Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

The Tractability of the Shapley Value over Bounded Treewidth Matching Games

Gianluigi Greco, Francesco Lupia, and Francesco Scarcello
University of Calabria, Italy
ggreco@mat.unical.it, {lupia,scarcello} @dimes.unical.it

Abstract

Matching games form a class of coalitional games
that attracted much attention in the literature. In-
deed, several results are known about the complex-
ity of computing over them solution concepts. In
particular, it is known that computing the Shapley
value is intractable in general, formally #P-hard,
and feasible in polynomial time over games defined
on trees. In fact, it was an open problem whether
or not this tractability result holds over classes of
graphs properly including acyclic ones. The main
contribution of the paper is to provide a positive
answer to this question, by showing that the Shap-
ley value is tractable for matching games defined
over graphs having bounded treewidth. The pro-
posed polynomial-time algorithm has been imple-
mented and tested on classes of graphs having dif-
ferent sizes and treewidth up to three.

1 Introduction

Coalitional games are mathematical models suited to study
value distribution problems among rational agents that can
obtain higher payoffs by collaborating with each other rather
than by acting in isolation [Osborne and Rubinstein, 1994].
In the paper, we focus on the problem of computing the
Shapley value [Shapley, 1953] in matching games, a class of
coalitional games where the value that agents guarantee to
themselves is defined in terms of matchings over an underly-
ing graph. In particular, let G=(N, E') be a graph whose set
N of nodes is transparently viewed as a given set of agents.
Then, for each coalition C' C N, the value vg(C) that agents
in C achieve by collaborating is given by the cardinality of a
maximum matching' in the subgraph induced by C.

Example 1.1. Consider the graph G = (N, E) in Figure 1,
with N = {a,b, ¢, d, i} being the set of its nodes. A match-
ing in this graph is M = {{a,i},{b,c}}, and is depicted
in bold. Note that there is no matching including more
than two edges, so that vg(N) = 2. The figure also re-
ports the subgraphs induced by the nodes in {a,d, c,i} and

'A generalization of these games can be defined by equipping
graphs with edge-weighing functions and by looking for weighted
matchings. This extension is not considered in the paper.
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Figure 1: The graph G and the matching M in Example 1.1 (left).
The subgraphs induced by two coalitions (right).

{b,¢,d,i}. Again, maximum matchings consisting of two
edges are evidenced. Therefore, we can immediately con-
clude that v ({a, d, ¢,i}) = va({b, ¢, d,i}) = 2. <

Matching games have attracted much attention in the lit-
erature, due to their wide spectrum of applicability. For in-
stance, when restricted to bipartite graphs, they go under the
name of assignment games and form a natural model to study
distribution problems in matching markets (see, e.g., [Roth
and Sotomayor, 1990; Shapley and Shubik, 1971]). Several
results are already known in the literature about the complex-
ity of computing over them solution concepts, that is, value
distributions embodying desirable fairness and stability re-
quirements. For instance, results have been derived for the
core [Deng et al., 1999; Alkan and Gale, 1990; Chalkiadakis
et al., 2016], the least core [Kern and Paulusma, 2003], and
the nucleolus [Biré et al., 2011; Kern and Paulusma, 2003;
Chen et al., 2012; Greco et al., 2014].

Aziz and de Keijzer [2014] observed that computing the
Shapley value is generally intractable over matching games,
formally it is #P-complete. Moreover, they showed that it
is computable in polynomial time when the maximum de-
gree of the underlying graphs is two, and they asked whether
this result can be extended to a non-trivial class of graphs
of degree at least three. The question has been then ad-
dressed by Bousquet [2015], who showed that the Shapley
value over trees can be computed in polynomial time, and
left open the problem of assessing whether the result can be
extended to larger classes of structures, such as the graphs
having bounded freewidrh [Robertson and Seymour, 1984].

In the paper, we provide a positive answer to this ques-
tion left open in the literature. The result is established via a
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polynomial-time algorithm whose design exploits: (i) some
useful characterizations we derive for certain properties of
matchings, (ii) an encoding for such properties in terms of
monadic second order logic (MSO) formulas, and (iii) known
tractability results for MSO formulas over graphs having
bounded treewidth. As a further (more practical) contribu-
tion, the algorithm has been implemented and its scalability
has been experimentally validated.

Notably, our analysis and result also apply to the Banzhaf
value [Banzhaf, 1965], a closely-related solution concept.

2 Preliminaries

Matching Games. Let G = (N, E) be a graph, where N
and E are the sets of its nodes and edges, respectively. Any
edge e € F is a subset of nodes with |e| = 2. Recall that a
set M C FE is a matching (in G) if e; N e3 = (0, for each pair
of distinct edges e1,ea € M. We say that M is maximum
if IM| > |M’|, for each matching M’. The cardinality of a
maximum matching in G is denoted by max(G).

The matching game associated with the graph G = (N, E)
is the tuple Go=(N, v¢), where nodes in N are transparently
viewed as agents. Moreover, v is the function associating
with each coalition C C N the value v (C) = max(G[C]),
with G[C] being the subgraph induced by the nodes in C.

In the paper, we are interested in the computation of solu-
tion concepts for matching games, i.e., of ways of dividing
the total value vg (V) over each agent ¢ € N. In particular,
we focus on the Shapley value, which is a well-known solu-
tion concept such that the payoff associated with each agent
1€ Nis

#i(Gc) =

s IGINIZIC= 0 4 cugip-va ().
CCN\{i} ’

Treewidth. A tree decomposition of a graph G = (N, E) is
a pair (T, x), where T is a tree, and  is a labeling function
assigning to each vertex p in T a set of nodes x(p) C N, such
that the following conditions are satisfied: (1) for each node
x € N, there exists p in T such that x € x(p); (2) for each
edge {z,y} € F, there exists p in T" such that {z,y} C x(p);
and, (3) for each node x € N, the subgraph of T" induced by
all nodes p such that = € x(p) is connected.

The width of (T, x) is the number max,er(|x(p)| — 1).
The treewidth of G, denoted by tw(G), is the minimum width
over all its tree decompositions. Treewidth is a true general-
ization of acyclicity: G is acyclic if, and only if, tw(G) = 1.
A class of graphs has bounded treewidth if there is some &
with tw(G) < k, for every graph G in the class (see [Gottlob
et al., 2016] for a recent survey on decomposition methods).

Example 2.1. Consider the graph G in Figure 1. We have
tw(G) > 1, for instance because of the cycle over the nodes
a, ¢, and d. In fact, tw(G) = 2 holds, as it is witnessed by the
tree decomposition reported in Figure 2. <

3 Useful Properties on Maximum Matchings

The first ingredient for showing tractability over bounded
treewidth matching games is to derive some properties of
maximum matchings that simplify the subsequent analysis.
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Figure 2: A width-2 tree decomposition of G.

Let M be a matching in a graph G = (N, E). A node
x € N is said M-matched if there is some edge e € M
with x € e; otherwise, x is M-exposed. A path is a se-
quence of distinct nodes 71, ..., T, With m > 1, such that
{mj,mjy1} € E, for each j € {1,..,m — 1}. The path
is said M-alternating if each pair of adjacent edges satisfy
{mj,mjy1} € M and {mj41,mj42} ¢ M, or vice-versa
(j € {1,...,m — 2}). Moreover, the path is M-augmenting
if it is M -alternating, and 7 and 7, are M -exposed; in fact,
they are the only M -exposed nodes occurring in the path.

Note that M is a maximum matching if, and only if, there
is no M -augmenting path [Berge, 1957].

Example 3.1. Consider again the graph G and the matching
M of Figure 1. Note that d is M-exposed and, for instance,
that ¢, a, d is M-alternating. However, ¢ is M-matched and
thus the path is not M -augmenting. In fact, there is no M-
augmenting path, as M is a maximum matching. <

The following definition introduces a crucial notion for an-
alyzing matching games.

Definition 3.2. A node x € N is blocked by a matching M if
e 1 is M-exposed, and

e for each M-alternating path 1, ..., T, with m = z, it
holds that m,,, is M -matched.

Example 3.3. Consider node 4 in our running example. It
is easy to check that ¢ is not blocked by the matching M =
{{a,i},{b,c}}. Moreover, note that 7 is not blocked by the
matching {{b, c}}, while it is blocked by {{a, d}, {b,c}}. <

Actually, since any single edge is an alternating path, the
following is an equivalent characterization of Definition 3.2.

Fact 3.4. A node x € N is blocked by M if, and only if, for
each M-alternating path 7y, ..., w,, with m) = z, it holds that
T 18 M-matched and {my, 7} & M.

We next show that, for this notion, it is not necessary to
focus on maximum matchings.

Lemma 3.5. A node @ € N is blocked by some maximum
matching if, and only if, it is blocked by some matching.

Proof Sketch. Assume that ¢ is blocked by a matching M;
for which there exists an M;-augmenting path 71, ..., 7).
Consider the matching Ms obtained from M; by removing
all edges traversed by 71, ..., 7, and by adding all edges in
E \ M traversed by 7/, ...,m;. Thatis, M, is the match-
ing obtained by “augmenting” M via the path 7f,..., 7.
Clearly, |Ms| > |Mi|. Moreover, note that each node 773—,
with j € {1,..., h}, is not M>-exposed. Now, let 71, ..., T, be
any Ms-alternating path with 7; = ¢. We shall show that the
node 7, is not My-exposed and {71, 7, } & M.
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Claim. 7y, ..., Ty and 7\, ..., 7}, do not share any edge. By
contradiction, consider the smallest index k& € {1,...,¢q—1}
and an index j € {1,...,h—1} such that 7} = 7y and ) ; =
Tkt 1. Note that if & = 1, then the path 7, 7r§-+1, ..., T}, would
witness that ¢ is not blocked by M7, which 1s impossible. In-
deed, we would have that 71, = i and that 7y, 77, ..., 7,
is M -alternating, with 7j, being M;-exposed (for this latter
property, just recall that 7/, ..., 7}, is M;-augmenting). This
means that we necessarily have £ > 1, and that 7y, ..., Tg
is an M;-alternating path. Now, in the case where j = 1
holds, we have 7, = 7}. Therefore, the path 71, ..., 7, would
again witness that ¢ is not blocked by M;, which is impos-
sible. So, we have j > 1. Hence, the node 7, = 7r§» is
adjacent to the nodes Tx_1, 773_1, and Ty = 7r§+1. Re-
call that 71, ..., 7}, is M -alternating and assume first that the
edge {7}, m;_4} isin My. Then, {71, 7} ¢ M, because
ﬂ;. (= 7) is matched to someone else. Because M7 and
M5 are equal for edges in the path 7, ..., Tx below k, it fol-
lows that 71, ..., Tj—1, 7}, 7;_y, ..., Ty is My-alternating. The
same holds if we assume instead that the edge {r, 7;_;} is
not in M;. Indeed, in this case {71'3», 7T;-+1} € M, and thus,
by definition of My, {7k, Tp+1} & Mo and {7p_1,7x} €
M by alternation, that is, {7x_1, 7r;} € M;, because
the two matchings are equal below k. Again, we get that
Tl ey Tl 1, Ty Tj_q, -0, 7 i M-alternating. Since 77 is
M -exposed, this contradicts that ¢ is blocked by M. <o

Given the above claim, we derive that 7y, ..., 7, is also
M -alternating; hence, {71,7,} ¢ M;i. It then follows
that {71, 74} & Moa, because we have already observed that
71 = i cannot occur in the path 77, ..., 7}, and thus cannot be-
come Ms-matched. To conclude, we have then to show that
Tq is My-matched. This is trivial if 7, € {n{,..., 7}, }. Oth-
erwise, if 7, & {7}, ..., 7}, }, then @, is M>-matched because
it is M;-matched and it does not occur in the path where the
two matchings may differ.

Now, either M5 is a maximum matching, or we can repeat
the above construction, until we eventually get a sequence
My, Ms, ...., M, of matchings such that ¢ is blocked by each
of them and | M| < |Ms| < ... < |M,|, with the latter being
a maximum matching of the given graph. O

Example 3.6. Recall from Example 3.3 that node ¢ is blocked
by the matching {{a, d}, {b, ¢} }. This is actually a maximum
matching. In fact, it can be checked that {{a, d}, {b, c}} is
the only matching blocking <. <

4 Characterization of Marginal Contribution

Our second step is to relate the fact that an agent 7 is blocked
(cf. Definition 3.2) with the value of the quantity vg(C' U
{i}) — va(C), for each given C' C N, occurring in the defi-
nition of the Shapley value. Note that this value is known as
the marginal contribution of agent i to coalition C' U {i}.

Assume hereinafter that C C N is a coalition and let i be a
node in N \ C'. We show that the condition of 7 being blocked
by some matching in the subgraph G[C' U {i}] precisely de-
termines the marginal contribution of i to C' U {i}—note in
the proof the role played by Lemma 3.5.
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Figure 3: A matching that does not block node 7 (left). A maximum
matching that blocks 7 (right).

Lemma 4.1. The following statements are equivalent:

(1) va(CU{i}) —va(C) =0;
(2) i is blocked by some matching M in G[C U {i}].

Proof. (7)=(2) Let M be a maximum matching in G[C].
Since v (C U {i}) — ve(C) = 0, M is also a maximum
matching in G[C U {i}]. Consider, then, any M -alternating
path 7y, ..., T, in G[C' U {i}] with m; = i. Since M is a
matching in G[C] and i ¢ C, then 7y is clearly M-exposed
in G[CU{i}]. In particular, {7y, 7, } € M. Assume now, by
contradiction, that 7, is M-exposed, too. Then, 71, ..., T, 18
M-augmenting in G[C' U {i}], which is impossible.

(2)=-(1) Because of Lemma 3.5, we can assume that M is
a maximum matching in G[C' U {i}]. Because i is blocked
by M, we know that ¢ must be M-exposed. Then, M is also
a maximum matching in G[C] and we have concluded, since
’U(;(C U {Z}) — Ug(C) = 0 holds. O

We continue the chain of equivalences of Lemma 4.1, by
providing a number of conditions that can easily be checked.
In the following, given the graph G = (N, E), we define

rp as the set of pairs Uy, 1 ep{(2,9), (y,2)}-

Lemma 4.2. The following statements are equivalent:
(2) i is blocked by some matching M in G[C' U {i}];
(3) There are sets B C rg, I C N, and O C N satisfying
on G[C U {i}] the conditions (a),...,(f) of Figure 4.

Before providing the proof of the result, consider the coali-
tion C = {a,b,c,d} and Figure 3, which shows two ex-
amples of sets B, I, and O. Intuitively, B encodes some
matching, whose edges are however oriented according to
the way they are traversed along some alternating path start-
ing at node 7. Any edge can actually be traversed in both
directions. For instance, for the matching {{a,d},{b,c}},
the paths i, a,d, c,b and ¢, b, ¢, d, a show that the two edges
{a, d} and {b, ¢} can be traversed in both directions.

Note that the sets on the left part of Figure 3, with B =
{(b,¢)} violate Condition (d). Instead, the sets on the right
part of Figure 3, with B = {(a,d), (b, ¢), (d,a), (¢,b)} sat-
isfy all conditions and, by Lemma 4.2, they witness that ¢ is
blocked by some matching (in fact, precisely by the maxi-
mum matching {{a,d}, {b, c}}).

Proof Sketch of Lemma 4.2. (2)=(3) Assume that ¢ is
blocked by some matching M in G[C' U {i}], and consider
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(a) i & I;

The distinguished node ¢ does not belong to the set 1.
(b) Vz,y € CU{i}, ((z,9)€B))— (y€l);

(c) Vz e CU{i},Vy € C,

d) Vze CU{i}, z€0 — (EIzGCsuchthat (z,2) GB);

(f) vz € C, (i,x)ErE%(((i,x)%B)A(mGO));

Every node x € O must have an outgoing edge that belongs to B.

(e) Vz,y,y' € CU{i}, (((m,y) € BA(x,y) € B)V ((y,2) € BA (Y ) € B)V ((y,2) € BA(z,y') € B) ) S y=1v);

By looking at the undirected version of B, every node cannot have more than one incident edge.

The set B is meant to encode all the edges of the matching M in G[C' U {i}] (cf. Lemma 4.2.(2)), by adding an orientation to
them. The condition states that for each element (z,y) € B, the destination node y belongs to I.

((r,y)ETE/\(xGI)) — (y € 0);
If the source node of an edge in G[C' U {i}] belongs to I, then the destination node must belong to O.

For the distinguished node ¢, every outgoing edge does not belong to B and the destination node belongs to O.

Figure 4: Properties in Lemma 4.2.(3) that must hold on sets B C rg, I C N,and O C N.

the sets B, I, and O built as follows. For each edge {z,y} in
G[C U{i}] if there is an M -alternating path 7y, ..., 7, in this
subgraph with 7; = ¢ and such that x = 7; and y = 7,41, for
some index j € {1,...,m—1}, and {z,y} isin M, then (x, y)
isin B, x € O, and y € I. For each edge {i,y} € E\ M,
we set y € O. No other element is in B, I, or O. Note that
the sets trivially satisfy (a), (b), and (e).

Concerning (c), let my, ..., 7, be an M-alternating path
in G[C U {i}] with 1y = ¢ such that, for some index
j€e{2,...m} 7, =xwithe € [and {mj_q1,m;} € M
hold. Note that 7;_; € O. Then, assume that {z, y} is in
E withy € C and y # mj_1. We have that {z,y} ¢ M
and 7y, ..., 7, y is M-alternating. Since 7 is blocked by M, y
is M-matched and {71, y} & M. Therefore, there is an edge
{y,z} € M and the path 7y, ..., 7;, y, z is M -alternating, too.
By construction, this entails that y € O.

Concerning (d), assume first that there is an M -alternating
path 71, ..., 7, with 71 = ¢ such that, for some index j €
{1,...,m — 1}, m; = x with z € O and where {m;, 711} €
M holds. In this case, (x,7;11) € B holds, by construction.
The other possibility is that {i,2} € E \ M. In this case,
since i is blocked by M, there must be a node z # 4 such that
{z, 2z} € M. Again, by construction, we have (z, z) € B.

Concerning (f), note that there is no z € N with {i,z} €
M; otherwise, the path ¢, x would witness that ¢ is blocked by
M. By construction, we hence have (i,z) ¢ B and x € O.

(3)=(2) Assume that B, I, and O satisfy all the proper-
ties listed in the statement. Consider the set M = {{z,y} |
(z,y) € B,z € CU{i},y € CU{i}}. Because of (e), it is
immediate that M is a matching in G[C U {i}]. Moreover, by
(a), (b), and (f), we derive that there is no node y € N such
that {7, y} is in M, that is, i is M-exposed. Consider then any
M -alternating path 71, ..., 7, of G[C' U{i}] with my = i. We
shall show that m,,, is M -matched.

To this end, we first claim that, for each natural number
h > 1suchthat 2h+1 < m, it holds that {mop_1, Top} € M,

1049

(mon, Tont1) € B, mop € O. For h = 1, we have just to ob-
serve that {m;,m} ¢ M and, by (f) 7o € O. Moreover,
from (d) we necessarily have (m2,2) € B with z = 73,
because {my,m3} € M, by alternation, and (e) must hold.
So, let us assume that the property holds at some natural
number h, and we show that it holds at & + 1 with 2(h +
1) + 1 < m, too. Indeed, we know that (map,, mop41) € B
and hence {map, Ton+1}+ € M, by construction. Moreover,
by (b), mep+1 € I. By (¢), mant2 € O. By alternation,
{mon+1, Tont+2} & M. Then, as in the base case, by (d) and
(©), (mont2, T2n+3) € B and {map42, mony3}t € M.

In the light of this result, if m is odd, then we can immedi-
ately conclude that 7, is M-matched. Otherwise, we know
that (7,,—2, Trm—1) € B. By (b), m,—1 € I. By (¢), T, € O.
By (d), there is a node z such that (m,,,z) € B. Then, we
conclude that 7,,, is M -matched.

O

5 Tractability Results

We are now ready to discuss the third ingredient of our elabo-
ration, namely the use of tractability results for the evaluation
of certain logic formulas bounded-treewidth graphs.

5.1 MSO Formulas

Recall that we viewed any graph G = (N, E) as a structure
whose domain is NV and where the set of its edges is encoded
as a binary relation rg = Uy, 1ep{(2,9), (y,2)}.

Over structures of this kind, we can build monadic second
order (MSO) logic formulas by using the relation rg, indi-
vidual variables, the logical connectives V, A, and —, and the
quantifiers 3 and V. Moreover, these formulas allow the use
of node and edge variables, ranging over the possible subsets
of N and rg, respectively, of the membership relation €, and
of the quantifiers 3 and V over node and edge variables. In
addition, it is often convenient to use symbols like =, C, C,
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N, U, and — with their usual meaning, as abbreviations. The
fact that a MSO formula ¢ holds over G is denoted by G = ¢.

Example 5.1. The well-known 3-coloring problem on G =
(N, E) can be encoded via the following MSO formula ¢:
3R,B,Y, RUBUY =N A
RNB=0ANRNY=0ABNY=0A
Va, x € B— (Vy,(z,y) €Ere = —(y € B)) A
Ve, v € R— Yy, (z,y) €re = ~(y € R)) A
Ve, z €Y = (Vy, (z,y) Erg — ~(y €Y))
Indeed, G = ¢ if, and only if, there exists a partition of
the nodes in NV into three disjoint sets of nodes R, B, and Y’
(corresponding to nodes colored red, blue, and yellow) and
such that no adjacent nodes take the same color. <

A basic relationship between treewidth and MSO is illus-
trated in the following master theorem.

Theorem 5.2 (cf. [Courcelle, 1990]). Let ¢ be a fixed MSO
sentence, let k be a fixed constant, and let Cy, be a class of
graphs having treewidth bounded by k. Then, for each G €
Cy, deciding whether G |= ¢ is feasible in linear time.

For instance, from the above theorem and Example 5.1,
we can immediately conclude that 3-colorability is a property
that can be checked in linear time on classes of graphs having
bounded treewidth—in general, the problem is known to be
NP-complete (see, e.g., [Garey and Johnson, 1979]).

To our ends, however, we need a recently proposed his-
togram version of Courcelle’s theorem, which allows us to
count solutions of a given size to MSO formulas on graphs
having bounded treewidth. The result it recalled below.

Let ¢(C) be a MSO sentence, where C' is a free, i.e., not
quantified, node set variable and, for each C C N, let (b(é)
denote the formula where C'is fixed to be the set C. Then,
for each graph G = (N, E) and each natural number d €
{1,...,|N|}, define histogram(¢(C), G, d) as the number of
subsets C' C N with |C| = d and such that G = ¢(C).

Theorem 5.3 (simplified from [Elberfeld et al., 2010]). Let
@(C) be a fixed MSO sentence, let k be a fixed constant, and
let Cy, be a class of graphs having treewidth bounded by k.
Then, for each G = (N, E) € Cy, and for each natural num-
ber d € {1,...,|N|}, computing histogram(¢(C),G,d) is
feasible in deterministic logspace (hence, polynomial time).

For an illustration, let ¢(R) be the formula obtained from
the one discussed in Example 5.1 by dropping the existential
quantification of R. Then, histogram(¢(R),G,3) returns
the number of triples of nodes that can be colored with the
same color (red) in some valid coloring of G. According to
the above result, this number can be computed in polynomial
time, whenever G is taken from some class of graphs having
bounded treewidth.

5.2 Putting It All Together

The above result is the basis for our complexity analysis of the
Shapley value. The characterization illustrated in Section 3
for the marginal contribution will also play a crucial role here.

Theorem 5.4. The Shapley value can be computed in polyno-
mial time on matching games defined over any class of graphs
having bounded treewidth.
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Proof. Let us start by noticing that, for each agents € NN, the
Shapley value can be rewritten as follows:

n—1

hl(n-h-1)!
6:(60) = 3° s (G, ),
h=0 ’
where n = |N| and, for each h € {0, ...,n — 1}, it holds that
Bi(Gah)= (UG(C U{i}) - vg(C)). )

CCN\{i},|C|=h

We show that the value of the expression in Equation 1 can
be computed in polynomial time.

The basic observation is that we can build a Monadic Sec-
ond Order (MSO) formula ¢;(C') encoding conditions (a)—
(f) in Lemma 4.2, where G is viewed as a relational struc-
ture over domain N and relation rg. In particular, B is
an existentially-quantified edge-set variable, I and O are
existentially-quantified node-set variables, and C' is a free
node-set variable. Then, given Lemma 4.1 and Lemma 4.2,
the number of coalitions C C N \ {i} for which vg(C U
{i}) —ve(C) = 0 holds and with |C| = h coincides with the
number of coalitions C C N \ {i} with |C| = h for which

G = ¢;(C). This number can be computed in polynomial
time because of Theorem 5.3 and, based on it, the value of
the expression in Equation 1 can be easily computed (in poly-
nomial time, too) by observing that vg(C U {i}) — vg(C) €
{0,1}, foreach C C N\ {i}. O

A similar approach can be used to prove the tractability on
graphs having bounded treewidth of the Banzhaf value,” for
which the payoff of ¢ is

1
Bi(Ga) = SINTT Z

CCN\{i}

(vg(c u{i}) - UG(C)).

In this case we are even able to derive a linear time algo-
rithm, rather than a polynomial-time one.

Theorem 5.5. The Banzhaf value can be computed in lin-
ear time on matching games defined over any class of graphs
having bounded treewidth.

Proof Sketch. We shall show that, for each node i € N, we
can compute in linear time the value of the expression

3 (vg(c u i) — vG(C))A @)

CCON\{i}

Indeed, we can proceed as in the proof of Theorem 5.4, by
eventually noticing that the number of coalitions C' C N\ {i}
for which v (CU{i}) —vg(C) = 0 holds coincides with the

number of coalitions C' C N \ {i} for which G = ¢;(C).

In this case, however, a linear-time algorithm follows and
thus we conclude, by recalling that counting all instantiations
of a free node variable leading to satisfy a given MSO formula

was shown to be feasible in linear time over graphs having
bounded treewidth [Courcelle et al., 2001]. O

The question of whether this value is intractable over arbitrary
matching games is not addressed in the literature, and is an interest-
ing avenue of research, though outside the scope of this paper.
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Figure 5: Illustration of directed edge encoding.

6 MSO in Practice

An interesting feature of our approach to show the tractabil-
ity of the Shapley value over bounded treewidth games is that
the MSO encoding provides us with a declarative, yet ’exe-
cutable” specification for its computation. Indeed, we directly
followed the steps shown in the proof of Theorem 5.4 by im-
plementing them in a JAVA system prototype and by delegat-
ing to the MSO solver Sequoia [Langer, 2013] the computa-
tion of the histogram of the formula in that proof

Implementation Issues. Note that Sequoia supports the eval-
uation of MSO formulas defined over graphs whose nodes
can be equipped with some input labels. However, only undi-
rected graphs can be dealt with. This is not problematic when
checking the existence of an edge (x,y) € rg, since rg is
a symmetric relation. However, the set B in Lemma 4.2 is
a set of directed edges. In order to deal with the orienta-
tion of edges in B, we transformed every undirected edge
{z,y} in the input graph by adding two auxiliary nodes la-
beled ”fresh”, as depicted in Figure 5. Then, in the spec-
ifications reported in Figure 4, a set of ”fresh” nodes By
can be used to simulate the set B, with the intended meaning
that (x,y) € B (resp., (y,x) € B) if, and only if, there are
two fresh nodes e(; ) and e(, ) as in Figure 5 and where
€(z,y) € BN (resp., ey +) € Bn).

Benchmark. In order to assess the performances of the pro-
totype implementation, we considered a benchmark of syn-
thetic instances taken from three distinct families of graphs,
namely (complete binary) trees, ladder graphs, and Halin
graphs. These are well-known classes of graphs (whose
treewidth is 1, 2, and 3, respectively) which can be used to
evaluate the behavior of the prototype for different treewidth
values and for growing sizes of the input graphs. In addition,
we considered some real graphs corresponding to author re-
lationships of scientific works in a university (see [Greco and
Scarcello, 2013; 2014]).

Results. Experiments have been performed on a dedicated
machine equipped with an Intel Core 17-3770k 3.5 GHz pro-
cessor, 12 GB (DDR 1600 MHz) of RAM, and operating sys-
tem Linux Debian Jessie. Our Java algorithms were executed
on the JDK 1.8.0 05-b13 and the GNU g++-4.9 compiler was
used to compile Sequoia. Results are reported in Table 1.

It can be checked that, for any fixed treewidth value, the
prototype nicely scales w.r.t. the size considered of the in-
put graphs. As expected, however, performances deterio-
rate at the growing of the treewidth. In addition to the tim-
ings, it is very interesting to consider the overall number of
blocked coalitions that Sequoia has discovered, for each given
instance of the benchmark. In many cases, this number is im-
pressive, thereby witnessing the effectiveness of the symbolic
computation exploited by the MSO solver. In fact, we remark
that results are reported for graphs up to 100 nodes, for which
a naive computation method based on explicitly enumerating
all possible (2'°) coalitions is clearly unfeasible.
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INSTANCE N.OF |N.OF |TW| TIME |N. OF BLOCKING

NODES | EDGES [SEC] COALITIONS
TREE 10 9 1 1.9 301
TREE 20 19 1 2.7 242451
TREE 30 29 1 2.7 344506149
TREE 40 39 1 3.0 3.28 E+11
TREE 50 49 1 3.0 2.96E+14
TREE 60 59 1 3.2 2.70E+17
TREE 70 69 1 3.2 1.46 E+20
TREE 80 79 1 3.3 3.65E+20
TREE 90 89 1 3.3 4.96 E+20
TREE 100 99 1 3.9 6.01E+20
LADDER-3 6 7 2 37.1 16
LADDER-6 12 16 2 144.2 1024
LADDER-9 18 22 2 57.8 65536
LADDER-12 24 34 2 19.6 4194304
LADDER-15 30 43 2 22.7 268435456
LADDER-18 36 52 2 20.0 17179869184
LADDER-21 42 61 2 | 458.3 1.09E+12
LADDER-24 48 70 2 20.1 7.03E+13
LADDER-27 54 79 2 | 612.6 4.50E+15
LADDER-30 60 88 2 33.7 2.88E+17
HALIN-6 6 9 3 195.7 14
HALIN-8 8 12 3 930 58
HALIN-10 10 16 3 194.4 237
HALIN-12 12 18 3 13510.2 867
HALIN-15 15 23 3 539.6 6990
COAUTH-1 10 12 2 7.5 230
COAUTH-2 15 15 2 20.3 5040
COAUTH-3 20 27 3 | 4354 193998
COAUTH-4 25 28 2 95.4 5909504
COAUTH-5 30 37 3 | 477.6 211235477
COAUTH-7 35 42 2 70.1 9817601112
COAUTH-8 40 45 2 95.4 2.37TE+11
COAUTH-9 45 50 2 84.7 1.10E+13

Table 1: Summary of experimental results.

7 Conclusion

Computing the Shapley value has been shown to be #P-
complete on different classes of games (see, e.g., [Deng and
Papadimitriou, 1994; Nagamochi et al., 1997; Bachrach and
Rosenschein, 2009]), including matching games [Aziz and
de Keijzer, 2014]. Moving from these bad news, we have
faced the questions left open by [Aziz and de Keijzer, 2014;
Bousquet, 2015], by showing that the Shapley value (and the
Banzhaf value) of matching games can be computed in poly-
nomial time over graphs having bounded treewidth.

Note that for the related class of allocation games [Moulin,
1992], the Shapley value is also known to be #P-complete,
but it is tractable when restricted over graphs having bounded
treewidth [Greco et al., 2015]. Despite the similarities
with allocation games, inspection reveals that the approach
of [Greco et al., 2015] cannot be extended to matching games.
Moreover, our approach differs from the one used by [Bous-
quet, 2015] to show tractability of matching games over trees.

An interesting avenue of further research is to assess
whether, on bounded treewidth games, the Shapley value is
not only tractable, but even fixed-parameter tractable, that is,
solvable in time f(k) - ||G]|9™"), for each G € Cy, for some
function f depending only on the width k. Moreover, it is
open whether tractability still holds over weighted graphs.
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