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Abstract
We consider the problem of automatically extract-
ing visual objects from web images. Despite the
extraordinary advancement in deep learning, visual
object detection remains a challenging task. To
overcome the deficiency of pure visual techniques,
we propose to make use of meta text surrounding
images on the Web for enhanced detection accu-
racy. In this paper we present a multimodal learn-
ing algorithm to integrate text information into vi-
sual knowledge extraction. To demonstrate the ef-
fectiveness of our approach, we developed a system
that takes raw webpages and a small set of train-
ing images from ImageNet as inputs, and automati-
cally extracts visual knowledge (e.g. object bound-
ing boxes) from tens of millions of images crawled
from the Web. Experimental results based on 46
object categories show that the extraction precision
is improved significantly from 73% (with state-of-
the-art deep learning programs) to 81%, which is
equivalent to a 31% reduction in error rates.

1 Introduction
Recent progresses on computer vision research community
such as large scale object detection [Girshick, 2015][Si-
monyan and Zisserman, 2014], age invariant face recognition
[Gong et al., 2013; 2015], and region-to-phrase correspon-
dences [Plummer et al., 2015], largely benefit from ever in-
creasing amount of visual knowledge as training data. Col-
lecting visual knowledge in a crowdsourcing manner, such
as the ImageNet database [Deng et al., 2009] and Visipedia
[Perona, 2010], has major limitation in the lack of both di-
versity and scalability. In addition, manually annotating large
collection of images is usually an expensive and time con-
suming process. For example, based on the most recent statis-
tics, there are only 7.28% images annotated in the ImageNet
database. Given these limitations, in this paper we explore an
alternative approach to build large visual knowledge base by
extracting visual knowledge from Web data.

Mining useful visual knowledge automatically from the
Web can be challenging. Even with the recent state-of-the-
art visual object detection algorithms, the precision of con-
tent based image retrieval is still unacceptable. For example,

GoogLeNet [Szegedy et al., 2015] which finished at the 1st

place in the ImageNet Large-Scale Visual Recognition Chal-
lenge 2014, only achieves mean average precision of 43.9%.

Given the limitation of visual knowledge extraction meth-
ods purely relying on visual content, this paper explores an al-
ternative method to integrate multimodal information for bet-
ter extraction accuracy. The Web is mostly a vast collection
of unstructured information of various modalities (e.g. text,
image, and video), where multimodal information is usually
correlated. For instance, images of a news article usually il-
lustrate the corresponding text content and meta text like alt
or src of an image describes the content of that image. These
observations suggest that a potentially greater visual knowl-
edge extraction accuracy can be achieved by making use of
information from alternative modalities.

2 Related Work and Our Contributions
Traditionally, visual knowledge bases such as ImageNet
[Deng et al., 2009] and Visipedia [Perona, 2010] are con-
structed by manual annotations with motivated teams of peo-
ple or power of crowds. These approaches however are quite
limited because annotations become expensive, prone to er-
rors and do not scale. To overcome these disadvantages, re-
cent studies have been focused on leveraging machine learn-
ing technologies to reduce human intervention. For exam-
ple, Vijayanarasimhan et al. [Vijayanarasimhan and Grau-
man, 2014] proposed an active learning algorithm based on
crowdsourcing using Amazon Mechanical Turk to train ob-
ject detectors with crawled data. Later, Chen et al. [Chen et
al., 2013b] presented a completely autonomous system called
Never Ending Image Learner (NEIL) to automatically mine
visual knowledge from the Web. While these systems are de-
signed to reduce the human intervention for visual knowledge
mining, their retrieval precision is still quite low (e.g. NEIL
has mean average precision of 51% for 15 object categories)
due to limited source of information.

There have been an increasing research interest for mul-
timodal learning in the recent years. The general goal of
multimodal learning is to utilize information across multi-
ple modalities (e.g. text, image, video, and audio) for ei-
ther enabling cross-modality query or improving retrieval ac-
curacy for a wide variety of machine learning tasks. For
instances, Zhu et al. [Zhu et al., 2015] proposed a scal-
able algorithm to build multimodal knowledge base for an-
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swering visual queries. Their system takes annotated mul-
timodal data (e.g. images with text descriptions and at-
tributes) as input, and establishes relations between entities
using MRF models. The system however doesn’t completely
solve the automatic visual knowledge mining problem be-
cause it relies on annotated multimodal data, the acquisition
of which is another challenging problem yet to be addressed.
Other representative approaches such as [Kiros et al., 2014;
Norouzi et al., 2013; Lazaridou et al., 2015; Frome et al.,
2013] primarily focus on learning semantic embeddings us-
ing deep neural networks for multimodal object representa-
tions. The basic idea of these approaches is to map objects in
different modalities into a common vector space so that cor-
respondence between multimodal objects can be established.
For example, Kiros et al. [Kiros et al., 2014] proposed a mul-
timodal skip-gram model to learn word embeddings closely
related to the corresponding vision concepts (e.g. embedding
of word kitten is close to embedding of visual objects in cat
category). Similarly, Frome et al. [Frome et al., 2013] de-
veloped a system called “DeViSE” that learns to transform
embeddings from visual modality to textual modality to al-
low prediction of unseen visual categories based on text la-
bels (so called Zero-Shot Learning [Norouzi et al., 2013]).
However, like the system by Zhu et al. [Zhu et al., 2015],
all of these methods rely on image data manually annotated
(e.g. annotation is noise-free) with text descriptions by hu-
man workers (e.g. Flickr 8K [Hodosh et al., 2013] and Im-
ageNet [Deng et al., 2009]). Annotating images with text
descriptions is another challenging problem yet to be solved.
Consequently, these approaches may not be suitable for open-
domain visual knowledge extraction, where noise-free image
descriptions are usually unavailable.

Our work is closely related to the aforementioned ap-
proaches, with major contributions summarized as follows:

• The major novelty of this paper is to present a mul-
timodal learning approach to integrate meta text sur-
rounding web images for large scale open-domain vi-
sual knowledge extraction. Compared to existing ap-
proaches, our approach is proved to be effective for real-
world web data that is noisy, incomplete or redundant.

• We develop a sophisticated end-to-end system for large-
scale visual knowledge extraction from real web data.
Unlike existing multimodal approaches which test on
standard datasets, in this paper we take hundreds of mil-
lions of raw webpages as input, and automatically ex-
tract visual object bounding boxes as outputs for testing.

• Finally, we demonstrate a significant improvement in ex-
traction precision over the state-of-the-art visual object
detection algorithms. Experimental results based on 46
object categories show that by making use of textual and
visual information jointly, the extraction precision is im-
proved significantly from 73% to 81%, which is equiva-
lent to a 31% reduction in error rates.

3 Multimodal Embeddings
In this section, we describe an algorithm to learn embeddings
for textual words and visual concepts. The learned represen-

tative embeddings in continuous space preserve relative dis-
tance between multimodal objects, such that if two objects
have similar meaning (e.g. “car” and “truck”), their embed-
dings are also close to each other.

3.1 Review of Skip-Gram Model
Our algorithm is closely related to the skip-gram model
[Guthrie et al., 2006] which is a language modeling algorithm
used to learn embeddings of text words. Given text corpus,
the training objective of the Skip-Gram model is to find word
representations that are useful for predicting the surrounding
words in a sentence. Mathematically, it maximizes the objec-
tive function

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt), (1)

where w1, w2, . . . wT is a sequence of training words in the
corpus, and c is the size of the window around target wt.
In the basic Skip-Gram model, the conditional probability
p(wt+j |wt) is defined using the softmax function as

p(wO|wI) =
exp

(
v

′

wO

T
vwI

)
∑W
w=1 exp

(
v′
w
T
vwI

) , (2)

where vw and v
′

w are the “input” and “output” vector rep-
resentations of w, and W is the size of the vocabulary. Due
to the normalization term in denominator, the Equation (2) re-
quiresO(W ) time complexity, which makes it computionally
impractical since the size of vocabulary is usually very large
(e.g. 105 − 107). To speedup the computation, hierarchical
softmax [Mikolov et al., 2013] is proposed to approximate the
standard softmax in Equation (2) with a binary tree, which re-
duces the time complexity from O(W ) to O(log(W )) on av-
erage. In this paper, we shall apply the hierarchical softmax
whose implementation is based on Google word2vec1.

3.2 Definition
Suppose we have a set ofN images from which visual knowl-
edge is to be extracted, denoted as

I = {(In, Tn)|n = 1 . . . N},

where In represents an image, and Tn denotes a set of text
phrases describing image In. Then we apply visual object
detection program on each of the image In, and arrive at a set
of detected visual objects denoted as

ID = {(D(In), Tn)|In ∈ I ∧ card(D(In)) > 0} , (3)

where D(·) is a detection operator gives a set of detected vi-
sual categories, and card(·) is the cardinality of a set. We
only retain images that have at least one detected object from
predefined set of visual categories (denoted as C).

We have two vocabularies, one for text and one for im-
age. The text vocabulary (denoted as V) is derived from text
phrases associated with images in ID, and visual vocabulary
(denoted as C) is derived from visual categories.

1https://code.google.com/archive/p/word2vec

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1719



3.3 Formulation
Our goal is to learn embeddings for text phrase x ∈ V and
visual category y ∈ C, such that:

• The embeddings ~v(x) and ~v(y) are close to each other
(e.g. in Euclidean n-space with cosine distance) if text
phrase x is an appropriate description of image category
y. For example, ~v(kitten) should be close to ~v(cat),
where kitten ∈ V and cat ∈ C, since kitten is an appro-
priate description of cat.
• The embeddings ~v(y1) and ~v(y2) are close to each other

if objects in image category y1 co-occur with objects in
image category y2 with high frequency. Two objects co-
occur if they occur in the same image. For example,
~v(car wheel) is close to ~v(car) because objects of car
wheel and car co-occur with high frequency.

These two items are essential. The first item identifies a set of
important text phrases that are useful for image retrieval. For
example, if we have text kitten as tag of an image, then the
confidence about that image contains objects in cat category
becomes higher. The second item identifies important visual
categories that are useful for image retrieval of other visual
categories. For example, if we have detected an object of car,
then the confidence of that image contains car wheel objects
becomes higher. This kind of visual co-occurrence regularity
has been shown to be useful in improving detection precision
in NEIL [Chen et al., 2013a].

Our model jointly encodes the intuition of multimodal in-
formation and visual co-occurrence regularity, by maximiz-
ing the following objective function:

1

card(ID)
∑

(D,T )∈ID

∑
u 6=v

u,v∈D∪T

log p(v|u) (4)

For each image, we have a set of visual categories D ob-
tained from image detection (e.g. if we detect car and car
wheel objects in an image, then D = {car, car wheel}),
and a set of text phrases T obtained from extracting text
information surrounding the image (e.g. if title of an im-
age contains text phrases autmobile and dealer then T =
{autmobile, dealer}). For an image we calculate the sum
of conditional probabilities predicting elements between each
other, and the overall objective function maximizes average
of these sums. It can be verified that this objective function
satisfies the two items we have previously declared.

We observe that the multimodal objective function in Equa-
tion (4) can be transformed into objective function of the
Skip-Gram model in Equation (1) by:

1. Mapping each object un ∈ D(In) ∪ Tn to a word wt;

2. Mapping a set of multimodal objects D(In) ∪ Tn to
words wt−c . . . wt+c around the target word wt;

Thus, with these transformations we can solve the optimiza-
tion problem in Equation (4) using the standard Skip-Gram
model. In this paper, we have applied the hierarchical soft-
max version of the Skip-Gram model. After embeddings
are learned, we normalize the embedding vectors by dividing
their L2 norms such that all vectors are of unit magnititude.

3.4 Image Tagging
The image tagging program automatically assigns each im-
age a set of noun phrases (tags) that best describe the image
[Chen et al., 2013a]. We extract tags of each image based on
both image meta and web page context information, follow-
ing these steps:
• Retrieve top-k noun phrases (denoted as TopNP ) from

a web page that containing the target image to be tagged.
The importance of noun phrases are measured by tfidf
score

tfidf(t, d) = 0.5 + 0.5
ft,d

max{ft′,d : t′ ∈ d}
× logN

nt
,

where d represents the webpage document, ft,d is the
frequency of term t in document d,N is the total number
of webpages, and nt is the total number of webpages
containing the term t. We found k = 30 performs well
in our system.
• For each noun phrase in TopNP , if either src or alt at-

tribute of 〈img〉 tag contains the noun phrase, then assign
it as a tag of the image.
• Retain top-k tags for each image with the highest tfidf

scores. We set k = 3 in our system.
The Table 1 illustrates some example images annotated with
tags. We can see the extracted tags can be inaccurate or
incomplete, which makes it challenging to apply the multi-
modal learning to predict visual objects. In the next section,
we shall describe an algorithm using structure learning ap-
proach to efficiently select an optimal set of tags that are most
useful for prediction.

4 Structure Learning and Prediction
In this section, we present a prediction model based on mul-
timodal embeddings for visual knowledge extraction.

4.1 Multimodal Vocabulary
The multimodal vocabulary, denoted asW , is a union of text
vocabulary V and visual vocabulary C.

W = V ∪ C
In our system, we require a word to have minimum frequency
of 5 to be considered as a member ofW . Then, an image in
Equation (3) can be represented using theW as

ID = {Wn|Wn = (D(In) ∪ Tn) ∩W},
where Wn is a set of words from vocabularyW correspond-
ing to image In. For a concrete example, let’s suppose we
have an image In, where

D(In) = {car, car wheel}
indicates that the visual detector can detect objects in cate-
gories of car, car wheel from In, and

Tn = {automobile, dealer}
means In has two text tags: “automobile” and “dealer”. Then,
according to the definition,

Wn = {car, car wheel, automobile, dealer}. (5)
In the next section, we shall describe an effective learning
algorithm to predict if objects of a category (e.g. car) present
in In using Wn.
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Table 1: Example web images with tags automatically annotated

4.2 Structure Learning
We predict the visual objects in an image based on the multi-
modal words Wn describing the image. Mathematically, we
model the probability that an image In contains objects of
category c with a logistic regression model

pθ(c|Wn) =
e
θ0+

∑
wk∈Wn,wk 6=c θk~v(wk)

T~v(c)

1 + e
θ0+

∑
wk∈Wn,wk 6=c θk~v(wk)T~v(c)

, (6)

where Wn is a set of multimodal words describing image In,
and θ0, θ1, . . . (collectively denoted as θ) are the bias and
combination coefficients. When summarizing over Wn, we
exclude the word c because ~v(wk)T~v(c) = 1 is constant when
wk = c (all vectors are L2 normalized). Note that each multi-
modal word is corresponding to one θ (excluding wk = c), so
the total number of parameters is card(W), including bias θ0.
The operator ~v(·) converts a word into its corresponding dis-
tributed vector representation as before. In this manner, the
probability is determined by weighted combination of Wn.
Note that we train one prediction model per category, thus
different categories have different θ parameters.

To learn the model parameters θ w.r.t. category c, we max-
imize the following regularized objective function

L(θ, c) =
∑
n∈P

ln pθ(c|Wn)

card(P)
+
∑
n∈N

ln (1− pθ(c|Wn))

card(N )
−λ|θ|1,

(7)
where P denotes a set of indices for image samples in ID
that are relevant to category c, and N denotes the irrelevant
samples. An image is relevant to category c if visual detector
detects objects of category c (e.g. c ∈ Wn). Equation (7) is a
balanced and regularized version of the log likelihood. Usu-
ally the number of negative training samples is much more
than the positive samples, so we balance uneven number of
training samples by dividing the cardinalities. The L1 reg-
ularization term is used to encourage sparse solutions while
at the same time keep the optimization problem convex. We
need sparse solution for θ because the size of W is usually
very large (e.g. 105 − 107) and only a very small fraction of
words are useful for specific category c. With proper sparsity
level, words that are not useful will have zero θ value, which
makes these useless words inactive at prediction stage. In-
tuitively speaking, in the example of Equation (5), we expect
word “image” to have zero θ value when c is car because “im-
age” is not closely related to category car. On the contrary, if
θ value of “image” is nonzero, then this word can easily lead
to false positive prediction if θ is positive and false negative
detection if θ is negative.

The prediction model in Equation (6) predicts visual ob-
jects based on both visual co-detection and text information.

For example, assuming that target category c is car and Wn

is given by Equation (5), then Equation (6) predicts that im-
age In contains car objects based on weighted combination
of: car wheel, automobile, image. Intuitively, the confidence
about In containing car objects becomes higher if we know
that car wheel objects can be detected from In, which we
called visual co-detection information. Similarly, the same
confidence increases as we learn that text tags of In contains
“automobile”, which we called text information.

4.3 Unifying Predictions
The probabilistic model in Equation (6) exploits both visual
co-detection and text information. However, this probabilistic
function doesn’t take the prediction given by object detectors
into consideration. To include the confidence predicted by
object detectors, denoted as q(c|In), we unify the two predic-
tions to give the final scoring function as

score(In, c) = pθ(c|Wn) · q(c|In), (8)

where Wn is a set of multimodal words corresponding to im-
age In as before. As a result, for each visual category c we
rank all candidate images in ID by this confidence score and
then retrieve the top candidates as output.

5 Experiments and Results
In this section, we evaluate the proposed multimodal algo-
rithm in the context of Web visual knowledge mining.

5.1 Dataset
We evaluate our approach based on a collection of web pages
and images derived from the Common Crawl dataset [Smith
et al., 2013] that is publicly available on Amazon S3. The
entire Common Crawl dataset comprises billions of raw web-
pages in warc compressed format, and for our study we take
a subset of the data with hundreds of millions of webpages.
These webpages are processed following these steps:

1. Parse the HTML webpages, with a C++ open-source
program Gumbo-Parser by Google2.

2. Extract all image urls of each web page, along with alt
and src attributes. We only retain images whose dimen-
sion (shorest edge) is at least 150 pixels.

3. Clean meta and spam from web pages to obtain plain
text, then tokenize and apply part-of-speech tagging.
The part of speech tagger is based on Tree-Tagger pro-
gram [Schmid, 1995] for best computational efficiency.

2https://github.com/google/gumbo-parser
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4. Extract nouns and noun phrases. The nouns are ex-
tracted based on part-of-speech tag of a word. The noun
phrases are extracted based on the following rules:

• Common noun phrases (e.g. “computer moni-
tor”) consist of a sequence of consecutive common
nouns;
• Proper noun phrases (e.g. “National Aeronau-

tics and Space Administration”) are a sequence of
proper nouns optionally connected by conjunction
or preposition.

5. Assign a set of tags to images by running the image
tagging program described in Section 3.4. Then down-
load images from the Web based on image urls in a dis-
tributed manner using Amazon S3 and EC2 (40 concur-
rent spot instances).

This results in a collection of around 10 million tagged im-
ages for our study.

5.2 Experimental Settings
In this section, we describe the detailed system parameters,
baseline approach and experimental procedures.

System parameters
For each image we retain top 3 tags of the highest tfidf scores,
and images are resized to fit a 217 × 217 bounding box. For
multimodal embedding, we set the dimension of vector rep-
resentations as 500 (we found that dimensions between 100
and 1000 give similar results) according to the recommenda-
tion from [Frome et al., 2013]. For structure learning, we tune
the λ parameter in Equation (7) on training data such that the
number of non-zero elements is around 100 for the θ param-
eter. We observed that the performance is stable when θ has
number of non-zeros elements between 50 and 200. In this
paper, we consider 46 visual categories that are taken from
the ImageNet [Deng et al., 2009] database. Each category is
initialized with 250 seed images from the ImageNet with an-
notated object bounding boxes, which are then used to train
visual object detector. For visual detection, we use the Fast
R-CNN [Girshick, 2015] (a recent state-of-the-art deep learn-
ing algorithm) as our object detection program. The reasons
we use Fast R-CNN are due to both its computational effi-
ciency and being able to achieve accuracy that is comparable
to other state-of-the-art approaches. The CaffeNet models
with feature dimension of 4096 were trained on a NVIDIA
Tesla K40c GPU. All detection parameters were set as de-
fault3. The trained detector was then applied to all images,
which took around 35 days to complete the detection of 10
million images on a 16-core server machine with NVIDIA
Tesla K40c GPU.

Baseline approach
The thesis explored in this paper is that a much greater ex-
traction accuracy for Web visual knowledge extraction can
be achieved by exploiting multimodal information. Thus, for
each visual category c our comparative baseline ranks all can-
didate images in ID merely based on visual information by

3https://github.com/rbgirshick/fast-rcnn

Precision (%)
Category #Det. Uni. Mul.
beach 11,457 74 91(+17)
bear 9,751 72 90 (+18)
bed 92,024 95 100 (+5)
bedroom 3,318 96 100 (+4)
bee 4,477 59 70 (+11)
boat 10,215 74 90 (+16)
car 110,898 97 100 (+3)
car mirror 15,756 22 21 (-1)
car tire 10,180 33 48 (+15)
car wheel 75,554 87 100 (+13)
cellular telephone 69,768 93 100 (+7)
chair 81,642 92 100 (+8)
civilian clothing 182,826 69 73 (+4)
computer keyboard 14,959 23 31 (+8)
crane 4,262 31 45 (+14)
female child 402,921 93 100 (+7)
fish 20,694 9 29 (+20)
game fish 3,840 60 84 (+24)
hand-held computer 106,263 95 95 (+0)
helicopter 7,952 96 99 (+3)
insect 29,919 93 99 (+6)
jersey 134,964 100 100 (+0)
kitchen 88,884 82 89 (+7)
laptop 56,676 78 100 (+22)
lifeboat 6,671 63 71 (+8)
locomotive 6,643 83 90 (+7)
man’s clothing 300,496 94 99 (+5)
microwave 69,707 83 88 (+5)
musical instrument 67,475 14 10 (-4)
people 468,914 98 100 (2)
pizza 225,795 72 67 (-5)
racer 78,487 94 100 (+6)
riverbed 19,689 78 82 (+4)
salmon 20,652 75 90 (+15)
school bus 6,964 54 49 (-5)
seashore 113,937 68 82 (+14)
skirt 117,309 88 98 (+10)
sky 161,540 95 100 (+5)
suspension bridge 5,841 30 48 (+18)
table 150,542 84 90 (+6)
television 45,690 19 45 (+26)
truck 24,263 92 97 (+5)
vehicle 5,446 88 97 (+9)
wading bird 4,371 91 98 (+7)
warplane 32,506 95 99 (+4)
window 275,872 75 92 (+17)
Average 81,696 72.95 81.43 (+8.48)

Table 2: The comparison of precision between Multimodal (Mul.)
and Unimodal (Uni.) based on top 1,000 detections of each cate-
gory (totally 46 categories). The #Det. is total number of detected
objects for a category from 10 million Web images (some images
don’t contain objects of interest).
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Uni.@boat

Mul.@boat

Table 3: The comparison of top extracted objects for the unimodal (Uni.) and multimodal (Mul.) approaches based on three example visual
categories. Each image is visualized with object bounding boxes along with the corresponding confidence scores given by the Fast-RCNN
visual object detector. The text descriptions on the bottom of each image are extracted automatically by parsing web pages using our Image
Tagging algorithm.

scoring function

score(In, c) = q(c|In), (9)

where q(c|In) is confidence score predicted by object detec-
tor. We used the state-of-the-art visual object detection pro-
gram (Fast R-CNN) as the baseline object detector.

Experimental procedures
We evaluate our approach by comparing the quality of the ex-
tracted visual knowledge. For each visual category, we rank
all relevant images by scoring functions in Equation (8) and
(9) respectively, and then retrieve the top-k images with the
highest scores as output. The precision of output images of
category c are estimated by

Precision(c, k) =
#relevant(Sk, c)

card(Sk)
. (10)

The Sk is a set of images sampled randomly from top-k re-
trieved images, and #relevant(Sk, c) denotes the number of
images in Sk that contains correct detection of objects in vi-
sual category c. In our paper, k is set to be 1, 000 and the size
of Sk is set to be 100. Consequently, we compare the quality
of the first 1, 000 retrieved images based on estimation of 100
random samples from that 1, 000 images. Retrieved images
of different approaches are mixed together and then the cor-
rectness of individual retrieval is verified by human workers.

5.3 Results
Quantative evaluation
We first present our quantitive evaluation results by compar-
ing the proposed multimodal algorithm (Mul.) against the
baseline unimodal approach (Uni.). We estimated the pre-
cision of each visual category following the procedures de-
scribed in Section 5.2, and results are shown in Table 2. In the
table, the #Det. column is the total number of detected visual
objects of a category from 10 million image corpus based on

Fast R-CNN detector (may contain false detections). Based
on the result in Table 2, we see that for most of the visual cat-
egories, the proposed multimodal approach outperforms the
unimodal baseline by a clear margin, which confirms the ef-
fectiveness of the proposed approach. On average, the multi-
modal approach has improved the precision by 8.48%, which
is equivalent to a 31% reduction in error rates.

Illustrative examples
To intuitively examine the effectiveness, we visualize ex-
tracted examples as shown in Table 3. Due to the limited
space, we only illustrate the top four examples of boat cat-
egory. From these examples, we conclude that the baseline
Uni. approach extracts objects with the highest visual detec-
tion score (1st row), while the proposed Mul. approach lever-
ages both text and visual information (2nd row). We also ob-
serve that the text description for images retrieved with Mul.
(2nd row) is more consistent with the visual objects in the
images. The second image in the first row is a false positive
extraction, which also shows the unreliability of algorithms
relying on single source of information.

6 Conclusion
We demonstrate an effective multimodal learning algorithm
for visual knowledge extraction from the Web. We have
developed a mutimodal visual knowledge extraction system
which takes raw web pages as input and extract visual ob-
jects leveraging both textual and visual information in a fully
automatic manner. Evaluational experiments show that when
compared with the state-of-the-art algorithms purely relying
on visual content, our multimodal algorithm significantly im-
proves the visual knowledge extraction precision.
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