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Abstract

As one of the most popular unsupervised learn-
ing approaches, the autoencoder aims at transform-
ing the inputs to the outputs with the least dis-
crepancy. The conventional autoencoder and most
of its variants only consider the one-to-one recon-
struction, which ignores the intrinsic structure of
the data and may lead to overfitting. In order to
preserve the latent geometric information in the
data, we propose the stacked similarity-aware au-
toencoders. To train each single autoencoder, we
first obtain the pseudo class label of each sample
by clustering the input features. Then the hidden
codes of those samples sharing the same category
label will be required to satisfy an additional sim-
ilarity constraint. Specifically, the similarity con-
straint is implemented based on an extension of the
recently proposed center loss. With this joint su-
pervision of the autoencoder reconstruction error
and the center loss, the learned feature representa-
tions not only can reconstruct the original data, but
also preserve the geometric structure of the data.
Furthermore, a stacked framework is introduced to
boost the representation capacity. The experimen-
tal results on several benchmark datasets show the
remarkable performance improvement of the pro-
posed algorithm compared with other autoencoder
based approaches.

1 Introduction
In the recent years, deep neural networks (DNN) have been
developed and used successfully to learn rich and powerful
visual representations [Krizhevsky et al., 2012]. However,
applying this approach usually brings about a huge burden as
it demands millions of labeled examples. A natural way to
address this problem would be to combine the powerful DNN
model and the idea of unsupervised learning so that we can
extract useful features without any annotations. Then with
limited label information, the learned representations will be
more suitable as input to a supervised machine than the raw
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Figure 1: Visualization of different layer features of the MNIST
dataset by t-SNE. From left top to right bottom, the corresponding
figures are for original data, low level features, middle level features
and high level features. Different colors represent different cate-
gories.

input. Among massive unsupervised learning models, the au-
toencoder could be stacked to build a deep structure easily
and then utilized to generate useful features naturally [Hin-
ton and Salakhutdinov, 2006]. Not surprisingly, autoencoder
based models have been shown to achieve state-of-the-art per-
formance in a number of challenging problems ranging from
computer vision [Wang et al., 2016] and audio processing [Pl-
chot et al., 2016] to natural language processing [Wang et al.,
2015].

The conventional autoencoder is based on an encoder-
decoder paradigm. Specifically, the encoder first transforms
the input into a latent representation, and then the decoder
is trained to reconstruct the initial input from this represen-
tation as far as possible. This architecture forces the la-
tent representation to capture the most important information
of the training data. Unfortunately, if the encoder and de-
coder are allowed too much capacity, the autoencoder may
just learn to perform the identity function without extract-
ing useful representations [Goodfellow et al., 2016]. Thus,
there are many studies presenting advanced regularization
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techniques which have led to a series of variants including
denoising [Vincent et al., 2010], contractive [Rifai et al.,
2011b], k-sparse [Makhzani and Frey, 2014] and winner-
take-all [Makhzani and Frey, 2015] autoencoders.

However, the conventional autoencoder and most of its
variants only consider the one-to-one reconstruction, which
ignores the geometric structure of the data and may lead to
overfitting. Generally speaking, the samples of the collected
dataset can be grouped into several categories with the similar
semantic. This intrinsic characteristic requires that their ideal
discriminative representations should form several clusters in
the high-dimensional feature space. For example, the MNIST
database of handwritten digits has ten categories. Here we
train a Convolutional Neural Networks (CNN) model [Lecun
et al., 1998] on the MNIST dataset and use t-SNE [Maaten
and Hinton, 2008] to visualize different layer features of the
samples. From Figure 1, it can be observed that for the orig-
inal data space, the samples spread throughout the whole
space. Interestingly, the samples mapped to the feature space
from low-level to high-level, gather together and come into
several groups gradually. It is obvious that these high-level
representations are very useful for tasks like classification or
retrieval. This observation inspires us to introduce a novel
regularization technique to guide the unsupervised feature
learning.

In this work, we develop a novel autoencoder based frame-
work called Stacked Similarity-Aware Autoencoders (SSA-
AE). In order to capture the geometric structure in the data,
we exploit similarity constraint as a generic prior on the hid-
den codes of the autoencoder. Specifically, we first obtain the
pseudo class label of each sample by clustering the input fea-
tures. Then for those samples belonging to the same category,
their hidden codes of the autoencoder will be constrained to
be close to each other in the high-dimensional space. Here we
employ an extension of the center loss [Wen et al., 2016] to
implement this similarity constraint. As a result, the learned
feature representations not only can reconstruct the origi-
nal data, but also preserve the geometric structure in the in-
puts. Even though the clustering results maybe not perfect.
For example, two samples have a different real classes but
same pseudo class or the same real class but different pseudo
classes. However, we utilize the reliable hierarchical clus-
tering method and only several outliers will not mislead the
feature learning. Moreover, a stacked framework is utilized
to improve the representation capacity. With respect to the
deeper stacked autoencoder, the amount of the classes used
for clustering will be set less to learn more compact high-
level representations. To the best of our knowledge, such au-
toencoder based deep learning scheme has not been discussed
before. We conduct extensive experiments on several bench-
mark datasets including MNIST and COIL100. The exper-
imental results demonstrate the superior performance of the
proposed algorithm compared with other autoencoder based
approaches.

The rest of this paper is organized as follows. In Section 2,
we present a brief review of the related works. Then we pro-
pose the Stacked Similarity-Aware Autoencoders in Section
3. The experimental results on two real-world datasets are
presented in Section 4. Finally, we provide some concluding

remarks in Section 5.

2 Related Work
In this section, we briefly review the recent work on the basic
autoencoder and a series of its variants.

The basic autoencoder [Rumelhart et al., 1988] was in-
troduced as a technique for dimensionality reduction. It is
a neural network that takes a vector input x, maps it into a
hidden representation z using an encoder which typically has
this form:

z = f(Wex+ be)

where f is a non-linear activation function, We the encoding
matrix and be a vector of bias parameters. The hidden repre-
sentation z, is then mapped back into the space of x, using a
decoder of this form:

x̃ = g(Wdz + bd)

where g is also a non-linear activation function, Wd is the
decoding matrix and bd a vector of bias parameters. The goal
of the autoencoder is to minimize the reconstruction error,
which is represented by a distance between x and x̃. The
most common type of distance is the mean squared error:

l(x, x̃) = ‖x− x̃‖22 = ‖x− g(Wdz + bd)‖22
The code z typically has less dimensions than x, which forces
the autoencoder to learn the most important information of
the training data. If the code z has as many components as
x, then no compression is required, and the model could typ-
ically end up learning the identity function.

More recently, autoencoders have played a key role in the
deep neural network based approaches [Hinton and Salakhut-
dinov, 2006] where autoencoders are stacked and trained bot-
tom up in unsupervised fashion, followed by a supervised
learning phase to train the top layer and fine-tune the entire
architecture. Unfortunately, if the encoder and decoder are
allowed too much capacity, the autoencoder can learn to per-
form the copying task without extracting useful feature rep-
resentations [Goodfellow et al., 2016].

Rather than limiting the model capacity by keeping the
code size small, there are many studies presenting ad-
vanced regularization techniques for non-convolutional au-
toencoders. Denoising autoencoder (DAE) [Vincent et al.,
2010] is trained to have denoising ability by incorporating
artificially random noise to the input data, and then encour-
aged the output to be as similar to the original undistorted
input as possible. In addition, by imposing sparsity on the
hidden units during training, an autoencoder can learn use-
ful structures in the input data even if the model capacity
is great enough to learn a trivial identity function. Sparsity
may be achieved by additional terms in the loss function dur-
ing training [Boureau et al., 2008], or by manually zeroing
all but the few strongest hidden unit activations (referred to
as a k-sparse autoencoder [Makhzani and Frey, 2014]). Fur-
thermore, the authors proposed Winner-Take-All (WTA) au-
toencoders [Makhzani and Frey, 2015] which use aggressive
dropout, where all the elements but the strongest of a convo-
lutional map are zeroed out. Moreover, the proposed method
exploits a lifetime sparsity by keeping the k percent largest
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activation of that hidden unit across the mini-batch samples
and setting the rest of activations of that hidden unit to zero.
This strategy forces the convolutional decoder to learn robust
features.

Meanwhile, graph regularization was utilized to preserve
the local structure of the original data space in [Yu et al.,
2013; Zhao et al., 2016]. Furthermore, [Ding et al., 2016]
developed a novel algorithm named as Deep Robust Encoder
(DRE) with locality preserving low-rank dictionary. The core
idea is to jointly optimize deep autoencoder and a clean low-
rank dictionary, which can rule out noises and extract robust
deep features in a unified framework.

However, most of these autoencoder based approaches ig-
nore the geometric structure within the dataset and may lead
to overfitting. Motivated by the recent work [Yang et al.,
2016], in which the authors proposed to jointly perform unsu-
pervised learning of deep representations and image clusters,
we introduce a novel similarity constraint based regulariza-
tion technique to guide the unsupervised feature learning.

3 The Proposed Approach
In this section, we first introduce the motivation of our pro-
posed algorithm, followed by our detailed model named
Similarity-Aware Autoencoder. Then we present the stacked
architecture which is allowed more representation capacity.

3.1 Similarity-Aware Autoencoder
First, we provide the definition for the conventional autoen-
coder. For simplicity, we use xi, zi, x̃i to represent the i-
th input vector, hidden vector and output vector respectively.
Then the reconstruction error can be formulated as bellow:

La =
n∑

i=1

‖xi − x̃i‖22

From this formulation, we can see that the conventional au-
toencoder only consider the one-to-one reconstruction error,
which ignores the geometric structure of the data and may
lead to overfitting. In general, the collected dataset could
have several latent concepts and some samples belong to the
same concept. This intrinsic characteristic requires that their
ideal representations should form several clusters, which can
lead to satisfactory performance for tasks like classification
or retrieval. In addition, according to our observation from
Figure 1, the samples mapped to the high-level feature space,
gather together and come into several groups. This observa-
tion inspires us to introduce a novel regularization technique
to guide the unsupervised feature learning. Specifically, we
hope that the ideal autoencoder will learn a mapping from the
inputs to a compact Euclidean space, where the similarity re-
lationships of the corresponding input vectors are preserved
or even reinforced. With this similarity constraint, the learned
feature will be more compact and discriminative. However,
the first difficulty is that we don’t have the similarity rela-
tionships or supervised signals here. Thus we want to use
clustering algorithm to get pseudo class labels. For conve-
nient, we employ the popular agglomerative clustering algo-
rithm [Gowda and Krishna, 1978]. The core idea in agglom-
erative clustering is to merge two clusters at each step until

some stopping conditions. More details can be found in [Jain
et al., 1999].

After that, one object class is comprised of the input vec-
tors clustered into the same group. Even though the clustering
results maybe not perfect, which means two examples have a
different real class but same pseudo class or the same real
class but different pseudo classes. These two situations might
cause problems. However, the hierarchical clustering method
is reliable and only several outliers will not mislead the fea-
ture learning. Then, how to develop an effective similarity
constraint function to improve the discriminative power of
the deeply learned feature representations? Intuitively, min-
imizing the intra-class variations while keeping the features
of different classes separable is the key. Inspired by [Wen et
al., 2016], we utilize the center loss to supervise the learning.
Suppose there are N classes for the samples and we use yi to
denote the pseudo class label for xi. Here is the formulation
for the center loss in [Wen et al., 2016].

Lc =
1

2

n∑
i=1

‖zi − cyi
‖22

The cyi ∈ Rd denotes the yith class center. And the cen-
ters are computed by averaging the hidden codes of the cor-
responding classes. The formulation effectively reduces the
intra-class variations.

However, it didn’t take the inter-class variations into ac-
count. We hope that the samples should be away from those
cluster centers which have different pseudo class labels. To
this end, we propose the improved center loss function, as
formulated in below.

Ls =
1

2

n∑
i=1

‖zi − cyi
‖22 + β

∑
y′ 6=yi

[
γ −

∥∥∥zi − cy′

∥∥∥2
2

]
+


Here the γ is a margin to avoid the influence from those re-
mote class centers who are far enough. And the β is a balance
parameter for minimizing the intra-class variations and max-
imizing the inter-class variations. The gradients of Ls with
respect to zi is computed as:

∂Ls

∂zi
= (zi − cyi

)− β
∑
y′ 6=yi

1

[∥∥∥zi − cy′

∥∥∥2
2
≤ γ

]
(zi − cy′ )

where 1

[∥∥∥zi − cy′

∥∥∥2
2
≤ γ

]
is the indicator function which

takes a value of one if its argument is true and zero otherwise.
Ideally, the class center cyi

should be updated as the hid-
den codes changed. In other words, we need to take the entire
training set into account and average the hidden codes of ev-
ery class in each iteration, which is inefficient even impracti-
cal. Therefore, we follow the solution in [Wen et al., 2016]
to address this problem. First, instead of updating the centers
with respect to the entire training set, we perform the update
based on mini-batch in each iteration. Second, to avoid large
perturbations caused by few mislabeled samples, we use a
scalar α to control the learning rate of the centers. Then the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1563



Figure 2: Visualization of the framework of the proposed similarity-
aware autoencoder.

update equation of cyi is computed as:

∆cj =

n∑
i=1

{1 [yi = j] (cj − zi) + β1 [yi 6= j] (zi − cj)}

1 +
n∑

i=1

{1 [yi = j] + β1 [yi 6= j]}

Furthermore, the objective function of the similarity-aware
autoencoder can be described as below:

L = La + λLs (1)

where λ is a hyper parameter which maintains the balance
between these two loss. The framework of the proposed
similarity-aware autoencoder is illustrated in Figure 2. For
convenience, we append an embedding layer on the top of
the hidden codes. And impose the similarity constraint on the
embedding layer. As a result, the learned feature representa-
tions not only can reconstruct the original data, but also are
close to each other for the similar samples.

3.2 Stacked Architecture
In this section, we introduce a stacked framework which is
utilized to improve the representation capacity. The tradi-
tional stacked autoencoders will use a single autoencoder
as a building block to form a deep architecture. More pre-
cisely, the hidden units of the current autoencoder are worked
as the input to feed in the next autoencoder to obtain the
stacked representations. According to our observation from
Figure 1, the samples mapped to the feature space , gather
together and come into several groups gradually from low-
level to high-level. This phenomenon gives us an insight that
the feature representations from the deeper layer should be
more discriminative in term of the semantic. Therefore, the
deeper stacked autoencoder deserves stronger similarity con-
straint to make the hidden codes capture high-level semantic
information. And this can be controlled easily by adjusting
the amount of classes used for clustering. To this end, for
the deeper layers of the proposed stacked autoencoders, the
amount of classes used for clustering will be set less to learn
more compact high-level representations.

Algorithm 1 Stacked similarity-aware autoencoders

1: Input: cluster number Nc > 0 for agglomerative clus-
tering, shrinking factor 0 < α < 1, iterative number R,
stacked autoencoder number T > 0, and training exam-
ples {xn}Nn=1,

2: Output: Parameters of stacked autoencoder {Wt}Tt=1,
3: Initialize training examples’ labels {yn}Nn=1 = 0
4: Compute the number of clusters Nc = bN × αc
5: Run agglomerative clustering on {xn}Nn=1
6: Update training examples’ labels {yn}Nn=1
7: for t = 1 to T do
8: for r = 1 to R do
9: Compute the stochastic gradient according to Eq.

(1)
10: Update {Wt}
11: end for
12: Compute the number of clusters Nc = bNc × αc
13: Compute the hidden vector {zn}Nn=1 with current

learned autoencoder
14: Update {xn}Nn=1 = {zn}Nn=1
15: Run agglomerative clustering on {xn}Nn=1
16: Update training examples’ labels {yn}Nn=1
17: end for
18: Return: {Wt}Tt=1

The whole procedure of the proposed stacked similarity-
aware autoencoders is summarized in Algorithm 1. Before
the training of each similarity-aware autoencoder, we need
to compute the similarity relationships between all samples.
Here, we employ the agglomerative clustering algorithm to
obtain the pseudo class labels. The cluster number varies
from large to small when the hidden codes of the autoencoder
need to represent higher level features. We will introduce a
hyper parameter 0 < α < 1 to control the process. Sup-
pose we have Nc clusters in previous autoencoder, then the
next cluster number is multiplied by α. Through this way,
the cluster number is shrinking for the deeper autoencoder,
which is corresponding to our observation in Figure 1. The
hyper parameter α is chosen so that the cluster number of the
last autoencoder is approximate to the true class number in
the original dataset. In addition, the agglomerative clustering
continues to merge clusters from previous clustering results.

4 Experiments
We conduct experiments on two widely used datasets to eval-
uate our proposed SSA-AE for unsupervised feature learning
and compare them with several state-of-the-art methods. The
following describes the details of the experiments and results.

4.1 Results on COIL100
COIL100 contains 7,200 color images of 100 objects. The
images of each objects were taken 5 degrees apart as the ob-
ject is rotated on a turntable and each object has 72 images
(Figure 3). The converted gray scale images with size 32 ×
32 are used. We selected 10 images per object randomly to
form the training set and the rest images are in testing set.
The nearest neighbor classifier is applied and the inputs are
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the learned feature representations. The random split is re-
peated 10 times, and the average results are reported with
standard deviations. All of the images are used in the un-
supervised feature learning and other compared methods to
learn the projection function.

Our SSA-AE model has two essential parameters: the bal-
ance parameter of similarity constraint and the stacked au-
toencoders number. First, we focus on the parameter λ in Eq.
(1) which represents the importance of similarity constraint
and fix other hyper-parameters. We conduct experiments on
20 class objects selected from COIL100 to evaluate the prop-
erty of our method. Figure 4 shows how the average perfor-
mance of SSA-AE varies with different λ. As we can see,
when the parameter λ becomes larger, our method achieves
better recognition at first and then the performance decreases.
SSA-AE achieves the best performance when the λ is set to
5. It demonstrates that there exists a balance for the recon-
struction error and the similarity constraint. Figure 5 shows
how the average performance of SSA-AE varies with differ-
ent stacked autoencoders number. From the results, we can
observe that SSA-AE generally achieves better performance
when the stacked autoencoders number goes up. However,
we also notice that a much deeper structure would ruin the
recognition performance. Therefore, in the experiments, we
use a three-layer structure to generate the evaluation features.

To further study the performance of our approach, we com-
pare SSA-AE with the following popular dimension reduc-
tion methods, including subspace learning: PCA [Turk and

Figure 3: Samples of the dataset COIL-100.
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Figure 4: Average recognition rate(%) on 20 class objects selected
from COIL100 with different values for λ.
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Figure 5: Average recognition rate(%) on 20 class objects selected
from COIL100 with different amounts of stacked autoencoders.

Pentland, 1991], NPE [He et al., 2005], KPCA [Schlkopf et
al., 1998]; dictionary learning: SCC [Cai et al., 2011]; non-
negative matrix factorization: SDNMF [Qian et al., 2016]. In
addition, three variants of the conventional autoencoder in-
cluding Sparse-AE [Boureau et al., 2008], Denoise-AE [Vin-
cent et al., 2010] and Graph-AE [Yu et al., 2013] are added.
The experiments with different numbers of used objects (20,
40, 60, 80 and 100) are conducted to evaluate the scalability
of our method. Each compared method is tuned with param-
eters to achieve their best performance. For all four autoen-
coder based methods, we use the same network architecture,
and report the results on the feature of the last stacked layer.

Table 1 shows a large improvement on the recognition rates
by our algorithm. From the results, we can observe that
our method achieves consistently good performance when the
number of used objects varies from 20 to 100. And autoen-
coder based methods are better than those traditional dimen-
sion reduction methods.

4.2 Results on MNIST
Furthermore, we evaluate the SSA-AE’s performance on the
MNIST dataset, a standard digit classification benchmark
with a training set of 60,000 labeled images and a test set of
10,000 labeled images. An advantage of unsupervised learn-
ing algorithms is the ability to use them in semi-supervised
scenarios where labeled data is limited. Here we use a ran-
domly chosen subset of NL = 100, 600, 1000, and 3000 la-
beled images andNU = 60K unlabeled images from the train-
ing and validation set. We compare our method with many
state-of-the-art semi-supervised learning methods consisting
of MTC [Rifai et al., 2011a], PL-DAE[Lee, 2013], WTA-AE
[Makhzani and Frey, 2015], SWWAE dropout [Zhao et al.,
2015], M1+TSVM [Kingma et al., 2014], RFM [Patel et al.,
2016], DRMM [Patel et al., 2016] and LadderNetwork [Ras-
mus et al., 2015].

Results are shown in Table 2 for our method with compar-
isons to related work. The experimental results of these com-
pared methods are extracted from their paper. In this case, the
unsupervised features are still trained on the whole dataset,
but the SVM is trained only on the N labeled points where N
varies from 100 to 3K. Also, we compare the performance of
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Table 1: Average recognition rate(%) with standard deviations on COIL100 with different number of classes.

Methods 20 objects 40 objects 60 objects 80 objects 100 objects Average
PCA 90.41± 0.89 89.27± 0.95 87.20± 0.80 85.80± 0.64 84.17± 0.63 87.37
NPE 91.76± 1.21 89.59± 0.77 87.27± 0.68 85.94± 0.83 85.03± 0.57 87.91
SCC 91.49± 1.02 89.39± 0.71 85.91± 0.46 83.91± 0.34 82.91± 0.42 86.72

KPCA 90.12± 0.80 88.06± 0.73 85.75± 0.57 83.97± 0.49 82.52± 0.53 86.08
SDNMF 89.91± 0.92 87.88± 0.62 82.94± 0.31 81.44± 0.41 78.60± 0.56 84.15

Sparse-AE 92.26± 0.68 91.17± 0.75 88.59± 0.44 86.63± 0.55 85.54± 0.49 88.83
Denoise-AE 91.75± 0.90 90.52± 0.75 88.58± 0.63 86.35± 0.66 85.17± 0.55 88.47
Graph-AE 93.37± 0.80 91.33± 0.58 89.11± 0.46 86.67± 0.57 85.96± 0.43 89.28

SSA-AE (ours) 96.97± 0.68 94.04± 0.47 91.87± 0.46 90.42± 0.55 88.78± 0.41 92.41

Table 2: Comparison of Test Error rates (%) between SSA-AE and other best published results on MNIST dataset for the semi-supervised
setting with NU = 60K unlabeled images, of which NL = 100, 600, 1K, 3K are labeled.

Methods NL = 100 NL = 600 NL = 1K NL = 3K
Convnet [Lecun et al., 1998] 22.98 7.86 6.45 3.35
MTC [Rifai et al., 2011a] 12.03 5.13 3.64 2.57
PL-DAE [Lee, 2013] 10.49 5.03 3.46 2.69
WTA-AE [Makhzani and Frey, 2015] − 2.37 1.92 −
SWWAE dropout [Zhao et al., 2015] 8.71± 0.34 3.31± 0.40 2.83± 0.10 2.10± 0.22
M1+TSVM [Kingma et al., 2014] 11.82 5.72 4.24 3.49
M1+M2 [Kingma et al., 2014] 3.33± 0.14 2.59± 0.05 2.40± 0.02 2.18± 0.04
LadderNetwork [Rasmus et al., 2015] 1.06± 0.37 − 0.84± 0.08 −
RFM [Patel et al., 2016] 14.47 5.61 4.67 2.96
DRMM unsup-pretr [Patel et al., 2016] 12.03 3.61 2.73 1.68
DRMM semi-sup [Patel et al., 2016] 3.50 1.56 1.67 0.91
SSA-AE (ours) 2.78 2.20 2.29 1.90

a supervised deep Convnet [Lecun et al., 1998] trained only
on the N labeled training points. Despite the fact that we use
no other regularization nor any hyperparameter search, the
SSA-AE performs comparably to other approaches that are
deep and employ various kinds of additional regularization.
As we can see, SSA-AE achieves consistently good perfor-
mance when N varies in a large range.

4.3 Implementation Details
We use Torch to implement our approach. For each single au-
toencoder, we stacked a combination of convolutional layer,
batch normalization layer, ReLU layer and pooling layer to
form the encoder. For all the convolutional layers, the num-
ber of channels is 50, and filter size is 5 × 5 with stride = 1
and padding = 0. Except for the experiments which evaluat-
ing the stacked autoencoder numbers, to preserve the convo-
lutional feature maps, filter size is 3 × 3 with stride = 1 and
padding = 1. For the decoder, we utilize the deconvolutional
layer to obtain an upsampled feature map. The deconvolution
operation is exactly the reverse of convolution. On the top
of the hidden codes, we append an embedding layer whose
dimension is 160. And we adopt stochastic gradient descent
(SGD) for optimization.

5 Conclusions
In this paper, we proposed a novel autoencoder based ap-
proach called Stacked Similarity-Aware Autoencoders (SSA-

AE) for unsupervised feature learning. To capture the geo-
metric information in the data, we introduce a novel regu-
larization technique. Specifically, we first obtain the pseudo
class label of each sample by clustering the input features.
Then for those samples sharing the same category label, their
hidden codes of the autoencoder will be constrained to gather
together in the high-dimensional space. This similarity con-
straint is implemented based on an extension of the recently
proposed center loss. Through this combined cost function
of the center loss and the autoencoder reconstruction error,
the learned feature representations will be more discrimina-
tive and compact. As a general framework, different simi-
larity constraint could be applied to the latent representations
of the autoencoder as well. What’s more, a stacked archi-
tecture is introduced to improve the representation capacity.
The experimental results on several benchmark datasets indi-
cated the effectiveness of our SSA-AE framework. Although
our approach learns effective discriminative features, it has
to pay high computational cost in clustering, which limits its
applicability to large-scale problems. In the future, we plan
to investigate more efficient way to obtain the pseudo class
labels used for implementing the similarity constraint.
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