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Abstract
Many recent works have demonstrated the bene-
fits of knowledge graph embeddings in complet-
ing monolingual knowledge graphs. Inasmuch as
related knowledge bases are built in several dif-
ferent languages, achieving cross-lingual knowl-
edge alignment will help people in constructing
a coherent knowledge base, and assist machines
in dealing with different expressions of entity re-
lationships across diverse human languages. Un-
fortunately, achieving this highly desirable cross-
lingual alignment by human labor is very cost-
ly and error-prone. Thus, we propose MTransE,
a translation-based model for multilingual knowl-
edge graph embeddings, to provide a simple and
automated solution. By encoding entities and re-
lations of each language in a separated embedding
space, MTransE provides transitions for each em-
bedding vector to its cross-lingual counterparts in
other spaces, while preserving the functionalities
of monolingual embeddings. We deploy three dif-
ferent techniques to represent cross-lingual transi-
tions, namely axis calibration, translation vectors,
and linear transformations, and derive five variants
for MTransE using different loss functions. Our
models can be trained on partially aligned graphs,
where just a small portion of triples are aligned with
their cross-lingual counterparts. The experiments
on cross-lingual entity matching and triple-wise
alignment verification show promising results, with
some variants consistently outperforming others on
different tasks. We also explore how MTransE pre-
serves the key properties of its monolingual coun-
terpart TransE.

1 Introduction
Multilingual knowledge bases such as Wikipedia [Wikipedi-
a, 2017], WordNet [Bond and Foster, 2013], and Concept-
Net [Speer and Havasi, 2013] are becoming essential sources
of knowledge for people and AI-related applications. These
knowledge bases are modeled as knowledge graphs that store
two aspects of knowledge: the monolingual knowledge that
includes entities and relations recorded in the form of triples,

and the cross-lingual knowledge that matches the monolin-
gual knowledge among various human languages.

The coverage issue of monolingual knowledge has been
widely addressed, and parsing-based techniques for complet-
ing monolingual knowledge bases have been well studied
in the past [Culotta and Sorensen, 2004; Zhou et al., 2005;
Sun et al., 2011]. More recently, much attention has been
paid to embedding-based techniques, which provide simple
methods to encode entities in low-dimensional embedding
spaces and capture relations as means of translations among
entity vectors. Given a triple (h, r, t) where r is the rela-
tion between entities h and t, then h and t are represented
as two k-dimensional vectors h and t, respectively. A func-
tion fr(h, t) is used to measure the plausibility of (h, r, t),
which also implies the transformation r that characterizes r.
Exemplarily, the translation-based model TransE [Bordes et
al., 2013] uses the loss function fr(h, t) = ‖h+ r− t‖ 1,
where r is characterized as a translation vector learnt from
the latent connectivity patterns in the knowledge graph. This
model provides a flexible way of predicting a missing item in
a triple, or verifying the validity of a generated triple. Oth-
er works like TransH [Wang et al., 2014] and TransR [Lin
et al., 2015], introduce different loss functions that represen-
t the relational translation in other forms, and have achieved
promising results in completing the knowledge graphs.

While embedding-based techniques can help improve the
completeness of monolingual knowledge, the problem of ap-
plying these techniques on cross-lingual knowledge remains
largely unexplored. Such knowledge, including inter-lingual
links (ILLs) that match the same entities, and triple-wise
alignment (TWA) that represents the same relations, is very
helpful in synchronizing different language-specific versions
of a knowledge base that evolve independently, as needed to
further improve applications built on knowledge bases, such
as Q&A systems, semantic Web, and Web search. In spite of
its importance, this cross-lingual knowledge remains large-
ly intact. In fact, in the most successful knowledge base
Wikipedia, we find that ILLs cover less than 15% entity align-
ment.

Leveraging knowledge graph embeddings to cross-lingual
knowledge no doubt provides a generic way to help extract
and apply such knowledge. However, it is a non-trivial task

1Hereafter, ‖ · ‖ means l1 or l2 norm unless explicitly specified.
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to find a tractable technique to capture the cross-lingual tran-
sitions2. Such transitions are more difficult to capture than
relational translations for several reasons: (i) a cross-lingual
transition has a far larger domain than any monolingual re-
lational translation; (ii) it applies on both entities and rela-
tions, which have incoherent vocabularies among different
languages; (iii) the known alignment for training such transi-
tions usually accounts for a small percentage of a knowledge
base. Moreover, the characterization of monolingual knowl-
edge graph structures has to be well-preserved to ensure the
correct representation of the knowledge to be aligned.

To address the above issues, we propose a multilingual
knowledge graph embedding model MTransE, that learns
the multilingual knowledge graph structure using a combi-
nation of two component models, namely knowledge model
and alignment model. The knowledge model encodes enti-
ties and relations in a language-specific version of knowledge
graph. We explore the method that organizes each language-
specific version in a separated embedding space, in which
MTransE adopts TransE as the knowledge model. On top
of that, the alignment model learns cross-lingual transitions
for both entities and relations across different embedding
spaces, where the following three representations of cross-
lingual alignment are considered: distance-based axis cali-
bration, translation vectors, and linear transformations. Thus,
we obtain five variants of MTransE based on different loss
functions, and identify the best variant by comparing them
on cross-lingual alignment tasks using two partially aligned
trilingual graphs constructed from Wikipedia triples. We al-
so show that MTransE performs as well as its monolingual
counterpart TransE on monolingual tasks.

The rest of the paper is organized as follows. We first dis-
cuss the related work, and then introduce our approach in the
section that follows. After that we present the experimental
results, and conclude the paper in the last section.

2 Related Work
While, at the best of our knowledge, there is no previous work
on learning multilingual knowledge graph embeddings, we
will describe next three lines of work which are closely relat-
ed to this topic.
Knowledge Graph Embeddings. Recently, significant ad-
vancement has been made in using the translation-based
method to train monolingual knowledge graph embeddings.
To characterize a triple (h, r, t), models of this family fol-
low a common assumption hr + r ≈ tr, where hr and tr
are either the original vectors of h and t, or the transformed
vectors under a certain transformation w.r.t. relation r. The
forerunner TransE [Bordes et al., 2013] sets hr and tr as
the original h and t, and achieves promising results in han-
dling 1-to-1 relations. Later works improve TransE on multi-
mapping relations by introducing relation-specific transfor-
mations on entities to obtain different hr and tr, including
projections on relation-specific hyperplanes in TransH [Wang
et al., 2014], linear transformations to heterogeneous rela-
tion spaces in TransR [Lin et al., 2015], dynamic matrices in

2We use the word transition here to differentiate from the rela-
tional translations among entities in translation-based methods.

TransD [Ji et al., 2015], and other forms [Jia et al., 2016;
Nguyen et al., 2016]. All these variants of TransE special-
ize entity embeddings for different relations, therefore im-
proving knowledge graph completion on multi-mapping re-
lations at the cost of increased model complexity. Meanwhile
translation-based models cooperate well with other models.
For example, variants of TransE are combined with word em-
beddings to help relation extraction from text [Weston et al.,
2013; Zhong et al., 2015].

In addition to these , there are non-translation-based meth-
ods. Some of those including UM [Bordes et al., 2011], SE
[Bordes et al., 2012], Bilinear [Jenatton et al., 2012], and
HolE [Nickel et al., 2016], do not explicitly represent re-
lation embeddings. Others including neural-based models
SLM [Collobert and Weston, 2008] and NTN [Socher et al.,
2013], and random-walk-based model TADW [Yang et al.,
2015a], are expressive and adaptable for both structured and
text corpora, but are too complex to be incorporated into an
architecture supporting multilingual knowledge.
Multilingual Word Embeddings. Several approaches learn
multilingual word embeddings on parallel text corpora. Some
of those can be extended to multilingual knowledge graphs,
such as LM [Mikolov et al., 2013] and CCA [Faruqui and Dy-
er, 2014] which induce offline transitions among pre-trained
monolingual embeddings in forms of linear transformation-
s and canonical correlation analysis respectively. These ap-
proaches do not adjust the inconsistent vector spaces via cali-
bration or jointly training with the alignment model, thus fail
to perform well on knowledge graphs as the parallelism ex-
ists only in small portions. A better approach OT [Xing et al.,
2015] jointly learns regularized embeddings and orthogonal
transformations, which is however found to be overcompli-
cated due to the inconsistency of monolingual vector spaces
and the large diversity of relations among entities.
Knowledge Bases Alignment. Some projects produce cross-
lingual alignment in knowledge bases at the cost of extensive
human involvement and designing hand-crafted features ded-
icated to specific applications. Wikidata [Vrandečić, 2012]
and DBpedia [Lehmann et al., 2015] rely on crowdsourc-
ing to create ILLs and relation alignment. YAGO [Mahdis-
oltani et al., 2015] mines association rules on known match-
es, which combines many confident scores and requires ex-
tensively fine tuning. Many other works require sources that
are external to the graphs, from well-established schemata
or ontologies [Nguyen et al., 2011; Suchanek et al., 2011;
Rinser et al., 2013] to entity descriptions [Yang et al., 2015b],
which being unavailable to many knowledge bases such as
YAGO, WordNet, and ConceptNet [Speer and Havasi, 2013].
Such approaches also involve complicated model depen-
dencies that are not tractable and reusable. By contrast,
embedding-based methods are simple and general, require
little human involvement, and generate task-independent fea-
tures that can contribute to other NLP tasks.

3 Multilingual Knowledge Graph
Embeddings

We hereby begin our modeling with the formalization of mul-
tilingual knowledge graphs.
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3.1 Multilingual Knowledge Graphs
In a knowledge base KB , we use L to denote the set of lan-
guages, and L2 to denote the 2-combination of L (i.e., the
set of unordered language pairs). For a language L ∈ L,
GL denotes the language-specific knowledge graph of L, and
EL and RL respectively denote the corresponding vocabu-
laries of entity expression and relation expression. T =
(h, r, t) denotes a triple in GL such that h, t ∈ EL and
r ∈ RL. Boldfaced h, r, t respectively represent the em-
bedding vectors of head h, relation r, and tail t. For a lan-
guage pair (L1, L2) ∈ L2, δ(L1, L2) denotes the alignment
set which contains the pairs of triples that have already been
aligned between L1 and L2. For example, across the lan-
guages English and French, we may have

(
(State of Cal-

ifornia, capital city, Sacramento), (État de Californie, cap-
itale, Sacramento)

)
∈ δ(English, French). The alignment

set commonly exists in a small portion in a multilingual
knowledge base [Vrandečić, 2012; Mahdisoltani et al., 2015;
Lehmann et al., 2015], and is one part of knowledge we want
to extend.

Our model consists of two components that learn on the
two facets of KB : the knowledge model that encodes the en-
tities and relations from each language-specific graph struc-
ture, and the alignment model that learns the cross-lingual
transitions from the existing alignment. We define a model
for each language pair from L2 that has a non-empty align-
ment set. Thus, for a KB with more than two languages, a set
of models composes the solution. In the following, we use a
language pair (Li, Lj) ∈ L2 as an example to describe how
we define each component of a model.

3.2 Knowledge Model
For each language L ∈ L, a dedicated k-dimensional embed-
ding space RkL is assigned for vectors of EL and RL, where
R is the field of real numbers. We adopt the basic translation-
based method of TransE for each involved language, which
benefits the cross-lingual tasks by representing embeddings
uniformly in different contexts of relations. Therefore its loss
function is given below:

SK =
∑

L∈{Li,Lj}

∑
(h,r,t)∈GL

‖h+ r− t‖

It measures the plausibility of all given triples. By minimiz-
ing the loss function, the knowledge model preserves mono-
lingual relations among entities, while also acts as a regu-
larizer for the alignment model. Meanwhile, the knowledge
model partitions the knowledge base into disjoint subsets that
can be trained in parallel.

3.3 Alignment Model
The objective of the alignment model is to construct the tran-
sitions between the vector spaces of Li and Lj . Its loss func-
tion is given as below:

SA =
∑

(T,T ′)∈δ(Li,Lj)

Sa(T, T
′)

for which the alignment score Sa(T, T ′) iterates through all
pairs of aligned triples. Three different techniques to score

the alignment are considered: distance-based axis calibration,
translation vectors, and linear transformations. Each of them
is based on a different assumption, and constitutes different
forms of Sa alongside.
Distance-based Axis Calibration. This type of alignment
models penalize the alignment based on the distances of
cross-lingual counterparts. Either of the following two scor-
ings can be adopted to the model.

Sa1 = ‖h− h′‖+ ‖t− t′‖

Sa1 regulates that correctly aligned multilingual expressions
of the same entity tend to have close embedding vectors. Thus
by minimizing the loss function that involves Sa1 on known
pairs of aligned triples, the alignment model adjusts axes of
embedding spaces towards the goal of coinciding the vectors
of the same entity in different languages.

Sa2 = ‖h− h′‖+ ‖r− r′‖+ ‖t− t′‖

Sa2 overlays the penalty of relation alignment to Sa1 to ex-
plicitly converge coordinates of the same relation.

The alignment models based on axis calibration assume
analogous spatial emergence of items in each language.
Therefore, it realizes the cross-lingual transition by carrying
forward the vector of a given entity or relation from the space
of the original language to that of the other language.
Translation Vectors. This model encodes cross-lingual tran-
sitions into vectors. It consolidates alignment into graph
structures and characterizes cross-lingual transitions as reg-
ular relational translations. Hence Sa3 as below is derived.

Sa3 =
∥∥h+ veij − h′

∥∥+ ∥∥r+ vrij − r′
∥∥+ ∥∥t+ veij − t′

∥∥
veij and vrij thereof are respectively deployed as the entity-
dedicated and relation-dedicated translation vectors between
Li and Lj , such that we have e+veij ≈ e′ for embedding vec-
tors e, e′ of the same entity e expressed in both languages,
and r + vrij ≈ r′ for those of the same relation. We de-
ploy two translation vectors instead of one, because there are
far more distinct entities than relations, and using one vector
easily leads to imbalanced signals from relations.

Such a model obtains a cross-lingual transition of an em-
bedding vector by adding the corresponding translation vec-
tor. Moreover, it is easy to see that veij = −veji and vrij =
−vrji hold. Therefore, as we obtain the translation vectors
from Li to Lj , we can always use the same vectors to trans-
late in the opposite direction.
Linear Transformations. The last category of alignment
models deduce linear transformations between embedding
spaces. Sa4 as below learns a k × k square matrix Me

ij as
a linear transformation on entity vectors from Li to Lj , given
k as the dimensionality of the embedding spaces.

Sa4 =
∥∥Me

ijh− h′
∥∥+ ∥∥Me

ijt− t′
∥∥

Sa5 additionally brings in a second linear transformation Mr
ij

for relation vectors, which is of the same shape as Me
ij . The

use of a different matrix is again due to different redundancy
of entities and relations.

Sa5 =
∥∥Me

ijh− h′
∥∥+ ∥∥Mr

ijr− r′
∥∥+ ∥∥Me

ijt− t′
∥∥
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Table 1: Summary of model variants.
Var Model Complexity Cross-lingual Transition Search Complexity

Var1 O(nekl + nrkl)
τij(e) = e
τij(r) = r

O(nek)
O(nrk)

Var2 O(nekl + nrkl)
τij(e) = e
τij(r) = r

O(nek)
O(nrk)

Var3
O(nekl + nrkl

+ kl2)

τij(e) = e + ve
ij

τij(r) = r + vr
ij

O(nek)
O(nrk)

Var4
O(nekl + nrkl

+ 0.5k2l2)

τij(e) = Me
ije

τij(r) = Me
ijr

O(nek
2 + nek)

O(nrk
2 + nrk)

Var5
O(nekl + nrkl

+ k2l2)

τij(e) = Me
ije

τij(r) = Mr
ijr

O(nek
2 + nek)

O(nrk
2 + nrk)

Notation: e and r are respectively the vectors of an entity e and a relation r, k is
the dimension of the embedding spaces, l is the cardinality of L, ne and nr are
respectively the number of entities and the number of relations, where ne � nr .

Unlike axis calibration, linear-transformation-based align-
ment model treats cross-lingual transitions as the topologi-
cal transformation of embedding spaces without assuming the
similarity of spatial emergence.

The cross-lingual transition of a vector is obtained by ap-
plying the corresponding linear transformation. It is notewor-
thy that, regularization of embedding vectors in the training
process (which will be introduced soon after) ensures the in-
vertibility of the linear transformations such that Me

ij
−1 =

Me
ji and Mr

ij
−1 = Mr

ji. Thus the transition in the revert di-
rection is always enabled even though the model only learns
the transformations of one direction.

3.4 Variants of MTransE
Combining the above two component models, MTransE min-
imizes the following loss function J = SK + αSA, where α
is a hyperparameter that weights SK and SA.

As we have given out five variants of the alignment mod-
el, each of which correspondingly defines its specific way
of computing cross-lingual transitions of embedding vectors.
We denote Vark as the variant of MTransE that adopts the
k-th alignment model which employs Sak . In practice, the
searching of a cross-lingual counterpart for a source is always
done by querying the nearest neighbor from the result point
of the cross-lingual transition. We denote function τij that
maps a cross-lingual transition of a vector from Li to Lj , or
simply τ in a bilingual context. As stated, the solution in a
multi-lingual scenario consists of a set of models of the same
variant defined on every language pair in L2. Table 1 sum-
marizes the model complexity, the definition of cross-lingual
transitions, and the complexity of searching a cross-lingual
counterpart for each variant.

3.5 Training
We optimize the loss function using on-line stochastic gra-
dient descent [Wilson and Martinez, 2003]. At each step,
we update the parameter θ by setting θ ← θ − λ∇θJ ,
where λ is the learning rate. Instead of directly updating
J , our implementation optimizes SK and αSA alternately.
In detail, at each epoch we optimize θ ← θ − λ∇θSK and
θ ← θ − λ∇θαSA in separated groups of steps.

We enforce the constraint that the l2 norm of any entity
embedding vector is 1, thus regularize embedding vectors to
a unit spherical surface. This constraint is employed in the
literature [Bordes et al., 2013; 2014; Jenatton et al., 2012]
and has two important effects: (i) it helps avoid the case

Table 2: Statistics of the WK3l data sets.
Data set #En triples #Fr triples #De triples #Aligned triples

WK3l-15k 203,502 170,605 145,616 En-Fr:16,470
En-De:37,170

WK3l-120k 1,376,011 767,750 391,108 En-Fr:124,433
En-De:69,413

Table 3: Number of entity inter-lingual links (ILLs).
Data Set En-Fr Fr-En En-De De-En

WK3l-15k 3,733 3,815 1,840 1,610
WK3l-120k 42,413 41,513 7,567 5,921

where the training process trivially minimizes the loss func-
tion by shrinking the norm of embedding vectors, and (ii) it
implies the invertibility of the linear transformations [Xing et
al., 2015] for Var4 and Var5.

We initialize vectors by drawing from a uniform distribu-
tion on the unit spherical surface, and initialize matrices using
random orthogonal initialization [Saxe et al., 2014]. Negative
sampling is not employed in training, which we find does not
noticeably affect the results.

4 Experiments
In this section, we evaluate the proposed methods on two
cross-lingual tasks: cross-lingual entity matching, and triple-
wise alignment verification. We also conduct experiments on
two monolingual tasks. Besides, a case study with knowledge
alignment examples is included in the Appendix of [Chen et
al., 2017].
Data Sets. Experimental results on the trilingual data sets
WK3l are reported in this section. WK3l contains English
(En), French (Fr), and German (De) knowledge graphs un-
der DBpedia’s dbo:Person domain, where a part of triples
are aligned by verifying the ILLs on entities, and multi-
lingual labels of the DBpedia ontology on some relations.
The number of entities in each language is adjusted to ob-
tain two data sets. For each of the three languages thereof,
WK3l-15k matches the number of nodes (about 15,000) with
FB15k—the largest monolingual graph used by many recent
works [Zhong et al., 2015; Lin et al., 2015; Ji et al., 2015;
Jia et al., 2016], and the number of nodes in WK3l-120k is
several times larger. For both data sets, German graphs are
sparser than English and French graphs. We also collect extra
entity ILLs for the evaluation of cross-lingual entity match-
ing, whose quantity is shown in Table 3. Meanwhile, we de-
rive another trilingual data set CN3l from ConceptNet [Speer
and Havasi, 2013]. Additional results on CN3l that lead to
similar evaluation conclusions are reported in the Appendix
of [Chen et al., 2017].

4.1 Cross-lingual Entity Matching
The objective of this task is to match the same entities from
different languages in KB . Due to the large candidate space,
this task emphasizes more on ranking a set of candidates
rather than acquiring the best answer. We perform this task
on both data sets to compare five variants of MTransE.

To show the superiority of MTransE, we adapt LM, CCA,
and OT (which are introduced in Section 2) to their knowl-
edge graph equivalences.
Evaluation Protocol. Each MTransE variant is trained on
a complete data set. LM and CCA are implemented by in-
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Table 4: Cross-lingual entity matching result.
Data Set WK3l-15k WK3l-120k

Aligned Languages En-Fr Fr-En En-De De-En En-Fr Fr-En En-De De-En
Metric Hits@10 Mean Hits@10 Mean Hits@10 Mean Hits@10 Mean Hits@10 Hits@10 Hits@10 Hits@10

LM 12.31 3621.17 10.42 3660.98 22.17 5891.13 15.21 6114.08 11.74 14.26 24.52 13.58
CCA 20.78 3094.25 19.44 3017.90 26.46 5550.89 22.30 5855.61 19.47 12.85 25.54 20.39
OT 44.97 508.39 40.92 461.18 44.47 155.47 49.24 145.47 38.91 37.19 38.85 34.21

Var1 51.05 470.29 46.64 436.47 48.67 146.13 50.60 167.02 38.58 36.52 42.06 47.79
Var2 45.25 570.72 41.74 565.38 46.27 168.33 49.00 211.94 31.88 30.84 41.22 40.39
Var3 38.64 587.46 36.44 464.64 50.82 125.15 52.16 151.84 38.26 36.45 50.48 52.24
Var4 59.24 190.26 57.48 199.64 66.25 74.62 68.53 42.31 48.66 47.43 57.56 63.49
Var5 59.52 191.36 57.07 204.45 60.25 99.48 66.03 54.69 45.65 47.48 64.22 67.85

Figure 1: Precision-recall curves for cross-lingual entity matching on WK3l-15k.

ducing the corresponding transformations across separately
trained knowledge models on monolingual graphs, while us-
ing the alignment sets as anchors. Training OT is quite sim-
ilar to MTransE, we add the process of orthogonalization to
the training of the alignment model, since the regularization
of vectors has already been enforced. The entity ILLs are
used as ground truth for test. We take these unidirectional
links between English-French and English-German, i.e., four
directions in total. For each ILL (e, e′), we perform a kNN
search from the cross-lingual transition point of e (i.e., τ(e))
and record the rank of e′. Following the convention [Xing
et al., 2015; Jia et al., 2016], we aggregate two metrics over
all test cases, i.e., the proportion of ranks no larger than 10
Hits@10 (in percentage), and the mean rank Mean . We pre-
fer higher Hits@10 and lower Mean that indicate a better
outcome.

For training, we select the learning rate λ among {0.001,
0.01, 0.1}, α among {1, 2.5, 5, 7.5}, l1 or l2 norm in loss
functions, and dimensionality k among {50, 75, 100, 125}.
The best configuration on WK3l-15k is λ = 0.01, α = 5,
k = 75, l1 norm for Var1, Var2, LM, and CCA, l2 norm for
other variants and OT. While the best configuration on WK3l-
120k is λ = 0.01, α = 5, k = 100, and l2 norm for all
models. The training on both data sets takes 400 epochs.
Results. We report Hits@10 and Mean for WK3l-15k, and
Hits@10 for WK3l-120k, on the four involved directions of
cross-lingual matching in Table 4. As expected, without joint-
ly adapting the monolingual vector spaces with the knowl-
edge alignment, LM and CCA are largely outperformed by
the rest. While the orthogonality constraint being too strong
to be enforced in these cases, OT performs at most closely
to the simplest cases of MTransE. For MTransE, Var4 and
Var5 outperform the other three variants under all settings.
The fairly close results obtained by these two variants indi-
cate that the interference caused by learning an additional
relation-dedicated transformation in Var5 is negligible to the
entity-dedicated transformation. Correspondingly, we believe
that the reason for Var3 to be outperformed by Var4 and Var5
is that it fails to differentiate well the over-frequent cross-
lingual alignment from regular relations. Therefore, the char-

acterization for cross-lingual alignment is negatively affected
by the learning process for monolingual relations in a visible
degree. Axis calibration appears to be unstable on this task.
We hypothesize that this simple technique is affected by two
factors: coherence between language-specific versions, and
density of the graphs. Var2 is always outperformed by Var1
due to the negative effect of the calibration based on rela-
tions. We believe this is because multi-mapping relations are
not so well-captured by TransE as explained in [Wang et al.,
2014], therefore disturb the calibration of the entire embed-
ding spaces. Although Var1 still outperforms Var3 on entity
matching between English and French graphs in WK3l-15k,
coherence somewhat drops alongside when scaling up to the
larger data set so as to hinder the calibration. The German
graphs are sparse, thus should have set a barrier for precisely
constructing embedding vectors and hindered calibration on
the other side. Therefore Var1 still performs closely to Var3 in
the English-German task on WK3l-15k and English-French
task on WK3l-120k, but is outperformed by Var3 in the last
setting. In general, the variants that use linear transformation-
s are the most desired. This conclusion is supported by their
promising outcome on this task, and it is also reflected in the
precision-recall curves shown in Figure 1.

4.2 Triple-wise Alignment Verification
This task is to verify whether a given pair of aligned triples are
truly cross-lingual counterparts. It produces a classifier that
helps with verifying candidates of triple matching [Nguyen et
al., 2011; Rinser et al., 2013].
Evaluation Protocol. We create positive cases by isolating
20% of the alignment set. Similar to [Socher et al., 2013], we
randomly corrupt positive cases to generate negative cases.
In detail, given a pair of correctly aligned triples (T, T ′), it is
corrupted by (i) randomly replacing one of the six elements in
the two triples with another element from the same language,
or (ii) randomly substituting either T or T ′ with another triple
from the same language. Cases (i) and (ii) respectively con-
tribute negative cases that are as many as 100% and 50% of
positive cases. We use 10-fold cross-validation on these cases
to train and evaluate the classifier.
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Table 5: Accuracy of TWA verification (%).
Data Set WK3l-15k WK3l-120k

Languages En&Fr En&De En&Fr En&De
LM 52.23 63.61 59.98 59.98

CCA 52.28 66.49 65.89 61.01
OT 93.20 87.97 88.65 85.24

Var1 93.25 91.24 91.27 91.35
Var2 90.24 86.59 89.36 86.29
Var3 90.38 84.24 87.99 87.04
Var4 94.58 95.03 93.48 93.06
Var5 94.90 94.95 92.63 93.66

Table 6: Results of tail prediction
(Hits@10).

Data Set WK3l-15k WK3l-120k
Language En Fr En Fr

TransE 42.19 25.06 36.78 25.38
Var1 40.37 23.45 39.09 25.52
Var2 40.80 24.77 36.02 21.13
Var3 40.97 22.26 35.99 19.69
Var4 41.03 25.46 39.64 25.59
Var5 41.79 25.77 38.35 24.68

Table 7: Results of relation prediction
(Hits@10).

Data Set WK3l-15k WK3l-120k
Language En Fr En Fr

TransE 61.79 62.55 60.06 65.29
Var1 60.18 60.73 61.75 65.46
Var2 54.33 62.98 61.11 61.47
Var3 58.32 59.44 60.14 48.06
Var4 63.74 64.77 60.26 67.64
Var5 64.79 63.71 60.77 66.86

We use a simple threshold-based classifier similar to the
widely-used ones for triple classification [Socher et al., 2013;
Wang et al., 2014; Lin et al., 2015]. For a given pair of
aligned triples (T, T ′) =

(
(h, r, t), (h′, r′, t′)

)
, the dissim-

ilarity function is defined as fd(T, T ′) = ‖τ(h)− h′‖2 +
‖τ(r)− r′‖2 + ‖τ(t)− t′‖2. The classifier finds a thresh-
old σ such that fd < σ implies positive, otherwise negative.
The value of σ is determined by maximizing the accuracy
for each fold on the training set. Such a simple classification
rule adequately relies on how precisely each model represents
cross-lingual transitions for both entities and relations.

We carry forward the corresponding configuration from the
last experiment, just to show the performance of each variant
under controlled variables.
Results. Table 5 shows the mean accuracy, with a standard
deviation below 0.009 in cross-validation for all settings.
Thus, the results are statistically sufficient to reflect the per-
formance of classifiers. Note that the results appear to be
better than those of the previous task since this is a binary
classification problem. Intuitively, the linear-transformation-
based MTransE perform steadily and take the lead on all set-
tings. We also observe that Var5, though learns an additional
relation-dedicated transformation, still performs considerably
close to Var4 (the difference is at most 0.85%). The simple
Var1 is the runner-up, and is between 1.65% and 3.79% to
the optimal solutions. However the relation-dedicated cali-
bration in Var2 causes a notable setback (4.12%∼8.44% from
the optimal). The performance of Var3 falls behind slight-
ly more than Var2 (4.52%∼10.79% from the optimal) due
to the failure in distinguishing cross-lingual alignment from
regular relations. Meanwhile, we single out the accuracy on
the portion of negative cases where only the relation is cor-
rupted for English-French in WK3l-15k. The five variants
receive 97.73%, 93.78%, 82.34%, 98.57%, and 98.54%, re-
spectively. The close accuracy of Var4 and Var5 indicates
that the only transformation learnt from entities in Var4 is
enough to substitute the relation-dedicated transformation in
Var5 for discriminating relation alignment, while learning the
additional transformation in Var5 does not notably interfere
the original one. However, it applies differently to axis cali-
bration since Var2 does not improve but actually impairs the
cross-lingual transitions for relations. For the same reasons as
above, LM and CCA do not match with MTransE in this ex-
periment as well, while OT performs closely to some variants
of MTransE, but is still left behind by Var4 and Var5.

4.3 Monolingual Tasks
The above experiments have shown the strong capability of
MTransE in handling cross-lingual tasks. Now we report the
results on comparing MTransE with its monolingual coun-

terpart TransE on two monolingual tasks introduced in the
literature [Bordes et al., 2013; 2014], namely tail prediction
(predicting t given h and r) and relation prediction (predict-
ing r given h and t), using the English and French versions
of our data sets. Like previous works [Bordes et al., 2013;
Wang et al., 2014; Jia et al., 2016], for each language version,
10% triples are selected as the test set, and the remaining be-
comes the training set. Each MTransE variant is trained upon
both language versions of the training set for the knowledge
model, while the intersection between the alignment set and
the training set is used for the alignment models. TransE is
trained on either language version of the training set. Again,
we use the configuration from the previous experiment.
Results. The results for Hits@10 are reported in Tables 6
and 7. They imply that MTransE preserves well the char-
acterization of monolingual knowledge. For each setting,
Var1, Var4, and Var5 perform at least as well as TransE, and
some even outperforms TransE under certain settings. This
signifies that the alignment model does not interfere much
with the knowledge model in characterizing monolingual re-
lations, but might have actually strengthened it since coherent
portions of knowledge are unified by the alignment model.
Since such coherence is currently not measured, this ques-
tion is left as a future work. The other question that deserves
further attention is, how other knowledge models involving
relation-specific entity transformations [Wang et al., 2014;
Lin et al., 2015; Ji et al., 2015; Jia et al., 2016; Nguyen et al.,
2016] may influence monolingual and cross-lingual tasks.

5 Conclusion and Future Work

At the best of our knowledge, this paper is the first work that
generalizes knowledge graph embeddings to the multilingual
scenario. Our model MTransE characterizes monolingual re-
lations and compares three different techniques to learn cross-
lingual alignment for entities and relations. Extensive experi-
ments on the tasks of cross-lingual entity matching and triple
alignment verification show that the linear-transformation-
technique is the best among the three. Moreover, MTransE
preserves the key properties of monolingual knowledge graph
embeddings on monolingual tasks.

The results here are very encouraging, but we also point
out opportunities for further work and improvements. In par-
ticular, we should explore how to substitute the simple loss
function of the knowledge model used in MTransE with more
advanced ones involving relation-specific entity transforma-
tions. More sophisticated tasks of cross-lingual triple com-
pletion may also be conducted. Combining MTransE with
multilingual word embeddings [Xing et al., 2015] is anoth-
er meaningful direction since it will provide a useful tool to
extract new relations from multilingual text corpora.
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