
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

Huifeng Guo∗1 , Ruiming Tang2, Yunming Ye†1, Zhenguo Li2, Xiuqiang He2
1Shenzhen Graduate School, Harbin Institute of Technology, China

2Noah’s Ark Research Lab, Huawei, China
1huifengguo@yeah.net, yeyunming@hit.edu.cn, 2{tangruiming, li.zhenguo, hexiuqiang}@huawei.com

Abstract
Learning sophisticated feature interactions behind
user behaviors is critical in maximizing CTR for
recommender systems. Despite great progress, ex-
isting methods seem to have a strong bias towards
low- or high-order interactions, or require exper-
tise feature engineering. In this paper, we show
that it is possible to derive an end-to-end learn-
ing model that emphasizes both low- and high-
order feature interactions. The proposed model,
DeepFM, combines the power of factorization ma-
chines for recommendation and deep learning for
feature learning in a new neural network architec-
ture. Compared to the latest Wide & Deep model
from Google, DeepFM has a shared input to its
“wide” and “deep” parts, with no need of feature
engineering besides raw features. Comprehensive
experiments are conducted to demonstrate the ef-
fectiveness and efficiency of DeepFM over the ex-
isting models for CTR prediction, on both bench-
mark data and commercial data.

1 Introduction
The prediction of click-through rate (CTR) is critical in rec-
ommender system, where the task is to estimate the probabil-
ity a user will click on a recommended item. In many rec-
ommender systems the goal is to maximize the number of
clicks, so the items returned to a user should be ranked by
estimated CTR; while in other application scenarios such as
online advertising it is also important to improve revenue, so
the ranking strategy can be adjusted as CTR×bid across all
candidates, where “bid” is the benefit the system receives if
the item is clicked by a user. In either case, it is clear that the
key is in estimating CTR correctly.

It is important for CTR prediction to learn implicit feature
interactions behind user click behaviors. By our study in a
mainstream apps market, we found that people often down-
load apps for food delivery at meal-time, suggesting that the
(order-2) interaction between app category and time-stamp
∗This work is done when Huifeng Guo worked as intern at

Noah’s Ark Research Lab, Huawei.
†Corresponding Author.

Figure 1: Wide & deep architecture of DeepFM. The wide and deep
component share the same input raw feature vector, which enables
DeepFM to learn low- and high-order feature interactions simulta-
neously from the input raw features.

can be used as a signal for CTR. As a second observation,
male teenagers like shooting games and RPG games, which
means that the (order-3) interaction of app category, user gen-
der and age is another signal for CTR. In general, such inter-
actions of features behind user click behaviors can be highly
sophisticated, where both low- and high-order feature interac-
tions should play important roles. According to the insights
of the Wide & Deep model [Cheng et al., 2016] from google,
considering low- and high-order feature interactions simulta-
neously brings additional improvement over the cases of con-
sidering either alone.

The key challenge is in effectively modeling feature inter-
actions. Some feature interactions can be easily understood,
thus can be designed by experts (like the instances above).
However, most other feature interactions are hidden in data
and difficult to identify a priori (for instance, the classic as-
sociation rule “diaper and beer” is mined from data, instead
of discovering by experts), which can only be captured auto-
matically by machine learning. Even for easy-to-understand
interactions, it seems unlikely for experts to model them ex-
haustively, especially when the number of features is large.

Despite their simplicity, generalized linear models, such as
FTRL [McMahan et al., 2013], have shown decent perfor-
mance in practice. However, a linear model lacks the abil-
ity to learn feature interactions, and a common practice is
to manually include pairwise feature interactions in its fea-
ture vector. Such a method is hard to generalize to model
high-order feature interactions or those never or rarely appear
in the training data [Rendle, 2010]. Factorization Machines

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1725

(FM) [Rendle, 2010] model pairwise feature interactions as
inner product of latent vectors between features and show
very promising results. While in principle FM can model
high-order feature interaction, in practice usually only order-
2 feature interactions are considered due to high complexity.

As a powerful approach to learning feature representa-
tion, deep neural networks have the potential to learn so-
phisticated feature interactions. Some ideas extend CNN
and RNN for CTR predition [Liu et al., 2015; Zhang et
al., 2014], but CNN-based models are biased to the in-
teractions between neighboring features while RNN-based
models are more suitable for click data with sequential de-
pendency. [Zhang et al., 2016] studies feature representa-
tions and proposes Factorization-machine supported Neural
Network (FNN). This model pre-trains FM before applying
DNN, thus limited by the capability of FM. Feature interac-
tion is studied in [Qu et al., 2016], by introducing a prod-
uct layer between embedding layer and fully-connected layer,
and proposing the Product-based Neural Network (PNN). As
noted in [Cheng et al., 2016], PNN and FNN, like other deep
models, capture little low-order feature interactions, which
are also essential for CTR prediction. To model both low-
and high-order feature interactions, [Cheng et al., 2016] pro-
poses an interesting hybrid network structure (Wide & Deep)
that combines a linear (“wide”) model and a deep model. In
this model, two different inputs are required for the “wide
part” and “deep part”, respectively, and the input of “wide
part” still relies on expertise feature engineering.

One can see that existing models are biased to low- or high-
order feature interaction, or rely on feature engineering. In
this paper, we show it is possible to derive a learning model
that is able to learn feature interactions of all orders in an end-
to-end manner, without any feature engineering besides raw
features. Our main contributions are summarized as follows:

• We propose a new neural network model DeepFM
(Figure 1) that integrates the architectures of FM and
deep neural networks (DNN). It models low-order fea-
ture interactions like FM and models high-order fea-
ture interactions like DNN. Unlike the wide & deep
model [Cheng et al., 2016], DeepFM can be trained end-
to-end without any feature engineering.

• DeepFM can be trained efficiently because its wide part
and deep part, unlike [Cheng et al., 2016], share the
same input and also the embedding vector. In [Cheng et
al., 2016], the input vector can be of huge size as it in-
cludes manually designed pairwise feature interactions
in the input vector of its wide part, which also greatly
increases its complexity.

• We evaluate DeepFM on both benchmark data and com-
mercial data, which shows consistent improvement over
existing models for CTR prediction.

2 Our Approach
Suppose the data set for training consists of n instances
(χ, y), where χ is an m-fields data record usually involving
a pair of user and item, and y ∈ {0, 1} is the associated la-
bel indicating user click behaviors (y = 1 means the user

clicked the item, and y = 0 otherwise). χ may include cat-
egorical fields (e.g., gender, location) and continuous fields
(e.g., age). Each categorical field is represented as a vec-
tor of one-hot encoding, and each continuous field is repre-
sented as the value itself, or a vector of one-hot encoding af-
ter discretization. Then, each instance is converted to (x, y)
where x = [xfield1

, xfield2
, ..., xfiledj

, ..., xfieldm
] is a d-

dimensional vector, with xfieldj
being the vector representa-

tion of the j-th field of χ. Normally, x is high-dimensional
and extremely sparse. The task of CTR prediction is to build a
prediction model ŷ = CTR model(x) to estimate the prob-
ability of a user clicking a specific app in a given context.

2.1 DeepFM
We aim to learn both low- and high-order feature interactions.
To this end, we propose a Factorization-Machine based neu-
ral network (DeepFM). As depicted in Figure 11, DeepFM
consists of two components, FM component and deep com-
ponent, that share the same input. For feature i, a scalar wi

is used to weigh its order-1 importance, a latent vector Vi is
used to measure its impact of interactions with other features.
Vi is fed in FM component to model order-2 feature interac-
tions, and fed in deep component to model high-order feature
interactions. All parameters, including wi, Vi, and the net-
work parameters (W (l), b(l) below) are trained jointly for the
combined prediction model:

ŷ = sigmoid(yFM + yDNN), (1)

where ŷ ∈ (0, 1) is the predicted CTR, yFM is the output of
FM component, and yDNN is the output of deep component.

FM Component

Figure 2: The architecture of FM.
The FM component is a factorization machine, which

is proposed in [Rendle, 2010] to learn feature interactions
for recommendation. Besides a linear (order-1) interactions
among features, FM models pairwise (order-2) feature inter-
actions as inner product of respective feature latent vectors.

1In all figures of this paper, a Normal Connection in black refers
to a connection with weight to be learned; a Weight-1 Connection,
red arrow, is a connection with weight 1 by default; Embedding,
blue dashed arrow, means a latent vector to be learned; Addition
means adding all input together; Product, including Inner- and
Outer-Product, means the output of this unit is the product of two
input vector; Sigmoid Function is used as the output function in
CTR prediction; Activation Functions, such as relu and tanh, are
used for non-linearly transforming the signal;The yellow and blue
circles in the sparse features layer represent one and zero in one-hot
encoding of the input, respectively.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1726

It can capture order-2 feature interactions much more effec-
tively than previous approaches especially when the dataset is
sparse. In previous approaches, the parameter of an interac-
tion of features i and j can be trained only when feature i and
feature j both appear in the same data record. While in FM, it
is measured via the inner product of their latent vectors Vi and
Vj . Thanks to this flexible design, FM can train latent vector
Vi (Vj) whenever i (or j) appears in a data record. Therefore,
feature interactions, which are never or rarely appeared in the
training data, are better learnt by FM.

As Figure 2 shows, the output of FM is the summation of
an Addition unit and a number of Inner Product units:

yFM = 〈w, x〉+
d∑

i=1

d∑
j=i+1

〈Vi, Vj〉xi · xj , (2)

where w ∈ Rd and Vi ∈ Rk (k is given)2. The Addition
unit (〈w, x〉) reflects the importance of order-1 features, and
the Inner Product units represent the impact of order-2 feature
interactions.

Deep Component

Figure 3: The architecture of DNN.

The deep component is a feed-forward neural network,
which is used to learn high-order feature interactions. As
shown in Figure 3, a data record (a vector) is fed into the neu-
ral network. Compared to neural networks with image [He
et al., 2016] or audio [Boulanger-Lewandowski et al., 2013]
data as input, which is purely continuous and dense, the in-
put of CTR prediction is quite different, which requires a
new network architecture design. Specifically, the raw fea-
ture input vector for CTR prediction is usually highly sparse3,
super high-dimensional4, categorical-continuous-mixed, and
grouped in fields (e.g., gender, location, age). This suggests
an embedding layer to compress the input vector to a low-
dimensional, dense real-value vector before further feeding
into the first hidden layer, otherwise the network can be over-
whelming to train.

Figure 4 highlights the sub-network structure from the in-
put layer to the embedding layer. We would like to point out
the two interesting features of this network structure: 1) while
the lengths of different input field vectors can be different,

2We omit a constant offset for simplicity.
3Only one entry is non-zero for each field vector.
4E.g., in an app store of billion users, the one field vector for user

ID is already of billion dimensions.

Figure 4: The structure of the embedding layer

their embeddings are of the same size (k); 2) the latent fea-
ture vectors (V) in FM now serve as network weights which
are learned and used to compress the input field vectors to the
embedding vectors. In [Zhang et al., 2016], V is pre-trained
by FM and used as initialization. In this work, rather than us-
ing the latent feature vectors of FM to initialize the networks
as in [Zhang et al., 2016], we include the FM model as part of
our overall learning architecture, in addition to the other DNN
model. As such, we eliminate the need of pre-training by FM
and instead jointly train the overall network in an end-to-end
manner. Denote the output of the embedding layer as:

a(0) = [e1, e2, ..., em], (3)

where ei is the embedding of i-th field and m is the number
of fields. Then, a(0) is fed into the deep neural network, and
the forward process is:

a(l+1) = σ(W (l)a(l) + b(l)), (4)

where l is the layer depth and σ is an activation function. a(l),
W (l), b(l) are the output, model weight, and bias of the l-th
layer. After that, a dense real-value feature vector is gener-
ated, which is finally fed into the sigmoid function for CTR
prediction: yDNN = W |H|+1 · a|H| + b|H|+1, where |H| is
the number of hidden layers.

It is worth pointing out that FM component and deep com-
ponent share the same feature embedding, which brings two
important benefits: 1) it learns both low- and high-order fea-
ture interactions from raw features; 2) there is no need for ex-
pertise feature engineering of the input, as required in Wide
& Deep [Cheng et al., 2016].

2.2 Relationship with Other Neural Networks
Inspired by the enormous success of deep learning in var-
ious applications, several deep models for CTR prediction
are developed recently. This section compares the proposed
DeepFM with existing deep models for CTR prediction.

FNN
As Figure 5 (left) shows, FNN is a FM-initialized feed-
forward neural network [Zhang et al., 2016]. The FM pre-
training strategy results in two limitations: 1) the embedding
parameters might be over affected by FM; 2) the efficiency is
reduced by the overhead introduced by the pre-training stage.
In addition, FNN captures only high-order feature interac-
tions. In contrast, DeepFM needs no pre-training and learns
both high- and low-order feature interactions.

PNN
For the purpose of capturing high-order feature interactions,
PNN imposes a product layer between the embedding layer
and the first hidden layer [Qu et al., 2016]. According to

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1727

Figure 5: The architectures of existing deep models for CTR prediction: FNN, PNN, Wide & Deep Model

Table 1: Comparison of deep models for CTR prediction

No High-order Low-order No Feature
Pre-training Features Features Engineering

FNN ×
√

×
√

PNN
√ √

×
√

Wide & Deep
√ √ √

×
DeepFM

√ √ √ √

different types of product operation, there are three variants:
IPNN, OPNN, and PNN∗, where IPNN is based on inner
product of vectors, OPNN is based on outer product, and
PNN∗ is based on both inner and outer products. Like FNN,
all PNNs ignore low-order feature interactions.

Wide & Deep
Wide & Deep (Figure 5 (right)) is proposed by Google to
model low- and high-order feature interactions simultane-
ously. As shown in [Cheng et al., 2016], there is a need for ex-
pertise feature engineering on the input to the “wide” part (for
instance, cross-product of users’ install apps and impression
apps in app recommendation). In contrast, DeepFM needs
no such expertise knowledge to handle the input by learning
directly from the input raw features.

A straightforward extension to this model is replacing LR
by FM (we also evaluate this extension in Section 3). This
extension is similar to DeepFM, but DeepFM shares the fea-
ture embedding between the FM and deep component. The
sharing strategy of feature embedding influences (in back-
propagate manner) the feature representation by both low-
and high-order feature interactions, which models the repre-
sentation more precisely.

Summarizations
To summarize, the relationship between DeepFM and the
other deep models in four aspects is presented in Table 1. As
can be seen, DeepFM is the only model that requires no pre-
training and no feature engineering, and captures both low-
and high-order feature interactions.

3 Experiments
In this section, we compare our proposed DeepFM and the
other state-of-the-art models empirically. The evaluation re-
sult indicates that our proposed DeepFM is more effective
than any other state-of-the-art model and the efficiency of
DeepFM is comparable to the best ones among all the deep
models.

3.1 Experiment Setup
Datasets
We evaluate the effectiveness and efficiency of our proposed
DeepFM on the following two datasets.
1) Criteo Dataset: Criteo dataset 5 includes 45 million users’
click records. There are 13 continuous features and 26 cate-
gorical ones. We split the dataset into two parts: 90% is for
training, while the rest 10% is for testing.
2) Company∗ Dataset: In order to verify the performance of
DeepFM in real industrial CTR prediction, we conduct exper-
iment on Company∗ dataset. We collect 7 consecutive days
of users’ click records from the game center of the Company∗
App Store for training, and the next 1 day for testing. There
are around 1 billion records in the whole collected dataset.
In this dataset, there are app features (e.g., identification, cat-
egory, and etc), user features (e.g., user’s downloaded apps,
and etc), and context features (e.g., operation time, and etc).

Evaluation Metrics
We use two evaluation metrics in our experiments: AUC
(Area Under ROC) and Logloss (cross entropy).

Model Comparison
We compare 9 models in our experiments: LR, FM, FNN,
PNN (three variants), Wide & Deep (two variants), and
DeepFM. In the Wide & Deep model, for the purpose of elim-
inating feature engineering effort, we also adapt the original
Wide & Deep model by replacing LR by FM as the wide part.
In order to distinguish these two variants of Wide & Deep, we
name them LR & DNN and FM & DNN, respectively.6

Parameter Settings
To evaluate the models on Criteo dataset, we follow the pa-
rameter settings in [Qu et al., 2016] for FNN and PNN: (1)
dropout: 0.5; (2) network structure: 400-400-400; (3) opti-
mizer: Adam; (4) activation function: tanh for IPNN, relu for
other deep models. To be fair, our proposed DeepFM uses
the same setting. The optimizers of LR and FM are FTRL
and Adam respectively, and the latent dimension of FM is 10.

To achieve the best performance for each individual model
on Company∗ dataset, we conducted carefully parameter
study, which is discussed in Section 3.3.

5http://labs.criteo.com/downloads/2014-kaggle-display-
advertising-challenge-dataset/

6We do not use the Wide & Deep API released by Google, as
the efficiency of that implementation is very low. We implement
Wide & Deep by ourselves by simplifying it with shared optimizer
for both deep and wide part.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1728

3.2 Performance Evaluation
In this section, we evaluate the models listed in Section 3.1 on
the two datasets to compare their effectiveness and efficiency.

Efficiency Comparison
The efficiency of deep learning models is important to real-
world applications. We compare the efficiency of differ-
ent models on Criteo dataset by the following formula:
|training time of deep CTR model|

|training time of LR| . The results are shown in
Figure 6, including the tests on CPU (left) and GPU (right),
where we have the following observations: 1) pre-training
of FNN makes it less efficient; 2) Although the speed up of
IPNN and PNN∗ on GPU is higher than the other models,
they are still computationally expensive because of the in-
efficient inner product operations; 3) The DeepFM achieves
almost the most efficient in both tests.

Figure 6: Time comparison.

Effectiveness Comparison
The performance for CTR prediction of different models on
Criteo dataset and Company∗ dataset is shown in Table 2
(note that the numbers in the table are averaged by 5 runs of
training-testing, and the variances of AUC and Logloss are in
the order of 1E-5), where we have the following observations:
• Learning feature interactions improves the performance

of CTR prediction model. This observation is from the
fact that LR (which is the only model that does not con-
sider feature interactions) performs worse than the other
models. As the best model, DeepFM outperforms LR
by 0.82% and 2.6% in terms of AUC (1.1% and 4.0% in
terms of Logloss) on Company∗ and Criteo datasets.
• Learning high- and low-order feature interactions si-

multaneously and properly improves the performance
of CTR prediction model. DeepFM outperforms the
models that learn only low-order feature interactions
(namely, FM) or high-order feature interactions (namely,
FNN, IPNN, OPNN, PNN∗). Compared to the second
best model, DeepFM achieves more than 0.34% and
0.41% in terms of AUC (0.34% and 0.76% in terms of
Logloss) on Company∗ and Criteo datasets.
• Learning high- and low-order feature interactions si-

multaneously while sharing the same feature embed-
ding for high- and low-order feature interactions learn-
ing improves the performance of CTR prediction model.
DeepFM outperforms the models that learn high- and
low-order feature interactions using separate feature em-
beddings (namely, LR & DNN and FM & DNN). Com-
pared to these two models, DeepFM achieves more than
0.48% and 0.44% in terms of AUC (0.58% and 0.80%
in terms of Logloss) on Company∗ and Criteo datasets.

Table 2: Performance on CTR prediction.

Company∗ Criteo
AUC LogLoss AUC LogLoss

LR 0.8641 0.02648 0.7804 0.46782
FM 0.8679 0.02632 0.7894 0.46059

FNN 0.8684 0.02628 0.7959 0.46350
IPNN 0.8662 0.02639 0.7971 0.45347
OPNN 0.8657 0.02640 0.7981 0.45293
PNN∗ 0.8663 0.02638 0.7983 0.45330

LR & DNN 0.8671 0.02635 0.7858 0.46596
FM & DNN 0.8658 0.02639 0.7980 0.45343

DeepFM 0.8715 0.02619 0.8016 0.44985

Overall, our proposed DeepFM model beats the competi-
tors by more than 0.34% and 0.35% in terms of AUC and
Logloss on Company∗ dataset, respectively. In fact, a small
improvement in offline AUC evaluation is likely to lead to a
significant increase in online CTR. As reported in [Cheng et
al., 2016], compared with LR, Wide & Deep improves AUC
by 0.275% (offline) and the improvement of online CTR is
3.9%. The daily turnover of Company∗’s App Store is mil-
lions of dollars, therefore even several percents lift in CTR
brings extra millions of dollars each year. Moreover, we
also conduct t-test between our proposed DeepFM and the
other compared models. The p-value of DeepFM against
FM & DNN under Logloss metric on Company∗ is less than
1.5× 10−3, and the others’ p-values on both datasets are less
than 10−6, which indicates that our improvement over exist-
ing models is significant.

3.3 Hyper-Parameter Study
We study the impact of different hyper-parameters of differ-
ent deep models, on Company∗ dataset. The order is: 1) ac-
tivation functions; 2) dropout rate; 3) number of neurons per
layer; 4) number of hidden layers; 5) network shape.

Activation Function
According to [Qu et al., 2016], relu and tanh are more suit-
able for deep models than sigmoid. In this paper, we compare
the performance of deep models when applying relu and tanh.
As shown in Figure 7, relu is more appropriate than tanh for
all the deep models, except for IPNN. Possible reason is that
relu induces sparsity.

Figure 7: AUC and Logloss comparison of activation functions.

Dropout
Dropout [Srivastava et al., 2014] refers to the probability that
a neuron is kept in the network. Dropout is a regularization
technique to compromise the precision and the complexity of
the neural network. We set the dropout to be 1.0, 0.9, 0.8, 0.7,
0.6, 0.5. As shown in Figure 8, all the models are able to reach

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1729

their own best performance when the dropout is properly set
(from 0.6 to 0.9). The result shows that adding reasonable
randomness to model can strengthen model’s robustness.

Figure 8: AUC and Logloss comparison of dropout.

Number of Neurons per Layer
When other factors remain the same, increasing the number
of neurons per layer introduces complexity. As we can ob-
serve from Figure 9, increasing the number of neurons does
not always bring benefit. For instance, DeepFM performs sta-
bly when the number of neurons per layer is increased from
400 to 800; even worse, OPNN performs worse when we in-
crease the number of neurons from 400 to 800. This is be-
cause an over-complicated model is easy to overfit. In our
dataset, 200 or 400 neurons per layer is a good choice.

Figure 9: AUC and Logloss comparison of number of neurons.

Number of Hidden Layers
As presented in Figure 10, increasing number of hidden lay-
ers improves the performance of the models at the beginning,
however, their performance is degraded if the number of hid-
den layers keeps increasing, because of overfitting.

Figure 10: AUC and Logloss comparison of number of layers.

Network Shape
We test four different network shapes: constant, increasing,
decreasing, and diamond. When we change the network
shape, we fix the number of hidden layers and the total num-
ber of neurons. For instance, when the number of hidden lay-
ers is 3 and the total number of neurons is 600, then four dif-
ferent shapes are: constant (200-200-200), increasing (100-
200-300), decreasing (300-200-100), and diamond (150-300-
150). As we can see from Figure 11, the “constant” network
shape is empirically better than the other three options, which
is consistent with previous studies [Larochelle et al., 2009].

Figure 11: AUC and Logloss comparison of network shape.

4 Related Work
In this paper, a new deep neural network is proposed for CTR
prediction. The most related domains are CTR prediction and
deep learning in recommender system.

CTR prediction plays an important role in recommender
system [Richardson et al., 2007; Juan et al., 2016]. Besides
generalized linear models and FM, a few other models are
proposed for CTR prediction, such as tree-based model [He et
al., 2014], tensor based model [Rendle and Schmidt-Thieme,
2010], support vector machine [Chang et al., 2010], and
bayesian model [Graepel et al., 2010].

The other related domain is deep learning in recommender
systems. In Section 1 and Section 2.2, several deep learn-
ing models for CTR prediction are already mentioned, thus
we do not discuss about them here. Several deep learn-
ing models are proposed in recommendation tasks other than
CTR prediction (e.g., [Covington et al., 2016; Salakhutdi-
nov et al., 2007; van den Oord et al., 2013; Wu et al.,
2016; Zheng et al., 2016; Wu et al., 2017; Zheng et al.,
2017]). [Salakhutdinov et al., 2007; Sedhain et al., 2015;
Wang et al., 2015] propose to improve Collaborative Filter-
ing via deep learning. The authors of [Wang and Wang, 2014;
van den Oord et al., 2013] extract content feature by deep
learning to improve the performance of music recommenda-
tion. [Chen et al., 2016] devises a deep learning network to
consider both image feature and basic feature of display ad-
verting. [Covington et al., 2016] develops a two-stage deep
learning framework for YouTube video recommendation.

5 Conclusions
In this paper, we proposed DeepFM, a factorization-machine
based neural network for CTR prediction, to overcome the
shortcomings of the state-of-the-art models. DeepFM trains
a deep component and an FM component jointly. It gains
performance improvement from these advantages: 1) it does
not need any pre-training; 2) it learns both high- and low-
order feature interactions; 3) it introduces a sharing strat-
egy of feature embedding to avoid feature engineering. The
experiments on two real-world datasets demonstrate that 1)
DeepFM outperforms the state-of-the-art models in terms of
AUC and Logloss on both datasets; 2) The efficiency of
DeepFM is comparable to the most efficient deep model in
the state-of-the-art.

Acknowledgement
This research was supported in part by NSFC under Grant
No. 61572158, National Key Technology R&D Program
of MOST China under Grant No. 2014BAL05B06, Shen-
zhen Science and Technology Program under Grant No.
JSGG20150512145714247 and JCYJ20160330163900579.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1730

References
[Boulanger-Lewandowski et al., 2013] Nicolas Boulanger-

Lewandowski, Yoshua Bengio, and Pascal Vincent. Au-
dio chord recognition with recurrent neural networks. In
ISMIR, pages 335–340, 2013.

[Chang et al., 2010] Yin-Wen Chang, Cho-Jui Hsieh, Kai-
Wei Chang, Michael Ringgaard, and Chih-Jen Lin. Train-
ing and testing low-degree polynomial data mappings via
linear SVM. JMLR, 11:1471–1490, 2010.

[Chen et al., 2016] Junxuan Chen, Baigui Sun, Hao Li,
Hongtao Lu, and Xian-Sheng Hua. Deep CTR prediction
in display advertising. In MM, 2016.

[Cheng et al., 2016] Heng-Tze Cheng, Levent Koc,
Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei
Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan
Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide
& deep learning for recommender systems. CoRR,
abs/1606.07792, 2016.

[Covington et al., 2016] Paul Covington, Jay Adams, and
Emre Sargin. Deep neural networks for youtube recom-
mendations. In RecSys, pages 191–198, 2016.

[Graepel et al., 2010] Thore Graepel, Joaquin Quiñonero
Candela, Thomas Borchert, and Ralf Herbrich. Web-
scale bayesian click-through rate prediction for sponsored
search advertising in microsoft’s bing search engine. In
ICML, pages 13–20, 2010.

[He et al., 2014] Xinran He, Junfeng Pan, Ou Jin, Tianbing
Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf
Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela.
Practical lessons from predicting clicks on ads at facebook.
In ADKDD, pages 5:1–5:9, 2014.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pages 770–778, 2016.

[Juan et al., 2016] Yu-Chin Juan, Yong Zhuang, Wei-Sheng
Chin, and Chih-Jen Lin. Field-aware factorization ma-
chines for CTR prediction. In RecSys, pages 43–50, 2016.

[Larochelle et al., 2009] Hugo Larochelle, Yoshua Bengio,
Jérôme Louradour, and Pascal Lamblin. Exploring strate-
gies for training deep neural networks. JMLR, 10:1–40,
2009.

[Liu et al., 2015] Qiang Liu, Feng Yu, Shu Wu, and Liang
Wang. A convolutional click prediction model. In CIKM,
2015.

[McMahan et al., 2013] H. Brendan McMahan, Gary Holt,
David Sculley, Michael Young, Dietmar Ebner, Julian
Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel
Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg,
Arnar Mar Hrafnkelsson, Tom Boulos, and Jeremy Ku-
bica. Ad click prediction: a view from the trenches. In
KDD, 2013.

[Qu et al., 2016] Yanru Qu, Han Cai, Kan Ren, Weinan
Zhang, Yong Yu, Ying Wen, and Jun Wang. Product-

based neural networks for user response prediction. CoRR,
abs/1611.00144, 2016.

[Rendle and Schmidt-Thieme, 2010] Steffen Rendle and
Lars Schmidt-Thieme. Pairwise interaction tensor factor-
ization for personalized tag recommendation. In WSDM,
pages 81–90, 2010.

[Rendle, 2010] Steffen Rendle. Factorization machines. In
ICDM, 2010.

[Richardson et al., 2007] Matthew Richardson, Ewa Domi-
nowska, and Robert Ragno. Predicting clicks: estimating
the click-through rate for new ads. In WWW, pages 521–
530, 2007.

[Salakhutdinov et al., 2007] Ruslan Salakhutdinov, Andriy
Mnih, and Geoffrey E. Hinton. Restricted boltzmann ma-
chines for collaborative filtering. In ICML, pages 791–798,
2007.

[Sedhain et al., 2015] Suvash Sedhain, Aditya Krishna
Menon, Scott Sanner, and Lexing Xie. Autorec: Au-
toencoders meet collaborative filtering. In WWW, pages
111–112, 2015.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E. Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. JMLR, 15(1):1929–1958, 2014.

[van den Oord et al., 2013] Aäron van den Oord, Sander
Dieleman, and Benjamin Schrauwen. Deep content-based
music recommendation. In NIPS, pages 2643–2651, 2013.

[Wang and Wang, 2014] Xinxi Wang and Ye Wang. Improv-
ing content-based and hybrid music recommendation us-
ing deep learning. In ACM MM, pages 627–636, 2014.

[Wang et al., 2015] Hao Wang, Naiyan Wang, and Dit-Yan
Yeung. Collaborative deep learning for recommender sys-
tems. In ACM SIGKDD, pages 1235–1244, 2015.

[Wu et al., 2016] Yao Wu, Christopher DuBois, Alice X.
Zheng, and Martin Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In ACM WSDM,
pages 153–162, 2016.

[Wu et al., 2017] Chao-Yuan Wu, Amr Ahmed, Alex Beu-
tel, Alexander J. Smola, and How Jing. Recurrent recom-
mender networks. In WSDM, pages 495–503, 2017.

[Zhang et al., 2014] Yuyu Zhang, Hanjun Dai, Chang Xu,
Jun Feng, Taifeng Wang, Jiang Bian, Bin Wang, and Tie-
Yan Liu. Sequential click prediction for sponsored search
with recurrent neural networks. In AAAI, 2014.

[Zhang et al., 2016] Weinan Zhang, Tianming Du, and Jun
Wang. Deep learning over multi-field categorical data - -
A case study on user response prediction. In ECIR, 2016.

[Zheng et al., 2016] Yin Zheng, Yu-Jin Zhang, and Hugo
Larochelle. A deep and autoregressive approach for topic
modeling of multimodal data. IEEE Trans. Pattern Anal.
Mach. Intell., 38(6):1056–1069, 2016.

[Zheng et al., 2017] Lei Zheng, Vahid Noroozi, and Philip S.
Yu. Joint deep modeling of users and items using reviews
for recommendation. In WSDM, pages 425–434, 2017.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1731

