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Abstract
We critically examine and point out weaknesses
of the existing considerations in Boolean matrix
factorization (BMF) regarding noise and the algo-
rithms’ ability to deal with noise. We argue that
the current understanding is underdeveloped and
that the current approaches are missing an impor-
tant aspect. We provide a new, quantitative way to
assess the ability of an algorithm to handle noise.
Our approach is based on a common-sense defini-
tion of robustness requiring that the computed fac-
torizations should not be affected much by vary-
ing the noise in data. We present an experimental
evaluation of several existing algorithms and com-
pare the results to the observations available in the
literature. In addition to providing justification of
some properties claimed in the literature without
proper justification, our experiments reveal proper-
ties which were not reported as well as properties
which counter certain claims made in the literature.
Importantly, our approach reveals a line separating
robust-to-noise from sensitive-to-noise algorithms,
which has not been revealed by the previous ap-
proaches.

1 Introduction
1.1 Basic Concepts and Notation
We denote an n × m Boolean matrix by M and interpret it
primarily as an object-attribute matrix. That is, Mij indicates
that the object i does (Mij = 1) or does not have (Mij = 0)
the attribute j, respectively. The set of all n×m Boolean ma-
trices is denoted by {0, 1}n×m. The ith row and jth column
vector of M is denoted by Mi and M j , respectively.

The general problem in BMF is to find for a given M ∈
{0, 1}n×m matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m for
which

M (approximately) equals A ◦B, (1)

where
(A ◦B)ij = maxkl=1 min(Ail, Blj).

∗Supported by grant No. GA15-17899S of the Czech Science
Foundation.

The least k for which an exact decomposition M = A ◦ B
exists is called the Boolean rank (Schein rank) of M .

The approximate equality in (1) is commonly assessed in
BMF by means of the L1-norm || · || and the corresponding
metric E(·, ·), defined for C,D ∈ {0, 1}n×m by

||C|| =
∑m,n

i,j=1 |Cij |, (2)

E(C,D) = ||C −D|| =
∑m,n

i,j=1 |Cij −Dij |. (3)

Two important variants of the factorization problem, em-
phasizing the role of the first k factors and the need to
account for a prescribed portion of data, respectively, are
known as the discrete basis problem (DBP) and the approx-
imate factorization problem (AFP); see [Miettinen, 2009;
Miettinen et al., 2008] and [Belohlavek and Vychodil, 2009;
Belohlavek and Trnecka, 2015].

Note also an important geometric view of BMF: A decom-
position M = A ◦B using k factors essentially means a cov-
erage of the 1s in M by k rectangular areas in M that are
full of 1s, the lth rectangle being the crossproduct of the lth
column in A and the lth row in B; see e.g. [Kim, 1982].

If for an approximate decomposition M ≈ A ◦ B, Mij =
1 and (A ◦ B)ij = 0, one speaks of uncovering (or false
negative) in entry 〈i, j〉; if Mij = 0 and (A ◦ B)ij = 1, one
speaks of overcovering (or false positive).

For the assessment of quality of decompositions one usu-
ally employs the error E(M,A ◦B), see (3), or some variant
of it. We utilize the coverage quality [Belohlavek and Vy-
chodil, 2009; Belohlavek and Trnecka, 2015] of the first l
factors delivered by a particular algorithm, which is a func-
tion of A ∈ {0, 1}n×l and B ∈ {0, 1}l×m defined by

c(l) = 1− E(M,A ◦B)/||M ||, (4)

but as long as error is the main concern, the sole E(M,A◦B)
or other variant of it may be used.

1.2 Relevant Work in BMF
Due to limited scope, we focus on the directly relevant work
only. Perhaps the first works on applications of BMF in data
analysis are [Nau, 1976; Nau et al., 1978], in which the au-
thors have already been aware of NP-hardness of the basic
decomposition problem due to NP-hardness of the set basis
problem [Stockmeyer, 1975]. An early but currently virtually
unknown is the 8M algorithm [Dixon, 1992] which we em-
ploy in our experiments below. Interest in BMF in current
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data mining is primarily due to the work of Miettinen et al.
In particular, the DBP, the corresponding complexity results,
and the ASSO algorithm discussed below appeared in [Miet-
tinen, 2009; Miettinen et al., 2008]. The ASSO algorithm is
currently widely known and is often being used for compari-
son purposes when a new algorithm is devised. Little earlier,
an important paper [Geerts et al., 2004] appeared in which
the authors presented the TILING algorithm for a problem
(tiling problem) which upon easy reformulation is basically
the problem of finding a decomposition of a Boolean matrix
in which no overcovering is allowed. A much more efficient
BMF algorithm, GRECOND, which does not commit over-
covering, was presented in [Belohlavek and Vychodil, 2009]
under the name Algorithm 2; the name GRECOND is used
in [Belohlavek and Trnecka, 2015]. In [Belohlavek and Tr-
necka, 2015], the GREESS algorithm is proposed, which is
based on a new theoretical insight regarding BMF. Unlike
ASSO, which is designed for DBP, GRECOND and GREESS
are primarily designed for the AFP problem, and so is TILING
from the present perspective. HYPER [Xiang et al., 2011]
is another BMF algorithm which does not commit overcov-
ering; its extension, HYPER+, based on a certain postpro-
cessing of the HYPER results, computes general decompo-
sitions (i.e. those which may commit bot under- and over-
covering). The PANDA algorithm [Lucchese et al., 2010]
is directly motivated by the problem of noise and we em-
ploy it in our experiments. [Lucchese et al., 2014] presents
PANDA+, an enhanced version of PANDA. [Karaev et al.,
2015] presents NASSAU, an algorithm principle whose aim is
robustness w.r.t. a particular kind of noise.

The problem of noise in Boolean data has perhaps for the
first time been discussed in the context of frequent itemset
mining, see e.g. [Gupta et al., 2008] and the references
therein. Since [Miettinen, 2009; Miettinen et al., 2008],
considerations on noise became part of BMF research. The
aim, implicitly or explicitly stated in many subsequent stud-
ies, is to devise algorithms able to handle noise. We return
to this problem in detail below. Let us also mention at this
point that the minimum description length (MDL) principle
is employed in various ways as a mean to achieve this abil-
ity in some of these studies [Lucchese et al., 2010; 2014;
Karaev et al., 2015], but also for other purposes such as iden-
tification of a reasonable number of factors explaining the
data [Miettinen and Vreeken, 2011; 2014].

2 Noise in BMF—A Critical Examination
2.1 What is Noise in Boolean Data?
In the current BMF research, noise in Boolean data basically
represents distortion of data, i.e. flipping some data entries
of true data. That is, a given (observed) data represented by
a matrix M , may be different from the true data M t. Two
kinds of noise are distinguished, the so-called additive noise,
due to which some 0s in M t are flipped to 1s, and subtractive
noise, due to which 1s are flipped to 0s; if both kinds of flips
occur, one speaks of noise or of general noise.

Considerations regarding noise in BMF go back to [Mietti-
nen, 2009; Miettinen et al., 2008] where noise has been used
to generate synthetic datasets: To add p% of additive noise to

a given matrix M means that the entries in M are changed
to 1 randomly with probability p% (other options are possi-
ble, but we use this one); similarly for subtractive and general
noise.

2.2 Is Noise Always a Reasonable Assumption?
Note first that the above usage of the term “noise” may seem
strange. Namely, while noise is generally understood as rep-
resenting random and mostly small fluctuations in data, for
Boolean data, a small fluctuation in value is not possible: If
an entry Mij is to change, it has to change “completely,” i.e.
from truth to falsity of from falsity to truth. From this per-
spective, a possibly more appropriate term would be “error”
(which may also bear unwanted connotations) or “lie” (which
is used in logic in this context). Nevertheless, more impor-
tant than terminology are considerations regarding the possi-
ble origin of noise, amount of noise, and its significance for
real data, which we briefly mention now.

Even though we take it for granted that presence of noise
in Boolean data is often a reasonable assumption, we need
to point out that many real datasets do not contain noise be-
cause they simply contain verified truth. In addition, there
exist applications of BMF, in which presence of noise would
be counterintuitive or even damaging—a generic example is a
scenario similar to that of the role mining problem [Lu et al.,
2008; Vaidya et al., 2007] in which the data represents users
and their security permissions. Therefore, contrary to the rea-
soning in some recent literature, one should not be conclud-
ing that algorithms that are not robust to noise are deficient:
They simply may be appropriate for a different, but realis-
tic and important scenario which is noise free. In fact, while
real-case studies of the noise-free scenario are available in the
literature, real-case studies in which noise appears are, by and
large, missing. Consequently, several questions have not been
addressed yet.

Important among them is the question of which levels of
noise are realistic. We contend that levels such as 40% or
higher, which appear in the BMF literature, are too high to be
realistic. Drawn from our own experience, errors in Boolean
data are typically up to 5%. Unless real-case situations with
higher levels of noise are existing, explorations of such levels
seems to not to be well-grounded.

In any case, higher noise levels present a problem which
has not been discussed to our knowledge so far, namely they
radically distort the data, even to the extent that new signif-
icant factors may appear in it while the original factors may
disappear. This is illustrated in Fig. 1. To ask a BMF algo-
rithm to extract the original factors would therefore be wrong.
The phenomenon at stake should therefore carefully be taken
into account.

2.3 A Rationale for Robustness to Noise
We now provide an explicit formulation of a rationale for ro-
bustness of BMF algorithms to noise, which is the main prob-
lem of this paper. We claim that this rationale grasps well the
expectations implicitly present in the existing studies. Con-
sider matrices M in Fig. 2a and N in Fig. 2b. In the observed
data M , one clearly recognizes three rectangles, the union of
which forms the gray area in Fig. 2a, even though some of
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(a) Original data (b) Noise added (c) Permuting (b)

Figure 1: Data in (b) results by adding 40% noise to (a); white rep-
resents 0s, black/gray represents 1s. The original three factors in (a)
are no longer significant; new factors explain the noisy data. These
are apparent from (c) which contains data (b) with appropriately per-
muted rows and columns.



1 0 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 1 1 1 1 1 0 1 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0


(a) Observed data



1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1


(b) Hypothetical true data

Figure 2: Three factors of hypothetical true data explaining observed
data

the entries inside the area contain 0 rather than 1. A natural
view is that M results from the true data, represented by N ,
by error (noise). From this viewpoint, one is interested in dis-
covering from the observed data M the three factors behind
the true data N , i.e. discovering from M the 10×3 and 3×10
matrices A and B for which A ◦B = N .

Note now that since the gray areas contain 0s, the three
factors commit overcovering. Consequently, none of the al-
gorithms which do not commit overcovering (TILING, GRE-
COND, HYPER, GREESS) is able to discover these factors.
This is the basic reason why such algorithms have limited ca-
pability in recovering factors when subtractive noise is added.
On the other hand, the algorithms committing both under-
and overcovering do not suffer from this restriction. Indeed,
while for the data in Fig. 2b, all the algorithms considered
here compute the three factors, the situation is very different
for Fig. 2a: TILING, GRECOND, HYPER, and GREESS yield,
respectively, 9, 9, 10, and 9 rather small and fragmented fac-
tors to explain the whole data. On the other hand 8M, ASSO,
PANDA, HYPER+, NASSAU, and GRECOND+ yield, respec-
tively, 3, 3, 5, 3, 3, and 3 factors, which is indicative of the
algorithms’ ability to handle noise which we exploit below.
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Figure 3: Current experiments to assess robustness to noise

2.4 A Critique of Current Approach
The present experiments aimed to evaluate robustness to
noise, e.g. [Lucchese et al., 2010; Miettinen, 2009; Miettinen
et al., 2008], result in graphs like the one in Fig. 3: It shows
results of selected algorithms on a dataset of size 500 × 250
and density 15% which was obtained from randomly gener-
ated factors. Additive noise has been added with increasing
noise levels up to 50%. The algorithms have been asked for
the first k = 5 factors and the corresponding coverage quali-
ties c(k), see (4), of the k factors are plotted in the graphs.

What we see from the graphs is that with increasing
noise, coverage quality of a particular algorithm generally de-
creases. It is understood in the literature that a small decrease
in coverage quality indicates robustness to noise.

In fact, this is not the case. Namely, such view ignores
the possibility that with more noise not only did the coverage
drop, but the factors themselves may have changed substan-
tially and this would clearly mean lack of robustness. As we
shall see, this is what is indeed happening with various algo-
rithms. Yet, Fig. 3 does not tell whether the factors changed,
hence it does not characterize robustness to noise properly.

In addition, the graphs do not tell us whether a particu-
lar algorithm found the factors used to generate the data, i.e.
whether it found the ground truth. Interestingly, our new ex-
periments below show that an algorithm may be robust to
noise in that the factors computed do not change much when
noise is added, yet it may not have a good capability of dis-
covering ground truth, and vice versa.

One therefore faces three possibly distinct properties of a
particular algorithm: good coverage quality (according to
DBP or AFP view), robustness to noise, and the ability to dis-
cover ground truth. From the above perspective, the current
approaches have serious limitations in assessing these prop-
erties.

3 New Way to Assess Robustness to Noise
We now propose a new experimental scenario to assess ro-
bustness to noise of a given BMF algorithm. As we show in
Section 4, it has the required capability to discriminate the
properties of algorithms mentioned above. The basic idea is
inspired by the above intuitive understanding of robustness
(Section 2.3) and is the following. Suppose a BMF algorithm
computes from a given matrix M a set F of factors and the
corresponding matrices A and B. Suppose we change M
slightly, by introducing noise, to a new matrix, M ′, and let
the algorithm compute, this time from M ′, a new set of fac-
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tors, F ′, and the corresponding matrices A′ and B′. We ask
whether and to what extent are F and F ′ similar.

3.1 Similarity of Factorizations
To assess similarity of the sets F and F ′ of factors, we
propose the measure Sim(F ,F ′) described below. By ex-
periments on small datasets, we observed that the mea-
sure reasonably captures similarity between two sets of fac-
tors. Analogous measures, employing alternative formulas
for Sim(F ,F ′) are possible but led to similar conclusions
regarding robustness of algorithms.

The similarity measure Sim(F ,F ′) of two sets of fac-
tors, F and F ′, is computed as follows. Recall from Sec-
tion 1.1 that each factor computed from M ∈ {0, 1}n×m cor-
responds to a rectangular area in M and may hence be viewed
as the Cartesian product C × D for some C ⊆ {1, . . . , n}
and D ⊆ {1, . . . ,m}. We may then define a similarity
s(〈C1, D1〉, 〈C2, D2〉) of two factors as the well-known Jac-
card index of their corresponding rectangles C1 × D1 and
C2 ×D2, i.e. as

s(〈C1, D1〉, 〈C2, D2〉) =
|C1 ×D1 ∩ C2 ×D2|
|C1 ×D1 ∪ C2 ×D2|

.

Finally, we put Sim(F ,F ′) equal to

min

(∑
c∈F maxc′∈F ′ s(c, c′)

|F|
,

∑
c′∈F ′ maxc∈F s(c, c′)

|F ′|

)
.

That is, Sim(F ,F ′) may be regarded as the minimum of two
numbers, one expressing the average similarity of a factor
in F and its most similar factor in F ′, the other express-
ing the symmetric value with F and F ′ exchanged. Clearly,
Sim(F ,F ′) ranges from 0 to 1, with higher values indicating
higher similarity, and is easy to compute.

3.2 Assessing the Ability to Discover Ground
Truth

Interestingly, the proposed measure Sim(F ,F ′) may be used
to assess an algorithm’s capability to discover ground truth in
the sense described above: One just takes for F the original
factors used to generate the input data M (i.e. the ground
truth) and for F ′ the set of factors delivered by a given al-
gorithm. The value Sim(F ,F ′)—the similarity between the
original and the discovered factors—then indicates the capa-
bility to discover ground truth.

4 Experimental Evaluation
Due to limited scope, we restrict to selected experimental re-
sults regarding robustness to noise and the ability to recover
ground truth. These are representative of the larger set of ex-
periments which we conducted.

4.1 Algorithms and Data
We used the following algorithms (see Section 1.2): 8M,
TILING, ASSO, GRECOND, HYPER, PANDA, GREESS, and
NASSAU. We decided not to include the results for HYPER+
because it basically performs a postprocessing of HYPER’s
output and because a similar postprocessing could be applied

to other algorithms; note, however, that the results for HY-
PER+ correspond to those for HYPER as regards the trends
observed. We also include GRECOND+, a simple exten-
sion of GRECOND which essentially consists in adding in
a greedy manner to each factor computed as in GRECOND
the columns and rows which possibly contain 0s and in cer-
tain straightforward modification of the previously computed
factors.

We used data commonly used in BMF experiments, both
real and synthetic. Due to limited space, we only report re-
sults for synthetic data matrices M of size 500×250 obtained
as Boolean products A ◦B of 500× k and k× 250 randomly
generated matrices A and B for varying k with density of M
(percentage of 1s) around 15%. As a representative of real
data, we present results for the 231× 79 Domino dataset (see
e.g. [Ene et al., 2008]) which has a 10% density.

4.2 Revisiting Datasets from Gupta at al.’s Paper
Before presenting our main experiments, we briefly report
results on the 1000 × 50 datasets from [Gupta et al., 2008]
with noise added, because our observations are different from
those reported by the authors of PANDA in [Lucchese et al.,
2010], who reported that of the available BMF algorithms,
only PANDA is able to discover in their example from [Gupta
et al., 2008] the original factors when noise is added. The re-
sults we obtained on similar datasets are illustrated on data
4, 6, and 7 from [Gupta et al., 2008] in Fig. 4. For one,
we may observe that ASSO, which was explicitly included
in [Lucchese et al., 2010], performs very well and in fact bet-
ter than PANDA, which suffers on data 7. Taking into ac-
count this and other experiments, we conclude that PANDA’s
overall performance is not as good as reported in [Lucchese
et al., 2010]; for coverage quality, see also [Belohlavek and
Trnecka, 2015]. Secondly, we see that all the selected al-
gorithms behave reasonably well, including to some extent
GRECOND, which we selected as a representative of algo-
rithms that do not commit overcovering. Third, the figure
illustrates NASSAU’s tendency to output larger factors (rect-
angles) which result by merging the original, smaller factors.

4.3 Robustness to Noise
Table 1 presents the results of experiments conducted accord-
ing to Section 3. 1000 factorizations for each noise level
added to the Domino data were computed for each algo-
rithm. The table contains the values of the similarity measure
Sim(F ,F ′) where F is the set of the first k factors obtained
by the algorithm for Domino with no noise added while F ′
is the set of the first k factors obtained when the respec-
tive noise level was added to Domino; the number k varies.
The experiment clearly separates TILING, GRECOND, HY-
PER, and GREESS—the algorithms which do not commit
overcovering—from the other algorithms that may produce
general factorizations. These four algorithms obtain very low
scores, which corresponds well to the intuition demonstrated
above: Adding noise leads to a fragmentation of tiles existing
in the data and thus to a fragmentation of the factors com-
puted by these algorithms. All the algorithms which may
commit overcovering behave reasonably well from this point
of view, i.e. introducing noise does not affect the computed
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(a) Data 4 (b) ASSO (c) GRECOND (d) PANDA (e) NASSAU (f) GRECOND+

(g) Data 6 (h) ASSO (i) GRECOND (j) PANDA (k) NASSAU (l) GRECOND+

(m) Data 7 (n) ASSO (o) GRECOND (p) PANDA (q) NASSAU (r) GRECOND+

Figure 4: Experiments on data 4, 6, and 7 from [Gupta et al., 2008]

factors too much. This explicit separation of algorithms based
on their robustness to noise is not present in the existing liter-
ature. Note that NASSAU exhibits greatest fluctuations, which
is partly due to the randomization involved in this algorithm.
Note also that greater scores for larger k are partly due to the
general tendency of the measure Sim to yield larger values
for large sets of factors, partly due to the fact that the algo-
rithms indeed tend to produce factors similar to those they
produced for the data without the noise when one takes into
account more and more factors (larger k).

4.4 Recovery of Ground Truth
In this section, we briefly present experiments demonstrating
the ability to recover ground truth, as described in Section 3.2.
Table 2 has a meaning analogous to that of Table 1 except that
a synthetic 500× 250 dataset generated by k = 5 known fac-
tors has been used and that in the values of Sim(F ,F ′), F
is the set of the 5 factors used to generate the dataset and F ′
is the set of the first 5 factors obtained by the respective al-
gorithm. Again, 1000 iterations for each level of noise have
been performed. We depict the results for additive and sub-
tractive noise. The following may be observed. Even the al-
gorithms that do not commit overcovering except for HYPER
achieve a reasonable ability to recover the original factors,
but this ability deteriorates rapidly with increasing noise. HY-
PER’s behavior is due to its preference of narrow, column-like
factors. The algorithms designed to be robust to noise per-
form better, with ASSO and GRECOND+ obtaining the best

scores. NASSAU exhibits an interesting behavior particularly
for additive noise, which is worth further analysis.

5 Conclusions
We observed that the intuitive requirements regarding BMF
algorithms’ robustness to noise are not properly assessed by
the current experiments. Consequently, we proposed a new
way to assess robustness. We demonstrated that robustness
to noise, the ability to recover ground truth, and the coverage
quality are three different aspects which need to be taken into
account when assessing quality of BMF algorithms. We pre-
sented several kinds of experimental observations. Some of
them confirm, now on a clear methodological ground, intu-
itive expectations, regarding the existing algorithms. Other
experiments reveal new properties of existing algorithms,
some of which are different from what has been reported in
the literature. Importantly, our new approach to robustness
reveals a clear line separating the algorithms robust to noise
from those which are not robust. Future research shall in-
clude the following issues: 1) development of further ways
to asses BMF algorithms’ robustness to noise, including the
contributions in [Tatti and Vreeken, 2012]; 2) thorough anal-
ysis of robustness in the context of real as well as synthetic
data, including recent algorithms such as PANDA+ and NAS-
SAU; 3) real-case studies in the research on noise in BMF; 4)
development of a reasonable, purpose-directed methodology
to asses quality of BMF algorithms.
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5 0.1 0.985 0.228 1.000 0.228 1.000 0.063 0.239 0.722 1.000
0.5 0.984 0.210 0.998 0.210 0.998 0.063 0.220 0.358 0.998
1 0.789 0.186 0.998 0.187 0.992 0.063 0.195 0.261 0.998
2 0.834 0.161 0.998 0.161 0.995 0.063 0.167 0.306 0.998
5 0.760 0.111 0.997 0.112 0.880 0.063 0.115 0.236 0.982
10 0.666 0.084 0.977 0.084 0.806 0.061 0.089 0.332 0.947
30 0.427 0.050 0.771 0.052 0.535 0.056 0.061 0.363 0.738

10 0.1 1.000 0.459 1.000 0.459 0.833 0.127 0.481 0.777 1.000
0.5 0.976 0.415 1.000 0.415 0.813 0.123 0.434 0.548 1.000
1 0.893 0.373 0.996 0.375 0.764 0.115 0.389 0.584 0.999
2 0.963 0.315 0.995 0.313 0.802 0.108 0.321 0.442 0.995
5 0.789 0.223 0.946 0.224 0.616 0.104 0.229 0.442 0.980
10 0.693 0.164 0.935 0.163 0.594 0.103 0.171 0.509 0.980
30 0.400 0.107 0.674 0.108 0.420 0.090 0.114 0.499 0.815

15 0.1 0.995 0.825 0.994 0.904 0.833 0.248 0.924 0.802 0.999
0.5 0.954 0.759 0.987 0.826 0.778 0.241 0.830 0.685 0.994
1 0.908 0.625 0.933 0.687 0.831 0.225 0.686 0.519 0.997
2 0.888 0.542 0.893 0.573 0.751 0.211 0.573 0.432 0.972
5 0.742 0.366 0.863 0.360 0.725 0.192 0.355 0.421 0.921
10 0.640 0.259 0.789 0.268 0.528 0.160 0.257 0.561 0.873
30 0.368 0.161 0.559 0.166 0.436 0.126 0.157 0.480 0.801

Table 1: Robustness to noise (Domino dataset, general noise).
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Aditive 0.1 0.887 0.726 0.974 0.726 0.728 0.015 0.726 0.520 0.932
0.5 0.854 0.482 0.974 0.482 0.697 0.014 0.482 0.612 0.928
1 0.791 0.353 0.973 0.356 0.592 0.014 0.356 0.688 0.927
2 0.788 0.257 0.973 0.260 0.631 0.013 0.260 0.747 0.929
5 0.760 0.146 0.964 0.151 0.579 0.012 0.151 0.867 0.922
10 0.754 0.106 0.924 0.111 0.534 0.011 0.108 0.905 0.920
30 0.765 0.075 0.388 0.082 0.526 0.010 0.082 0.843 0.902

Subtractive 0.1 0.632 0.683 0.991 0.683 0.650 0.085 0.715 0.732 0.914
0.5 0.593 0.443 0.991 0.441 0.673 0.084 0.461 0.637 0.895
1 0.555 0.288 0.983 0.290 0.660 0.084 0.326 0.704 0.858
2 0.533 0.209 0.956 0.213 0.682 0.084 0.238 0.677 0.821
5 0.591 0.105 0.855 0.105 0.555 0.083 0.104 0.537 0.665
10 0.562 0.058 0.602 0.058 0.488 0.081 0.054 0.723 0.530
30 0.804 0.013 0.109 0.013 0.187 0.068 0.013 0.619 0.159

Table 2: Recovery of ground truth on synthetic dataset 500× 250 with k = 5.
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