We express CX in LTL. The con-
straint LTL formula ΨX (over alphabet {X = 0, X 6=
0}∪{Inc,Dec}) is ♦�¬Inc ∧ �♦Dec ⊃ �♦(X = 0) .
Then, mod(ΨX) = CX . The resulting formula Φ

.
= ΨX ⊃

♦(X = 0) generates a relatively small automaton: the DPW
Ad has 5 states and 3 priorities, see Figure 1. As a further ex-
ample, consider the case of N ∈ N variables. Each variable
Xi has a formula Ψi analogous to ΨX . Consider the con-
straint Ψ = ∧iΨi. The above algorithm gives us, as worst-
case, DPW for Φ

.
= Ψ ⊃ ♦(X = 0) of size 22O(N)

with
2O(N) many priorities. However, analogously to Figure 1,
there is a DPW of size 2O(N) with 3 priorities.

5 Qualitative Numerical Problems
To concretize, we consider a simple but broad class of prob-
lems where generalized planning can be reduced to FOND
planning. These problems have a set of non-negative nu-
meric variables, that do not have to be integer, and standard
boolean propositions and actions that can increase or decrease

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

876

the value of the numeric variables non-deterministically. The
general problem of stacking a block x on a block y in any
blocks-world problem, with any number of blocks in any con-
figuration, can be cast as a problem of this type. An abstrac-
tion of some of these problems appears in [Srivastava et al.,
2011b; 2015].

A qualitative numerical problem or QNP is a tuple RV =
〈F, Init, Act,G, V, InitV , INC, DEC〉 where the first four
components define a STRIPS planning problem extended
with atoms X = 0 and X > 0 for numerical variables
X in a set V , that may appear as action preconditions and
goals, sets InitV (X) of possible initial values for each vari-
able X ∈ V , and effect descriptors Dec(X) and Inc(X),
with a semantics given by the functions INC and DEC that
take a variable X , an action a, and a state s, and yield a
subset INC(X, a, s) and DEC(X, a, s) of possible values
x′ of X in the successor states. If these ranges contain a
single number, the problem is deterministic, else it is non-
deterministic. If x is the value of X in s, the only require-
ment is that for all x′ ∈ DEC(x, a, s), 0 ≤ x′ ≤ x, and that
for all x′ ∈ INC(X, a, s), x′ > x when x = 0 and x′ ≥ x
when x > 0.2 All the propositions in F are assumed to be ob-
servable, while for numerical variables X , only the booleans
X = 0 and X > 0 are observable.

A QNP RV = 〈F, Init, Act,G, V, InitV , INC, DEC〉
represents a PONDP PV in syntactic form. If sV is a val-
uation over the variables in V , sV [X] is the value of X in
sV , and b[sV] its boolean projection; i.e. b[sV][X] = 0 if
sV [X] = 0 and b[sV][X] = 1 otherwise. The PONDP PV

corresponds to the tuple 〈S, I,Ω, Act, T,A, obs, F 〉 where

1. S is the set of valuations 〈sF , sV 〉 over the variables in F
and V respectively,

2. I is the set of pairs 〈sF , sV 〉 where sF is uniquely deter-
mined by Init and sV [X] ∈ InitV (X) for each X ∈ V ,

3. Ω = {〈sF , b[sV]〉 : 〈sF , sV 〉 ∈ S},
4. Act is the finite set of actions given,
5. T ⊆ S is the set of states that satisfy the atoms in G,
6. A(s) is the set of actions whose precondition are true in s,
7. obs(s) = 〈sF , b[sV]〉 for s = 〈sF , sV 〉,
8. F (a, s) for s = 〈sF , sV 〉 is the set of states s′ = 〈s′F , s′V 〉

where s′F is the STRIPS successor of a in s, and s′V [X] is
in INC(X, a, s), DEC(X, a, s), or {sV [X]} according
to whether a features an Inc(X) effect, a Dec(X) effect,
or none.

An example is RV = 〈F, Init, Act,G, V, InitV , INC,
DEC〉 where F is empty, V = {X,Y }, InitV (X) = {20}
and InitV (Y) = {30}, the goal is {X = 0, Y = 0}, and Act
contains two actions: an action a with effects Dec(X) and
Inc(Y), and an action b with effect Dec(Y). The functions
INC always increases the value by 1 and DEC decreases
the value by 1 except when it is less than 1 when the value is
decreased to 0. A policy µ that solves RV is “do a if X > 0
and Y = 0, and do b if Y > 0”. Simple variations of RV can
be obtained by changing the initial situation, e.g., setting it to
InitV (X) = [10, 20] and InitV (Y) = [15, 30], or the INC

2Inc(X) effects always increase variable X when X = 0. Oth-
erwise, trajectory constraints would be needed also for increments.

and DEC functions. For example, a variable X can be set to
increase or decrease any number between 0 and 1 as long as
values do not become negative. The policy µ solves all these
variations except for those where infinite sequences of decre-
ments fail to drive a variable to zero. We rule out such QNPs
by means of the following trajectory constraint:
Definition 11 (QNP Constraint). The trajectory constraint
CX for a numerical variable X in a QNP excludes the tra-
jectories that after a given time point contain a) an infinite
number of actions with Dec(X) effects, b) a finite number of
actions with Inc(X) effects, c) no state where X = 0.

This is analogous to the LTL constraint in Section 4. The
set of constraints CX for all variables X ∈ V is denoted as
CV . We will be interested in solving QNPs RV given that the
constraints CV hold. Moreover, as we have seen, there are
policies that solve entire families of similar QNPs:
Definition 12 (Similar QNPs). Two QNPs are similar if they
only differ in the INC, DEC or InitV functions, and for
each variable X , X = 0 is initially possible in one if it is
initially possible in the other, and the same for X > 0.

We want to obtain policies that solve whole classes of sim-
ilar QNPs by solving a single abstract problem. For a QNP
RV , we define its syntactic projection as Ro

V :3

Definition 13 (Syntactic Projection of QNPs). If RV =
〈F, Init, Act,G, V, InitV , INC,DEC〉 is a QNP, its syn-
tactic projection is the non-deterministic (boolean) problem
Ro

V = 〈F ′, Init′, Act′, G〉, where
1. F ′ is F with new atomsX = 0 andX > 0 added for each

variable X; i.e. F ′ = F ∪ {X = 0, X > 0 : X ∈ V },
2. Init′ is Init and X = 0 (resp. X > 0) true iff X > 0

(resp. X = 0) is not initially possible in InitV .
3. Act′ isAct but where in each action and for each variable
X , the effect Inc(X) is replaced by the atom X > 0, and
the effect Dec(X) is replaced by the conditional effect “if
X > 0 then X > 0 |X = 0”.

Recalling that X > 0 is an abbreviation for X 6= 0, the
atoms X = 0 and X > 0 are mutually exclusive. We re-
fer to the action with non-deterministic effects in Ro

V as the
Dec(X) actions as such actions have Dec(X) effects in RV .
This convention is assumed when applying CV constraints to
Ro

V . The syntactic projection Ro
V denotes a FONDP that fea-

tures multiple initial states when for some variable X , both
X = 0 and X > 0 are possible in InitV :
Theorem 14. The FONDP denoted byRo

V is the observation
projection of the class RV made of all the PONDPs R′V that
are similar to RV .

The generalization captured by Theorem 6 implies that:
Theorem 15 (QNP Generalization). Let µ a policy that
solves Ro

V /CV ; i.e. the FONDP denoted by Ro
V given CV .

Then, µ solves R′V /CV for all QNPs R′V similar to RV .

In addition, the constraints CV are strong enough in QNPs
for making the abstractionRo

V complete for the class of prob-
lemsRV similar to RV :

3For simplicity we use the syntax of STRIPS with negation and
conditional effects [Gazen and Knoblock, 1997].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

877

Theorem 16 (QNP Completeness). Let µ be a policy that
solves the class of problems RV made up of all the QNPs
R′V that are similar to RV given CV . Then µ must solve the
projection Ro

V given CV .

This is because the class RV contains a problem R∗V where
each variable X has two possible values X = 0 and X = 1
such that the semantics of the Dec(X) and Inc(X) effects
makeR∗V equivalent to the projectionRo

V , with the valuations
over the two-valued X variables in correspondence with the
boolean values X = 0 and X > 0 in Ro

V .

5.1 QNP Solving as FOND Planning
The syntactic projection Ro

V of a QNP RV represents
a FONDP with non-deterministic (boolean) effects X >
0 |X = 0 for the actions in RV with Dec(X) effects. It
may appear from Theorem 15 that one could use off-the-
shelf FOND planners for solving Ro

V and hence for solving
all QNPs similar to RV . There is, however, an obstacle: the
effects X > 0 |X = 0 are not fair. Indeed, even executing
forever only actions with Dec(X) effects does not guarantee
that eventuallyX = 0 will be true. In order to use fair (strong
cyclic) FOND planners off-the-shelf, we thus need to compile
the FONDP Ro

V given the constraints CV into a fair FONDP
with no constraints.

For this, it is convenient to make two assumptions and to
extend the problem RV with extra booleans and actions that
do not affect the problem but provide us with handles in the
projection. The assumptions are that actions with Dec(X)
effects have the (observable) precondition X > 0, and more
critically, that actions feature decrement effects for at most
one variable. The new atoms are qX , one for each variable
X ∈ V , initially all false. The new actions for each variable
X in V are set(X) and unset(X), the first with no precondi-
tion and effect qX , the second with precondition X = 0 and
effect ¬qX . Finally, preconditions qX are added to actions
with effect Dec(X) and precondition ¬qX to all actions with
effect Inc(X). Basically, qX is set in order to decrease the
variable X to zero. When qX is set, X cannot be increased
and qX can be unset only when X = 0. We say that RV is
closed when RV is extended in this way and complies with
the assumptions above (and likewise for its projection Ro

V).

Theorem 17 (Generalization with FOND Planner). µ is a fair
solution to the FONDP Ro

V for a closed QNP RV iff µ solves
all QNPs that are similar to RV given the constraints CV .

Sketch: We need to show that µ is a fair solution to Ro
V iff

µ solves Ro
V /CV . The rest follows from Theorems 15 and

16. (⇒). If µ does not solve the FONDP Ro
V given CV , there

must a µ-trajectory τ that is not goal reaching but that satisfies
CV and is not fair in Ro

V . Thus, there must be a subtrajectory
〈si, ai, . . . , si+m〉 that forms a loop with si+m = si, where
no sk is a goal state, and 1) some ak has a Dec(X) effect in
RV , and 2)X > 0 is true in all sk, i ≤ k ≤ i+m. 1) must be
true as τ is not fair in Ro

V and only actions with Dec(X) ac-
tions in RV are not deterministic in Ro

V , and 2) must be true
as, from the assumptions in RV , X = 0 needs to be achieved
by an action that decrements X , in contradiction with the as-
sumption that τ is not fair in Ro

V . Finally, since τ satisfies
CV , then it must contain infinite actions with Inc(X) effects,

but then the loop must feature unset(X) actions with pre-
condition X = 0 in contradiction with 2. (⇐) If µ solves
Ro

V /CV but µ is not a fair solution to Ro
V , then there must

be an infinite µ-trajectory τ that is not goal reaching and does
not satisfy CV , but which is fair inRo

V . This means that there
is a loop in τ with some Dec(X) action, no Inc(X) action,
and whereX = 0 is false. But τ can’t then be fair inRo

V .

6 Discussion
We have studied ways in which a (possibly infinite) set of
problems with partial observations (PONDPs) that satisfy a
set of trajectory constraints can all be solved by solving a
single fully observable problem (FONDP) given by the com-
mon observation projection, augmented with the trajectory
constraints. The trajectory constraints play a crucial role in
adding enough expressive power to the observation projec-
tion. The single abstract problem can be solved with automata
theoretic techniques typical of LTL synthesis when the trajec-
tory constraints can be expressed in LTL, and in some cases,
by more efficient FOND planners.

The class of qualitative numerical problems are related
to those considered by Srivastava et al. [2011b; 2015] al-
though the theoretical foundations are different. We ob-
tain the FONDPs Ro

V from an explicit observation projec-
tion, and rather than using FOND planners to provide fair
solutions to Ro

V that are then checked for termination, we
look for strong solutions to Ro

V given a set of explicit tra-
jectory constraints CV , and show that under some condi-
tions, they can be obtained from fair solutions to a suit-
able transformed problem. It is also interesting to com-
pare our work to the approach adopted to deal with the one-
dimensional planning problems [Hu and Levesque, 2010;
Hu and De Giacomo, 2011]. There we have infinitely many
concrete problems that are all identical except for an unob-
servable parameter ranging over naturals that can only de-
crease. A technique for solving such generalized planning
problems is based on defining one single abstract planning
problem to solve that is “large enough” [Hu and De Giacomo,
2011]. Here, instead, we would address such problems by
considering a much smaller abstraction, the observation pro-
jection, but with trajectory constraints that capture that the
hidden parameter can only decrease.

Our work is also relevant for planning under incom-
plete information. The prototypical example is the tree-
chopping problem of felling a tree that requires an un-
known/unobservable number of chops. This was studied by
Sardiña et al. [2006], where, in our terminology, the authors
analyse exactly the issue of losing the “global property” when
passing to the “observation projection”. Finally, our approach
can be seen as a concretization of insights by De Giacomo et
al. [2016] where trace constraints are shown to be necessary
for the belief-state construction to work on infinite domains.

Acknowledgments
H. Geffner was supported by grant TIN2015-67959-P,
MINECO, Spain; S. Rubin by a Marie Curie fellowship of
INdAM; and G. De Giacomo by the Sapienza project “Im-
mersive Cognitive Environments”.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

878

References
[Belle and Levesque, 2016] Vaishak Belle and Hector J.

Levesque. Foundations for generalized planning in un-
bounded stochastic domains. In KR, pages 380–389, 2016.

[Bonet and Geffner, 2009] Blai Bonet and Hector Geffner.
Solving POMDPs: RTDP-Bel vs. Point-based Algorithms.
In IJCAI, pages 1641–1646, 2009.

[Bonet and Geffner, 2015] Blai Bonet and Hector Geffner.
Policies that generalize: Solving many planning problems
with the same policy. In IJCAI, pages 2798–2804, 2015.

[Bonet et al., 2009] Blai Bonet, Hector Palacios, and Hector
Geffner. Automatic derivation of memoryless policies and
finite-state controllers using classical planners. In ICAPS,
2009.

[Chatterjee and Chmelı́k, 2015] Krishnendu Chatterjee and
Martin Chmelı́k. POMDPs under probabilistic semantics.
Artificial Intelligence, 221(C):46–72, 2015.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Arti-
ficial Intelligence, 147(1-2):35–84, 2003.

[De Giacomo et al., 2016] Giuseppe De Giacomo, Aniello
Murano, Sasha Rubin, and Antonio Di Stasio. Imperfect-
information games and generalized planning. In IJCAI,
pages 1037–1043, 2016.

[Gazen and Knoblock, 1997] B. Cenk Gazen and Craig
Knoblock. Combining the expressiveness of UCPOP with
the efficiency of Graphplan. In ECP, pages 221–233,
1997.

[Hu and De Giacomo, 2011] Yuxiao Hu and Giuseppe De
Giacomo. Generalized planning: Synthesizing plans that
work for multiple environments. In IJCAI, pages 918–923,
2011.

[Hu and Levesque, 2010] Yuxiao Hu and Hector J.
Levesque. A correctness result for reasoning about
one-dimensional planning problems. In KR, 2010.

[Levesque, 2005] Hector J. Levesque. Planning with loops.
In IJCAI, pages 509–515, 2005.

[Piterman, 2007] Nir Piterman. From nondeterministic büchi
and Streett automata to deterministic parity automata. Log.
Meth. in Comp. Sci., 3(3), 2007.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of an asynchronous reactive module. In
ICALP, pages 652–671. 1989.

[Sardiña et al., 2006] Sebastian Sardiña, Giuseppe De Gia-
como, Yves Lespérance, and Hector J. Levesque. On the
limits of planning over belief states under strict uncer-
tainty. In KR, pages 463–471, 2006.

[Srivastava et al., 2008] Siddharth Srivastava, Neil Immer-
man, and Shlomo Zilberstein. Learning generalized plans
using abstract counting. In AAAI, 2008.

[Srivastava et al., 2011a] Siddharth Srivastava, Neil Immer-
man, and Shlomo Zilberstein. A new representation and

associated algorithms for generalized planning. Artificial
Intelligence, 175(2):615–647, 2011.

[Srivastava et al., 2011b] Siddharth Srivastava, Shlomo Zil-
berstein, Neil Immerman, and Hector Geffner. Qualitative
numeric planning. In AAAI, 2011.

[Srivastava et al., 2015] Siddharth Srivastava, Shlomo Zil-
berstein, Abhishek Gupta, Pieter Abbeel, and Stuart Rus-
sell. Tractability of planning with loops. In AAAI, pages
3393–3401, 2015.

[Vardi and Wolper, 1994] Moshe Y. Vardi and Pierre Wolper.
Reasoning about infinite computations. I&C, 115(1):1–37,
1994.

[Zielonka, 1998] Wicslaw Zielonka. Infinite games on
finitely coloured graphs with applications to automata on
infinite trees. Theor. Comput. Sci., 200(1-2):135–183,
1998.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

879

