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Abstract
Shortlisting of candidates—selecting a group
of “best” candidates—is a special case of multiwin-
ner elections. We provide the first in-depth study
of the computational complexity of strategic voting
for shortlisting based on the most natural and sim-
ple voting rule in this scenario, `-Bloc (every voter
approves ` candidates). In particular, we investigate
the influence of several tie-breaking mechanisms
(e.g. pessimistic versus optimistic) and group eval-
uation functions (e.g. egalitarian versus utilitarian)
and conclude that in an egalitarian setting strategic
voting may indeed be computationally intractable
regardless of the tie-breaking rule. We provide
a fairly comprehensive picture of the computational
complexity landscape of this neglected scenario.

1 Introduction
Multiwinner voting rules come up very naturally whenever
from a large set of candidates a smaller “best” set has to be
selected. Surprisingly, although at least as practically rel-
evant as singlewinner voting rules, the multiwinner litera-
ture is much less developed than the singlewinner literature.
In recent years, however, research into multiwinner voting
rules, their properties and algorithmic complexity grew sig-
nificantly [Aziz et al., 2017a; Aziz et al., 2017b; Aziz et
al., 2015; Barrot et al., 2013; Barberà and Coelho, 2008;
Barberà and Coelho, 2010; Elkind et al., 2017; Faliszewski
et al., 2016; Meir et al., 2008; Obraztsova et al., 2013;
Skowron, 2015; Skowron et al., 2015]. When selecting a
group of winning candidates different goals are interesting:
proportional representation, diversity, or a short list [Elkind
et al., 2017]. We focus on the last scenario. Here the goal is
to select the best (say highest-scoring) group of candidates.

Shortlisting comes very naturally in the context of selec-
tion committees, say for human resources departments that
need to select, for a fixed number of positions, the best qual-
ified applicants. A standard way of candidate selection in the
context of shortlisting is to use scoring-based voting rules.
We focus on the two most natural ones, namely SNTV (each
voter may give one point to her most-liked candidate) and
`-Bloc (each voter may give one point to each of her ` most-
liked candidates, so SNTV is the same as 1-Bloc). Obviously,

for such voting rules it is trivial to determine the score of
each individual candidate. The main goal of our work is to
model and understand coalitional manipulation in a computa-
tional sense. In this way, we complement well-known work:
manipulation for singlewinner rules initiated by Bartholdi III
et al. [1989], coalitional manipulation for singlewinner rules
initiated by Conitzer et al. [2007], and manipulation for mul-
tiwinner rules initiated by Meir et al. [2008]. In coalitional
manipulation scenarios, given full knowledge about other
voters’ preferences, one has a set of manipulative voters who
want to influence the election outcome in a favorable way by
casting their votes strategically.

To come up with meaningful models for coalitional manip-
ulation for multiwinner elections, however, we first have to
identify the exact model and questions to be asked. Most nat-
ural extensions of coalitional manipulation for singlewinner
elections or (non-coalitional) manipulation for multiwinner
elections do not fit. Translated from the singlewinner per-
spective one would probably assume that the coalition agrees
on making a distinguished candidate become part of the win-
ners or that the coalition agrees on making a distinguished
candidate group become part of the winners. The former
is unrealistic because in multiwinner settings (especially for
shortlisting) one certainly cares about more than just one win-
ning candidate. The latter is problematic since there may be
exponentially many “equally good” candidate groups for the
coalition. Notably, this was not a problem in the singlewinner
case where one can simply try all equally good candidates.
The single-manipulator model for multiwinner rules of Meir
et al. [2008] is a useful first step: The manipulator specifies
the utility for each candidate; the utility for a candidate group
is obtained by adding up the utilities of each group mem-
ber. Aggregating utilities, however, becomes non-trivial for
a coalition of manipulators which may have totally different
utilities for single candidates but still have strong incentives
to work together. Besides formalizing this either in a utili-
tarian or egalitarian way, our model also aims to distinguish
between rather optimistic and pessimistic manipulators; lead-
ing to significant differences in the computational complexity
results. Technically, this requires to study tie-breaking mech-
anisms and (winning) group evaluation functions.

Related Work. To the best of our knowledge, there is no
previous work on coalitional manipulation in the context of
multiwinner elections. We refer to recent textbooks for an
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overview of the huge literature on singlewinner (coalitional)
manipulation [Rothe, 2015; Brandt et al., 2016]. Most rele-
vant to this paper, Lin [2011] proved that coalitional manipu-
lation in singlewinner elections under `-Approval is tractable.
Meir et al. [2008] introduced (non-coalitional) manipulation
for multiwinner elections. While identifying several NP-
hard voting rules they showed that manipulation remains
polynomial-time solvable for Bloc (as multiwinner extension
of `-Approval). Obraztsova et al. [2013] extended the lat-
ter result for different tie-breaking strategies and identified
further tractable special cases of multiwinner scoring rules,
but conjectured manipulation to be hard in general for (other)
scoring rules. Summarizing, Bloc is simple but comparably
well-studied and was, hence, selected as show-case for our
study of the presumably harder coalitional manipulation.
Organization. We develop a model for coalitional manipu-
lation for multiwinner elections (Section 3). Its variants re-
spect different ways of evaluating candidate groups (utilitar-
ian vs. egalitarian) and different kinds of manipulators be-
havior (optimistic vs. pessimistic). On the technical side, we
first present algorithms and complexity results for comput-
ing the output of several natural tie-breaking rules modeling
optimistic or pessimistic manipulators (Section 4). Then, we
explore the computational complexity of coalitional manipu-
lation, using `-Bloc as show-case (Section 5). We refer to the
conclusion and Table 1 for a detailed overview of our findings
(Section 6). Due to space constraints, we omit many proofs.

2 Preliminaries
For a positive integer n, we define [n] := {1, . . . , n}. A prob-
lem parameterized by ρ is fixed-parameter tractable (in FPT)
if it is solvable in time f(ρ) · |I|O(1); W [t]-hard problems are
presumably not in FPT (see [Cygan et al., 2015] for details).

An election (C, V ) consists of a set C of m candidates and
a multiset V of n votes. Votes are linear orders on C. For
example, for C = {c1, c2, c3} we write c1 �v c2 �v c3 to
express that candidate c1 is most preferred and candidate c3
least preferred in vote v. We omit the subscripts if the corre-
sponding vote is clear from the context.

A multiwinner voting correspondence is a function that,
given an election (C, V ) and an integer k ∈ [|C|], outputs
a family of co-winning k-egroups. We use k-egroup as an
abbreviation for k-excellence-group and do not use the estab-
lished term “committee” because in shortlisting applications
“committee” rather refers to voters and not to candidates.

We consider scoring rules which assign points to can-
didates based on their positions in the votes. We denote
by score(c) the total number of points that candidate c ob-
tains and use scoreV ′(c) when restricting the election to a
subset V ′ ⊂ V of voters. A (multiwinner) scoring rule se-
lects a family X of co-winning k-egroups with the maximum
total sum of scores. It holds that X ∈ X if and only if
∀c ∈ X, c′ ∈ C \ X : score(c) ≥ score(c′). We focus
on `-Bloc multiwinner voting correspondences which assign
for each vote one point to each of the top ` candidates.1

1The case where ` coincides with the size k of the egroup is
typically referred to as Bloc; SNTV equals 1-Bloc.

Example 1. Given a set of candidates C = {c1, c2, c3, c4},
a multiset of votes V = {v1, v2, v3}, where v1 = v2 =
c1 � c2 � c3 � c4 and v3 = c2 � c3 � c4 � c1, and
egroup size k = 2, SNTV selects {c1, c2} whereas 3-Bloc
selects {c2, c3}.

To select a single k-egroup from the set of co-winning
k-egroups one has to consider tie-breaking rules. A multi-
winner tie-breaking rule is a mapping that, given an elec-
tion and a family of co-winning k-egroups, outputs a sin-
gle k-egroup. Among them there is a set of natural rules
that is of particular interest in order to model the behavior
of manipulative voters. Indeed, in case of a single manipula-
tor pessimistic tie-breaking as well as optimistic tie-breaking
has been considered in addition to lexicographic and random-
ized tie-breaking [Meir et al., 2008; Obraztsova et al., 2013].
To model optimistic (resp. pessimistic) tie-breaking in a non-
trivial manner2, we use the model introduced by Obraztsova
et al. [2013] in which a manipulative voter v is described not
only by the preference ordering �v of the candidates but also
by a utility function u : C → N. To cover this in the tie-
breaking process, coalition-specific tie-breaking rules get in
addition (to the election containing non-manipulative and ma-
nipulative votes and the co-winning excellence-groups) the
manipulators’ utility functions in the input. The formal im-
plementations of these rules and their properties are discussed
in Subsection 3.2.

3 Model for Coalitional Manipulation
In this section, we formally define and explain our model and
the respective variants. To this end, we discuss how we eval-
uate a k-egroup in terms of utility for a coalition of manipula-
tors and introduce tie-breaking rules which model optimistic
or pessimistic viewpoints of the manipulators.

3.1 Evaluating k-egroups
As already discussed in the introduction, one should not ex-
tend the model of coalitional manipulation for singlewinner
elections to multiwinner elections in the most simple way
(e.g. by assuming that manipulators agree on some distin-
guished candidate or on some distinguished egroup). Instead,
we follow Meir et al. [2008] and assume we are given ma-
nipulator’s utility functions over the candidates and a utility
level which, if achieved, indicates a successful manipulation.
Meir et al. [2008] compute the utility of an egroup by sum-
ming up the utility values the manipulator assigns to each
member of the egroup.

At first glance, summing up the utility values assigned by
each manipulator to each member of an egroup seems to be

2We can not simply use ordinal preferences: Obraztsova et
al. [2013] observed that already in case of a single manipulator one
cannot simply set the fixed lexicographic order of the manipulators’
preferences (resp. the reverse of it) over candidates to model opti-
mistic (resp. pessimistic) tie-breaking. For example, it is a strong
restriction to assume that a manipulator would always prefer its first
choice together with its fourth choice towards its second choice to-
gether with its third choice. It might be that only its first choice
is really acceptable (in which case the assumption is reasonable) or
that the first three choices are comparably good but the fourth choice
absolutely unacceptable (in which case the assumption is wrong).
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u(·) c1 c2 c3 c4
w1 18 101 2 90
w2 20 1 101 90

Figure 1: Example utilities two manipulators w1, w2 give to four
candidates, c1, c2, c3, c4.

the most natural extension for a coalition of manipulators.
However, this utilitarian variant allows single manipulators
to gain no utility. In extreme cases it could even be that
some manipulator is worse off compared to voting sincerely.
We consider the election from Example 1 and introduce
two manipulators w1, w2. We are interested in finding
the best 2-egroup according to the utilitarian evaluation
variant under SNTV voting correspondence. The utilities
manipulators give to the candidates are depicted in Figure 1.
Observe that if the manipulators vote sincerely, they give
a point to c2 and c3. Combining manipulators’ votes with
the non-manipulative ones, the winning 2-egroup consists of
candidates c1 and c2 (there is no tie between candidates). The
utilitarian value of such a group is equal to 140. Manipulator
w1’s utility is 119. However, both manipulators can do better
by giving their points to candidate c4. Then, the winners are
candidates c1 and c4 giving the total utility of 218. Observe
that in spite of growth of the total utility, the utility value
gained by w1, 108, is lower than in the case of sincere voting.

Despite the fact that w1 is worse off compared to sin-
cere voting in the above example, the utilitarian view-
point is justified if the manipulators are able to compen-
sate utility of an egroup e.g. by paying money to each
other. For cases where manipulators cannot compensate util-
ity of an egroup, we introduce two egalitarian evaluation vari-
ants. The (egroup-wise) egalitarian variant aims for maxi-
mizing the minimum satisfaction of the manipulators with the
whole k-egroup. The candidate-wise egalitarian variant aims
for maximizing the minimum satisfaction of the manipulators
with the every single candidate. There is no “candidate-wise
utilitarian” variant since this would be equivalent to the nor-
mal utilitarian variant.

We formalize the described variants of k-egroup evaluation
(for w manipulators) with the definitions below.
Definition 1. Given a set of candidates C, a k-egroup S ⊆
C, |S| = k, and a family of manipulators’ utility functions
U = {u1, u2, . . . , uw} where ui : C → N, we consider the
following functions:
• utilU (S) :=

∑
u∈U

∑
c∈S u(c),

• egalU (S) := minu∈U
∑

c∈S u(c),

• candegalU (S) :=
∑

c∈S minu∈U u(c).
Intuitively, they determine the utility of k-egroup S accord-
ing to, respectively, the utilitarian and the egalitarian variant
of evaluating S by a group of w manipulators (identifying
manipulators with their utility functions). We omit subscripts
when a family of utility functions is obvious.

By taking the sum of utilities (resp. the minimum utility)
over all manipulators as utility for each candidate we obtain
a helpful observation allowing us to simplify utilitarian and
candidate-wise egalitarian approaches.

Observation 1. One can assume without loss of generality
that every manipulator has the same utility function when us-
ing utilitarian or candidate-wise egalitarian evaluation.

3.2 Breaking Ties
Before formally defining our tie-breaking rules, we briefly
discuss some necessary notation and central concepts. Con-
sider an election (C, V ), a size k for the egroup to be chosen,
and a scoring-based voting correspondence R. Observe that
we can partition the set of candidatesC into three setsC+, P ,
andC− as follows. The setC+ contains the confirmed candi-
dates, that is, candidates who are in all co-winning k-egroups.
The set P contains the pending candidates, that is, candidates
that are only in some co-winning k-egroups. The set C− con-
tains the rejected candidates, that is, candidates that are in no
co-winning k-egroup. Observe that |C+| ≤ k, |C+∪P | ≥ k,
every candidate from P ∪ C− receives fewer points than ev-
ery candidate from C+, and all candidates in P receive the
same number of points.

In order to define optimistic and pessimistic rules, we as-
sume that in addition to C+, P , and C− we are given some
family of utility functions.

Lexicographic Flex. Ties are broken lexicographically
with respect to a predefined ordering >L of the candidates
from C. That is, Flex selects all candidates from C+ together
with the top k− |C+| candidates from P with respect to >L.

Optimistic (resp. pessimistic) Feval
opt (resp. Feval

pess), eval ∈
{util, egal, candegal}. Some k-egroup S wins according to
Feval

opt (resp. Feval
pess) if and only if C+ ⊆ S ⊆ (C+ ∪ P )

and there is no other k-egroup S′ with C+ ⊆ S′ ⊆ (C+∪P )
and eval(S′) > eval(S) (resp. eval(S′) < eval(S)).

The way we define the optimistic and pessimistic tie-
breaking rules allows for co-winning k-egroups, but every co-
winning k-egroup is evaluated equally by the coalition. For
simplicity, one may assume that an arbitrary co-winning k-
egroup is selected.

3.3 Limits of Lexicographic Tie-Breaking
From the above discussion, we can conclude that
lexicographic tie-breaking is very straight-forward
in the case of scoring-based multiwinner voting corre-
spondences. Basically any subset of the desired cardinality
from the set of pending candidates can be chosen. In partic-
ular, the best candidates with respect to the given ordering
can be chosen. We remark that this is not necessarily the case
for general multiwinner voting correspondences.

It remains to be clarified whether one can find a reason-
able ordering of the pending candidates in order to model
optimistic or pessimistic tie-breaking rules in a simple way.
Using Observation 1 we show that this is possible for every
Feval

bhav, eval ∈ {util, candegal}, bhav ∈ {opt, pess}. We
have a counterexample for eval = egal.

We say tie-breaking rule F simulates tie-breaking rule F ′
with respect to a set C of candidates, a family U of util-
ity functions, and an evaluation function eval if and only if
evalU (S) = evalU (S

′) for every integer k, 0 < k < |C|, and
for every partition of C into C+, P , and C− (as described
above) where S is the k-egroup selected by F and S′ is the
k-egroup selected by F ′.
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Proposition 1. Let C be a set of candidates, U be a family of
utility functions, and bhav ∈ {opt, pess}.

One can compute in O(m · (w + logm)) time a lexico-
graphic tie-breaking rule that simulates Feval

bhav with respect
to C, U , and eval ∈ {util, candegal}.

There is no lexicographic tie-breaking rule that simu-
lates Feval

bhav with respect to C, U , and eval = egal.

Proof. If eval ∈ {util, candegal}, then we can assume
that every manipulator has the same utility function (Ob-
servation 1). We compute such utility function u∗ which is
“equivalent” to U in O(m · w) time. We say an order >L
of the candidates is consistent with some utility function u if
c>L c

′ implies u(c) ≥ u(c′) for optimistic tie-breaking and
c>L c

′ implies u(c) ≤ u(c′) for pessimistic tie-breaking.
Any lexicographic tie-breaking rule defined by an order >L
that is consistent with the utility function u∗ simulates Feval

bhav.
We compute a consistent ordering by sorting the candidates
according to u∗ in O(m · logm) time.

We build a counterexample to show impossibility
of simulation optimistic or pessimistic tie-breaking by a lex-
icographic tie-breaking rule for egalitarian evaluation.
Consider four candidates, c1 to c4, two manipulators, w1

and w2, with utility functions as depicted in Figure 1, and
2-egroup. When pending set P contains all candidates
then the optimal optimistic (resp. pessimistic) 2-egroup
consists of candidates c1 and c4 (resp. c3). This induces a
lexicographic order preferring candidates c1 and c4 (resp. c3)
to the others. However, if confirmed set P contains only
candidate c2 (resp. c4) and the rest are pending ones then it
is optimal to choose candidate c3 (resp. c2) to the solution; A
contradiction to the order induced by the first case.

4 Complexity of Tie-Breaking
It is natural to ask whether the proposed tie-breaking rules
are practical in terms of computational complexity. If not,
then there is no hope for coalitional manipulation because tie-
breaking is a subtask to be solved by the manipulators.

By definition, we can apply every lexicographic tie-
breaking rule that is defined through some predefined order-
ing of the candidates in linear time. Hence, we focus on the
rules that model optimistic or pessimistic manipulators. To
this end, we analyze the following computational problem.
Feval

bhav-TIE-BREAKING (Feval
bhav-TB),

(eval ∈ {util, egal, candegal}, bhav ∈ {opt, pess})
Input: A set of candidates C partitioned into a set P of
pending candidates and a set C+ of confirmed candidates,
the size k > |C+| of the excellence-group, a family of ma-
nipulators’ utility functions U = {u1, u2, . . . , uw} where
ui : C → N, and a non-negative integer q.
Question: Is there a size-k set S ⊆ C such that S wins
according to Feval

bhav, C+ ⊆ S, and eval(S) ≥ q.

4.1 Utilitarian and Candidate-wise Egalitarian:
Tie-Breaking is Easy

As a warm-up, we show that tie-breaking can be applied and
evaluated efficiently if k-egroups are evaluated according to
the utilitarian or candidate-wise egalitarian variant. The cor-
responding result follows almost directly from Proposition 1.

Corollary 1. One can solveFeval
bhav-TIE-BREAKING inO(m ·

(w + logm)) time for eval ∈ {util, candegal}, bhav ∈
{opt, pess}.

Proof. The algorithm works in two steps. First, compute
a lexicographic tie-breaking rule Flex that simulates Feval

bhav
in O(m · (w + logm)) time as described in Proposition 1.
Second, apply Flex in O(|P |) time and evaluate the resulting
k-egroup in O(k · w) time.

4.2 Egalitarian: Being Optimistic is Hard
In the remainder of this section, we consider the defined tie-
breaking rules when applied for searching a k-egroup evalu-
ated in terms of the egalitarian variant. First, we show that
applying and evaluating egalitarian tie-breaking is computa-
tionally easy for pessimistic manipulators but computation-
ally intractable for optimistic manipulators even if the size of
the egroup is small. Being pessimistic, the main idea is to
“guess” the manipulator that is least satisfied and select the
candidates appropriately. We show the computational hard-
ness of the optimistic case via a reduction from SET COVER.

Theorem 1. One can solve Fegal
pess -TIE-BREAKING in O(w ·

m logm) time, but Fegal
opt -TIE-BREAKING is NP-hard and

W[2]-hard when parameterized by k even if umax = 1.

A small egroup size (alone) obviously does not make the
problem computationally tractable even for very simple util-
ity functions. Next, using parameterized reduction from
MULTICOLORED CLIQUE, we show that there is still no hope
for fixed-parameter tractability even for the combined param-
eter w + k, which covers situations where few manipulators
are going to influence an election for a small egroup.

Theorem 2. Parameterized by w+k, Fegal
opt -TIE-BREAKING

is W[1]-hard.

Finally, we show that our problem becomes tractable when
parameterized by w+umax, covering situations with few ma-
nipulators that have simple utility functions e.g. if few voters
have 0/1 utility functions. We use an Integer Linear Program
with at most O(uwmax) integer variables to solve our problem
and apply the famous result of Lenstra [1983] to obtain FPT.

Theorem 3. Parameterized by w + umax, Fegal
opt -TIE-

BREAKING is fixed-parameter tractable.

5 Complexity of (Coal.) Manipulation
In this section, we analyze the computational difficulty of vot-
ing strategically for a coalition of manipulators. To this end,
we formalize our central computational problem. Let R be a
multiwinner voting correspondence and let F be a multiwin-
ner tie-breaking rule.
R-F -eval-COALITIONAL MANIPULATION
(R-F -eval-CM), (eval ∈ {util, egal, candegal})
Input: An election (C, V ), a committee size k, a coali-
tion size w, for each manipulator x ∈ [w] a utility function
ux : C → N, and a non-negative integer q.
Question: Is there a multiset W of manipulative votes
over C such that S ⊂ C wins the election (C, V ∪ W )
underR and F , |S| = k, |W | = w, and eval(S) ≥ q?
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5.1 Utilitarian and Candidate-wise Egalitarian:
Manipulation is Tractable

We show that `-Bloc-F-eval-CM can indeed be solved in
polynomial time for any constant ` ∈ N, any eval ∈
{util, candegal}, and any F ∈ {Flex,Feval

opt ,Feval
pess}.

For Bloc, that is, ` = k, we give a quadratic time algorithm.
We start with an algorithm for a version of problem `-Bloc-
F -eval-CM where all manipulators have to cast exactly the
same vote and show that this algorithm can also be used to
solve Bloc-F-eval-CM. The main idea is to “guess” the min-
imum score which a member of the egroup can achieve and
then carefully (with respect to tie-breaking) select the best
candidates that can reach this score.

Theorem 4. One can solve `-Bloc-F -eval-COALITIONAL
MANIPULATION with consistent manipulators in O((n +
m)n) time for any eval ∈ {util, candegal} and F ∈
{Feval

opt ,Feval
pess}.

For Bloc, we can show that manipulators can always vote
identically to achieve an optimal k-egroup. In a nutshell, for
every excellence-group the manipulators can only do better
by voting exactly for its members, because Bloc is mono-
tonic. This leads us to the following corollary.

Corollary 2. One can solve Bloc-F-eval-COALITIONAL
MANIPULATION in O((n + m)n) time for any eval ∈
{util, candegal} and F ∈ {Feval

opt ,Feval
pess}.

To complete our analysis we provide a polynomial-time al-
gorithm which also works for a general case where the num-
ber of approvals may be different to the size of the excellence-
group and manipulators can vote differently from each other.

Theorem 5. One can solve `-Bloc-F-util-COALITIO-
NAL MANIPULATION in O(kn2m3) time for any F ∈
{Flex,Futil

opt ,Futil
pess}.

Proof. The basic idea of our algorithm is to fix certain param-
eters of the solution and then reduce the resulting subproblem
to a KNAPSACK variant with polynomial-sized weights.

In the first phase of the algorithm, we iterate through all
possible value combinations of the following two parameters:
(1) the lowest final score z < |V ∪W | of any member of the k-
egroup and (2) the candidate ĉ which is the least-preferred
member of the k-egroup with final score z with respect to the
tie-breaking rule F .

Having fixed z, let C+ denote the set of candidates which
get at least z + 1 approvals from the non-manipulative win-
ners or which are preferred to ĉ with respect to F and get
exactly z approvals from the non-manipulative winners. As-
suming that the combination of parameter values is correct,
all candidates from C+ ∪ {ĉ} must belong the k-egroup. Set
k+ := |C+|. For sanity, check whether k+ < k and dis-
card the corresponding combination of solution parameter
values if the check fails. Next, we ensure that ĉ obtains fi-
nal score exactly z. If ĉ receives less than z − w or more
than z approvals from non-manipulative voters, then we dis-
card this combination of solution parameter values. Other-
wise, let ŝ := z − scoreV (ĉ) denote number of additional
approvals candidate ĉ needs in order to get final score z. Let
k∗ := k− k+ − 1 be the number of remaining (not yet fixed)

members of the k-egroup. Let s∗ := w · `− ŝ be the number
of approvals to be distributed to candidates in C \ {ĉ}.

We analyze the remaining subproblem to be solved in the
second phase. The manipulators influence further k∗ candi-
dates to join the k-egroup (so far only consisting ofC+∪{ĉ})
and they distribute exactly s∗ approvals in total to candidates
in C \{ĉ} and at most w approvals per candidate. To this end,
letC∗ denote the set of candidates which can possibly join the
k-egroup. For each candidate c ∈ C \(C+∪{ĉ}) it holds that
c ∈ C∗ if and only if z − w ≤ scoreV (c) ≤ z − 1 if c is pre-
ferred to ĉ with respect to F , or z − w + 1 ≤ scoreV (c) ≤ z
if ĉ is preferred to c with respect to F .

The simplest idea is to select the k∗ elements from C∗

which have the highest value (that is, utility) for the coali-
tion. However, there can be two issues. First, s∗ might be too
small, that is, there are too few approvals to ensure that each
of the k∗ most-valued candidates gets final score at least z
(resp. at least z + 1). Second, s∗ might be too large, that is,
there are too many approvals to be distributed so that there is
no way to do this without causing unwanted candidates to get
a final score of at least z (resp. at least z + 1). Fortunately,
we can show that at most one of both issues is possible for a
given combination of solution parameter values and that we
can easily see which one. In either case, we can reduce the
remaining problem to an instance of EXACT k-ITEM KNAP-
SACK. In both cases, the value of each c∗ ∈ C∗ is set to its
utility for the coalition (this is well-defined: due to Obser-
vation 1 we can assume that each manipulator has the same
utility function) and the weight is set to to z − scoreV (c

∗)
if c∗ is preferred to ĉ with respect to F and otherwise to
(z+1)− scoreV (c

∗). The capacity is set to s∗ if s∗ ≤ w · k∗
and to k∗ · (w − 1) − (s∗ − s+ + k∗) if s∗ > w · k∗, where
s+ denotes the total number of approvals which can be safely
distributed to candidates in C \ {ĉ} without causing one of
the candidates from C∗ to reach score at least z (resp. at least
z + 1). We omit technical details (especially for the case
where s∗ ≤ w · k∗).

As for the running time, we iterate through at most n +
w ≤ 2n values for z, at most m values for c+, and
we can solve EXACT k-ITEM KNAPSACK (the variant of
KNAPSACK where the solution needs to have exactly k
items) in O(knm2) time by using dynamic programing via
weights [Kellerer et al., 2004, Chapter 9.7.3] (note that the
overall sum of weights is trivially bounded by n ·m).

5.2 Egalitarian: Hard for Simple Tie-Breaking
In Subsection 4.2, we showed that already breaking ties might
be computationally intractable. The intractability results only
hold with respect to egalitarian evaluation and optimistic ma-
nipulators. We now show that this intractability transfers to
coalitional manipulation for any tie-breaking rules and egal-
itarian evaluation. This includes the pessimistic egalitarian
case which we consider to be highly relevant as it models
searching for a “safe” strategic voting strategy in a very natu-
ral way.
Proposition 2. There is a polynomial-time many-one reduc-
tion from Fegal

opt -TIE-BREAKING to `-Bloc-F-egal-COALI-
TIONAL MANIPULATION for any tie-breaking rule F .
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Feval
bhav-TIE-BREAKING, easy cases (Cor. 1):

settings (evaluation, behavior) complexity

utilitarian/cand.wise egalitarian,
O(m · (w + logm))optimistic/pessimistic

egalitarian, pessimistic O(w ·m logm)

Fegal
opt -TIE-BREAKING (egalitarian, optimistic):

parameters, restrictions complexity ref.

general NP-complete Thm. 1
k, 0/1 utilities W[2]-hard Thm. 1
w + k W[1]-hard Thm. 2
w + umax ILP-FPT Thm. 3

`-Bloc-F-eval-COALITIONAL MANIPULATION
utilitarian/cand.wise egalitarian, optimistic/pessimistic:
restrictions complexity ref.

general O(kn2m3) Thm. 5
consistent manipulators O((n+m)n) Thm. 4
` = k O((n+m)n) Cor. 2

`-Bloc-F-eval-COALITIONAL MANIPULATION
egalitarian, optimistic/pessimistic:
parameters, restrictions complexity ref.

general NP-complete Cor. 3
k, 0/1 utilities W[2]-hard Cor. 3
w + k W[1]-hard Cor. 3
w + umax ILP-FPT Thm. 6

Table 1: Computational complexity of tie-breaking and coalitional manipulation. Our results for `-Bloc hold for any ` ≥ 1, and thus cover
SNTV. The parameters are the size k of the excellence-group, the number w of manipulators, and the maximum utility value umax :=
maxi∈[w],c∈C ui(c). Furthermore, m is the number of candidates and n is the number of voters.

The reduction keeps the egroup size and the number of
manipulators in the `-Bloc-F-egal-CM is upper-bounded by
w + k. This leads us to the following corollary.

Corollary 3. Parameterized by w + k, `-Bloc-F-egal-COA-
LITIONAL MANIPULATION is W[1]-hard. Parameterized by
k, `-Bloc-F-egal-COALITIONAL MANIPULATION is W[2]-
hard even if umax = 1.

Finally by using ideas from Theorem 5 and an adaption
of the ILP from Theorem 3 as subroutine, we can show that
fixed-parameter tractability for the combined parameter w +
umax transfers to coalitional manipulation.

Theorem 6. Parameterized byw+umax, `-Bloc-F -egal-CO-
ALITIONAL MANIPULATION is fixed-parameter tractable.

6 Conclusion
We developed a new model for and started the first systematic
study of coalitional manipulation for multiwinner elections.
Our analysis shows that multiwinner coalitional manipula-
tion requires models which are significantly more complex
than those for singlewinner coalitional manipulation or mul-
tiwinner (non-coalitional) manipulation. On the one hand, we
generalize tractability results for coalitional manipulation of
`-Approval by Conitzer et al. [2007] and Lin [2011] and for
(non-coalitional) manipulation of Bloc by Meir et al. [2008]
and Obraztsova et al. [2013] to tractability of coalitional ma-
nipulation of `-Bloc in case of utilitarian or candidate-wise
egalitarian evaluation of egroups. On the other hand, we
show that coalitional manipulation becomes computationally
intractable in case of egalitarian evaluation of egroups.

Let us discuss particular findings in more details (Ta-
ble 1 surveys our results in full detail). We studied lexico-
graphic, optimistic, and pessimistic tie-breaking and showed
that, with the exception of egalitarian group evaluation, win-
ner groups can be determined very efficiently. The intractabil-
ity (NP-hardness, parameterized hardness (W-hardness)) for
the egalitarian case, however, turns out to hold even for

quite restricted scenarios (including two parameter combi-
nations). We also demonstrate that most tie-breaking rules
can be “simulated” by (carefully chosen) lexicographic tie-
breaking, again except for the egalitarian case. Interest-
ingly, however, the hardness of egalitarian tie-breaking holds
only for the optimistic case while for the pessimistic case
it is efficiently computable. Hardness for the egalitarian op-
timistic scenario, however, translates into hardness results
for coalitional manipulation regardless of the specific tie-
breaking rule. On the contrary, coalitional manipulation be-
comes tractable for all other evaluation functions (different
from the “global” egalitarian one, that is, it is tractable for a
“candidate-wise” egalitarian one).

In our study, we entirely focus on shortlisting as one of the
simplest tasks for multwinner elections to design our evalua-
tion function. It seems interesting and non-trivial to develop
models for multiwinner rules that aim for proportional rep-
resentation or diversity. For shortlisting, extending our stud-
ies to non-approval-like scoring-based voting rules would be
a natural next step. In this context, already seeing what hap-
pens if one extends the set of individual scores from being
only 0 or 1 to more (but few) numbers might be of interest.
Moreover, we focused on deterministic tie-breaking mecha-
nisms, ignoring randomized tie-breaking.

Beyond the above, further research on manipulators behav-
ior directing towards game-theoretic aspects seems promising
as well. Intuitively, the utility for every voter that is a part
of the manipulating coalition should not be below the utility
the voter receives when voting sincerely. This is of course
only a necessary condition to ensure the stability of a coali-
tion. A more sophisticated analysis of stability needs to con-
sider game-theoretic aspects such as Nash or core stability.
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