
Managing Communication Costs under Temporal Uncertainty

Nikhil Bhargava, Christian Muise, Tiago Vaquero, Brian Williams
Massachusetts Institute of Technology

{nkb, cjmuise, tvaquero, williams}@mit.edu

Abstract
In multi-agent temporal planning, individual agents
cannot know a priori when other agents will exe-
cute their actions and so treat those actions as un-
certain. Only when others communicate the results
of their actions is that uncertainty resolved. If a full
communication protocol is specified ahead of time,
then delay controllability can be used to assess the
feasibility of the temporal plan. However, agents
often have flexibility in choosing when to commu-
nicate the results of their action. In this paper, we
address the question of how to choose communica-
tion protocols that guarantee the feasibility of the
original temporal plan subject to some cost asso-
ciated with that communication. To do so, we in-
troduce a means of extracting delay controllability
conflicts and show how we can use these conflicts to
more efficiently guide our search. We then present
three conflict-directed search algorithms and ex-
plore the theoretical and empirical trade-offs be-
tween the different approaches.

1 Introduction
In multi-agent temporal plans, individual agents are uncertain
about the behavior of other agents and must communicate to
resolve that ambiguity. While these agents might have the
capability to promptly deliver updates, there may be reasons
why delivering immediate updates is expensive. For example,
an autonomous underwater vehicle may have the equipment
on-board to immediately transfer information to any other
agent, but sending it may use precious battery power needed
for the rest of its mission. It may make sense to use a slower
and less expensive means of communicating about its actions
or to omit relaying information altogether.

In this paper, we consider the problem of how to construct
a minimum-cost communication protocol that still guarantees
the feasibility of the original plan. This protocol is chosen
subject to a supplied cost function which characterizes how
expensive it is to communicate at certain moments in time.
To verify whether any particular communication protocol is
feasible, we can evaluate the protocol in the context of a tem-
poral network using delay controllability [Bhargava et al.,
2018], but there does not yet exist an efficient way to generate

a protocol with low cost. Our paper focuses on this problem
and offers two main contributions.

First, we demonstrate how to efficiently prune the avail-
able search space by providing an algorithm for deriving de-
lay controllability conflicts. We augment existing delay con-
trollability detection algorithms to output a conflict when-
ever a temporal plan is uncontrollable due to overly de-
layed communication. Adding this capability is essential,
as it makes our search over an otherwise continuous and un-
bounded space tractable through the use of conflict-directed
search [Williams and Ragno, 2007]. Our work on delay con-
trollability conflict extraction matches the best-known O(n3)
runtime of dynamic controllability conflict extraction tech-
niques [Bhargava et al., 2017].

Second, we explore three different variants of conflict-
directed search, two sub-optimal and one optimal, analyzing
their performance and guarantees. We show that for certain
networks the sub-optimal algorithms can provide at best a
polynomial approximation of the true optimal cost, but that in
practice they provide a reasonable approximation while exe-
cuting much faster than optimal search.

It is also possible to interpret this problem as a tempo-
ral plan relaxation problem where delays associated with
observation of uncertain events undergo relaxation. Un-
der such a view, it is natural to ask whether it is possi-
ble to combine delay relaxation with temporal constraint
relaxation techniques [Fang et al., 2014; Yu et al., 2014;
Cui et al., 2015]. While we believe it is straightforward to
unify the two concepts and their corresponding algorithms,
such work is outside the scope of this paper.

2 Background
Simple Temporal Networks with Uncertainty (STNU) pro-
vide a way to reason about events that are outside an
agent’s control through the encoding of uncertainty [Vidal
and Fargier, 1999]. In STNUs, events whose times can be
assigned by the acting agent are called activated timepoints
and events whose time values cannot be assigned are called
received timepoints. Temporal constraints restrict the amount
of time that can elapse between two events (e.g. event A must
happen no more than 20 minutes after event B) and are also
split into those that must be satisfied by the acting agent, free
constraints, and those that are guaranteed to be satisfied by
some assignment of value to a received timepoint, contingent

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

84

Edge Generation Rules
Input Conditions Output

No-Case A
u−→ B,

B
v−→ C

N/A A
u+v−−−→ C

Upper-
Case

A
u−→ D,

D
C:v−−→ B

N/A A
C:u+v−−−−→ B

Lower-
Case

A
c:x−−→ C,

C
w−→ D

w < γ(C),
C 6= D

A
x+w−−−→ D

Cross-
Case

A
c:x−−→ C,

C
B:w−−→ D

w < γ(C),
B 6= C 6= D

A
B:x+w−−−−→ D

Label
Removal

B
C:u−−→ A,

A
[x,y]
==⇒ C

u > −x B
u−→ A

Table 1: Edge generation rules for a labeled distance graph

constraints. All contingent constraints relate some activated
timepoint to some received timepoint that follows it, and there
is exactly one contingent constraint per received timepoint.

To determine whether there exists a guarantee that we can
satisfy all constraints of an STNU, we examine its controlla-
bility. In this paper we focus in particular on delay controlla-
bility [Bhargava et al., 2018]. Delay controllability considers
whether a just-in-time assignment of values to timepoints ex-
ists if for every received timepoint xe, the agent learns about
the true time of the received timepoint after γ(xe) additional
time has passed, where γ is the associated delay function. De-
lay controllability of an STNU can be computed efficiently in
worst-case O(n3) time [Bhargava et al., 2018]. Delay con-
trollability allows us to model disjointed communication that
is often representative of multi-agent plan execution; if an ex-
ternal agent is delayed in communicating the results of some
action, then for that particular action we assign γ(xe) = t.

When analyzing STNUs and their controllability, we of-
ten find it easier to consider their labeled distance graph
representation [Morris, 2006; 2014]. Each timepoint of the
original STNU corresponds to a node in the graph, and for
each temporal constraint of the form l ≤ xB − xA ≤ u (or

A
[l,u]−−→ B), we add two edges, A u−→ B and B

−l−→ A.

For each contingent link of the form A
[l,u]
==⇒ C, we also

add two additional labeled edges of the form A
c:l−→ C and

C
C:−u−−−→ A. These labeled edges represent conditional

constraints; the lower-case labeled constraint applies when
A =⇒ C takes on its lowest value and the upper-case labeled
constraint applies when A =⇒ C takes on its largest value.

By inferring additional constraints using these edges, it
is possible to assess whether an STNU is delay controllable
with respect to a delay function γ (see rules reproduced from
[Bhargava et al., 2018] in Table 1).

Using these rules, assessing delay controllability reduces
to finding a semi-reducible negative cycle in the STNU’s la-
beled distance graph. A semi-reducible negative cycle is a
negative cycle that, after applying a series of reductions, has
no lower-case edges. Finding a semi-reducible negative cy-
cle serves as a certificate that the STNU is not delay control-

Input: Labeled distance graph, G = 〈V,E〉;
delay function γ
Output: Whether the STNU derived from the distance graph

is delay controllable and if not, the edges
embodying the conflict

Initialization:
1 negNodes← the set of all vertices with incoming

negative edges;
2 novel← []; list of newly added edges;
3 preds← {}; mapping of function call to predecessors;

DELAYCONTROLLABLE?:
4 for v ∈ negNodes do
5 cycleFree?, edges←DELAYDIJKSTRA(G, γ, v,

preds, novel, [v], negNodes);
6 if !cycleFree? then
7 return false, EXTRACTCONFLICTS(edges,

novel, preds)
8 return true, ∅
Algorithm 1: Delay Controllability algorithm that reports
conflicts

lable with respect to a particular delay function γ. Efficiently
finding and extracting these semi-reducible negative cycles
will be an important building block as we consider how to
find minimum-cost communication strategies that still let us
achieve our goals.

2.1 Modeling Communication Costs
We now define the communication cost minimization prob-
lem. For a given STNU, S, we wish to provide a delay func-
tion γ that minimizes the total communication costC(γ) sub-
ject to the constraint that S is delay controllable with respect
to γ. We assume that the cost function C is component-wise
monotonically decreasing. That is to say, given two delay
functions γ1 and γ2, such that for all received timepoints xe,
γ1(xe) ≤ γ2(xe), we have that C(γ1) ≥ C(γ2).

This approach matches our intuitions for how to assign
costs to communication patterns; we would never pay more
to learn about an event at a later time. From a delay control-
lability perspective, we know that decreasing the communi-
cation delay for any given timepoint preserves controllability.
Therefore, if there were a shorter delay with lower cost, we
would always prefer to use that shorter delay.

2.2 Modeling Uncertain Communication and Risk
Our choice of allowable cost functions gives us significant
leeway in modeling problems. Of particular note is the abil-
ity to model uncertainty in communication and to determine
whether the system is controllable with some probability.
This mirrors previous work that assesses the controllability
of over-constrained temporal problems subject to some risk
bound [Wang and Williams, 2015; Yu et al., 2015].

Imagine that instead of picking an exact delay when com-
munication happens, an agent provides a probability distri-
bution over when the communication will happen. To get a
controllability guarantee, it suffices to ask whether the model
STNU is controllable when every communication event hap-
pens at the maximum of the allowable range. However, this

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

85

approach puts undue importance on the tails of these distribu-
tions. Instead a better question to ask is whether we can get
some probabilistic guarantee of success (e.g. 98% of the time
we can satisfy all constraints given this probability distribu-
tion).

Using our cost function framework, it is relatively straight-
forward to model this kind of problem. If we let d be a
function mapping received timepoints to proposed bounds
on their delay, we can use a cost function C(γ) = 1 −

P

(∧
xe

[γ(xe) ≤ d(xe)]
)

. If we find an optimal cost solution,

then our probability of success then becomes 1− C(γ).
It is worth noting that this approach does not assume inde-

pendence between timepoints. So long as there is a function
that faithfully represents the distribution, we can determine
whether our problem satisfies the provided risk bounds.

3 Conflict Extraction
Searching for an optimal-cost communication protocol can
be expensive since the search space is continuous and un-
bounded. Rather than using uninformed search, we can learn
how to fix low-cost communication strategies that are uncon-
trollable to guide our search towards an optimal result. To do
so, we rely on conflicts, which serve as certificates explaining
why our original network is uncontrollable.

3.1 Finding Conflicts
In the case of delay controllability, we know that the pres-
ence of a semi-reducible cycle in our STNU is such a certifi-
cate, and we present a way to extract those conflicts and a
technique for trying to resolve them. Our conflict-extraction
algorithm builds on top of the original delay controllability
algorithm [Bhargava et al., 2018] through the maintenance of
some additional state.

The original delay controllability algorithm (Algorithm 1)
works by invoking a variant of Dijkstra’s algorithm from each
negative weight edge. The calls to Dijkstra’s algorithm are re-
sponsible for finding the shortest semi-reducible paths from
each node to all others in the graph. The subroutine is recur-
sively invoked any time another negative edge is found, and
when an infinite recursion is detected, we know that we have
found a cycle composed of several semi-reducible negative
paths. More detail on the correctness of the algorithm can be
found in [Bhargava et al., 2018].

To efficiently extract delay controllability conflicts, we
augment this algorithm to have it return the set of edges from
the original graph composing the detected conflict. Lines 19-
24 of Algorithm 2 are where we assemble the edges that com-
pose the semi-reducible negative cycle. Whenever a recursive
call to DELAYDIJKSTRA returns false, we know that at some
point in the call stack, we discovered a semi-reducible neg-
ative cycle. However, the entire chain of edges is not nec-
essarily part of the cycle. We use the third return value of
DELAYDIJKSTRA to specify one node that is known to be
part of the cycle. At line 23, we augment the list of edges that
compose the negative cycle, and at line 24, we signal that we
have fully specified a semi-reducible negative cycle because
we have returned to a node we have already visited.

Input: Labeled distance graph G = 〈V,E〉, delay function
γ, start node s, list of predecessor edges preds, list
of new edges, callStack, and negNodes

Output: Whether the current walk is cycle-free, and the
edges composing a semi-reducible negative cycle

Initialization:
1 Q← PriorityQueue();
2 labelDist← []; shortest distances for labeled path;
3 unlabDist← []; shortest distances for unlabeled path;
4 labelDist[s]← 〈0, ∅〉;
5 unlabDist[s]← 〈0, ∅〉;
6 for e ∈ s.incomingEdges() if e.weight < 0 and

!e.lowerCase() do
7 Q.add(〈e.from, e.label〉, e.weight);
8 (e.label == ∅ ? unlabDist : labelDist)[e.from]

← 〈e.weight, e〉
DelayDijkstra:

9 if s ∈ callStack[1 : end] then
10 return false, ∅, s;
11 preds[s]← 〈labelDist, unlabelDist〉;
12 while Q.size() > 0 do
13 v, label, weight← Q.pop();
14 if weight ≥ 0 then
15 G.add(〈v, s, weight〉);
16 novel.add(〈v, s, weight〉);
17 continue;
18 if v ∈ negNodes then
19 newStack ← [v].concat(callStack);
20 result, edges, end← DELAYDIJKSTRA(G, γ,

v, preds, novel, newStack, negNodes);
21 if !result then
22 if end 6= ∅ then
23 edges.add(EXTRACTEDGEPATH(s, v,

labelDist, unlabelDist));
24 end← (end == s) ? ∅ : end;
25 return false, edges, end;
26 for e ∈ v.incomingEdges() where e.weight ≥ 0

and (!e.isLowerCase() or e.label 6= label) do
27 w ← e.weight+ weight;
28 l← (label 6= ∅ and w > −γ(label) ? ∅ : label;
29 dist← l 6= ∅ ? labelDist : unlabDist;
30 if Q.addOrDecKey(〈e.from, l〉, w) then
31 dist[e.from]← 〈w, e〉;
32 lower ← s.incomingLowerEdge();
33 if lower 6= null and e.weight < γ(lower.label)

and Q.addOrDecKey(〈lower.from, l〉, w +
lower.weight) then

34 dist[lower.from]←
〈w + lower.weight, e〉;

35 negNodes.remove(s);
36 return true, ∅, ∅;

Algorithm 2: Function DELAYDIJKSTRA

The introduction of additional processing to extract con-
flicts does not damage the algorithm’s O(n3) runtime, as
maintaining the additional data structures only incurs a con-
stant overhead. Each call to EXTRACTEDGEPATH adds at
most n edges to our list, and EXTRACTEDGEPATH is called

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

86

at most once per call to DELAYDIJKSTRA. Because DELAY-
DIJKSTRA is called at most once per node, it adds an addi-
tional overhead of O(n2), which is dominated by the normal
runtime of the algorithm.

Finally, the call to EXTRACTCONFLICTS in line 7 of Al-
gorithm 1 takes the list of edges composing the cycle and
replaces any newly added edges with the original edges that
were used to derive them. The resulting output is our conflict.

3.2 Resolving Conflicts
Now that we have a way of extracting conflicts when our
STNU is uncontrollable, we need a way to resolve them.
Given a semi-reducible negative cycle, there are two ways
to eliminate it: make the cycle non-negative or make it non-
semi-reducible. Since our communication protocol has no
impact on the length of edges in the STNU’s labeled distance
graph representation, modifying our communication protocol
will not affect the weight of the cycle. As a result, we must
instead focus our attention on how to modify γ to eliminate
semi-reducibility.

Only two of the reduction rules involve γ: the lower-case
reduction rule and the cross-case reduction rule, and we ex-
plain how to change γ to resolve delay controllability con-
flicts and how this guarantees that iterative resolutions will
eventually lead us to a valid solution.

Theorem 1. If an STNU is controllable when γ = 0 (or in
other words, is dynamically controllable), then if the STNU
has a controllability conflict for any particular choice of γ,
we can always adjust γ to eliminate a lower-case or cross-
case reduction.

Proof. A semi-reducible negative cycle is one where we can
apply edge reductions to eliminate lower-case edges. In par-
ticular, the lower-case and cross-case reduction rules are the
rules directly responsible for eliminating those edges.

For every lower-case edge from our conflict’s semi-
reducible negative cycle, we use the following approach for
invalidating the reduction. From a lower-case edge with label
b, we find the shortest subpath of the cycle that immediately
follows the lower-case edge such that its total weight is less
than γ(B). We know such a subpath exists because all lower-
case edges have non-negative weight, the total weight of the
cycle is negative, and γ(B) ≥ 0. If the weight of the subpath
is non-negative, we adjust our γ(B) to be equal to its weight.

If we cannot adjust any value of γ because all of the succes-
sive subpaths are negative, then we have a contradiction. This
same semi-reducible negative cycle would still be present
when γ = 0, and the original STNU would not be dynam-
ically controllable.

4 Minimum-Cost Communication
With an efficient way to extract delay controllability con-
flicts, we can now focus on identifying low-cost and ulti-
mately minimum-cost values of γ which yield delay control-
lable networks. In this section, we present three solutions that
are based on a form of conflict-directed search. The first two
have no optimality guarantees but are fast in practice, and the

Input: Labeled distance graph, G = 〈V,E〉 for STNU;
Output: A valid communication protocol γ or ∅ if one does

not exist;
GREEDYCOMMCOST:

1 if !DELAYCONTROLLABLE?(G, γ() = 0) then
2 return ∅;
3 candidate← γ() =∞;
4 controllable, conflict← DELAYCONTROLLABLE?(G,
candidate);

5 while !controllable do
6 candidate←

candidate.pickResolution(conflict);
7 controllable, conflict←

DELAYCONTROLLABLE?(G, candidate);
8 return candidate;
Algorithm 3: Algorithm that performs different variants of
greedy search to find a communication protocol for an input
STNU that is delay controllable.

third is a conflict-directed best-first search that is guaranteed
to yield an optimal value of γ.

4.1 Conflict-Directed Search
Our initial approach at finding a feasible communication pro-
tocol (Algorithm 3) uses conflicts to iteratively refine its
choice of delay function γ. Before we proceed with a po-
tentially costly search process, we first check at line 1 to see
whether the original STNU is dynamically controllable (or
whether it is delay controllable with respect to γ = 0). Since
decreasing observation delays always preserves controllabil-
ity, we know that if the STNU is not dynamically control-
lable, we have no chance of finding a suitable delay function
and can safely skip the search process.

Once we have a guarantee that there does exist some value
of γ which makes the STNU delay controllable, we can begin
our search. Each conflict returned from the delay controlla-
bility check (lines 4, 7) represents a disjunction of modifica-
tions we could make to our delay function to eliminate this
particular conflict.

Our first two approaches, blind search and lowest-cost-
resolution search (LCRS) employ different conflict resolution
strategies to find an approach that works and are represented
by different implementations of the pickResolution function
at line 6. Rather than keeping track of all possible branches,
we choose a single disjunct to resolve and continue checking
for delay controllability. In the case of blind search, we non-
deterministically commit to any of the possible conflict reso-
lutions, and in the case of LCRS, we commit to the conflict
resolution with lowest possible cost. In expectation, blind
search is quicker to pick a conflict resolution, but LCRS may
find solutions that are overall lower in cost. While neither
approach is optimal, both approaches are guaranteed to even-
tually find a satisfying delay function γ that yields a control-
lable STNU since they will eventually resolve all conflicts.

4.2 Conflict-Directed Best-First Search
While blind search and LCRS are appealingly simple, that
they are not guaranteed to be optimal is cause for concern. We

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

87

Requirement Link
Contingent Link

A

B

C0D0

C1

C2

Ck-1

Ck

D1

D2

Dk-1

[0, 3k]

[0, 3k]

[-3k, 0]
[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

Figure 1: This k-contrived STNU is dynamically controllable but
is not delay controllable if γ = ∞. Requiring that γ(B) = 0 is
necessary and sufficient to make the STNU delay controllable.

are unable to provide guarantees that our search procedures
are within a constant factor approximation of optimal, and
in extreme instances, these search processes can yield results
that are polynomially worse than optimal.

Theorem 2. Blind search and LCRS are not guaranteed to
yield results within a constant factor of optimal.

Proof. Consider the STNU in Figure 1, which we call
a k-contrived STNU, and imagine that we want to find
a minimum-cost delay function γ making it controllable.
For simplicity, assume that our cost function is C(γ) =∑
xe

1
1+γ(xe)

. When called on this STNU, DELAYCONTROL-

LABLE? identifies a semi-reducible negative cycle that in-
cludes A =⇒ B and Ci =⇒ Di for all 0 ≤ i < k. The
corresponding resolution to that conflict requires that either
γ(B) = 0 or for some 0 ≤ i < k, γ(Di) = 1.

With a blind approach, we pick random disjuncts to sat-
isfy until the STNU is controllable. However, each choice to
relax γ(Di) makes no overall progress towards the control-
lability of the STNU. Only when γ(B) = 0 does the STNU
become controllable. In expectation, k

2 relaxations happen
before blind search relaxes γ(B). Since each relaxation of
γ(Di) to 1 incurs a cost of 1

2 and relaxing γ(B) to 0 incurs a
cost of 1, in expectation blind search incurs a cost of 1 + k

4 .
With LCRS, the results are even worse. LCRS always

elects to resolve the conflict by letting some γ(Di) = 1 since
this incurs a cost of 1

2 whereas letting γ(B) = 0 incurs a
cost of 1. As such, LCRS updates γ(Di) for all k such con-
tingent links before updating γ(B), meaning it incurs a cost
of 1 + k

2 , whereas the optimal approach has a cost of just 1.

Input: Labeled distance graph, G = 〈V,E〉 for STNU, and a
cost function C;

Output: A communication protocol γ that is of minimal
cost or ∅ if one does not exist;

Initialization:
1 queue← [] // queue of candidate γ functions;

MINCOMMCOST:
2 if !DELAYCONTROLLABLE?(G, γ() = 0) then
3 return ∅;
4 queue.append(γ() =∞);
5 γ ← queue.pop();
6 controllable, conflict← DELAYCONTROLLABLE?(G,
γ);

7 while !controllable do
8 queue.add(γ.allResolvedConflicts(conflict));
9 queue.sortBy(C);

10 γ ← queue.pop();
11 controllable, conflict←

DELAYCONTROLLABLE?(G, γ);
12 return γ;

Algorithm 4: Algorithm that computes minimum-cost com-
munication protocol for an STNU.

These results motivate our interest in developing an optimal
algorithm.

Our optimal algorithm for finding a minimal communica-
tion cost (Algorithm 4) is a form of conflict-directed best-
first search (CDBFS) [Williams and Ragno, 2007] and works
as follows. Like with the greedy algorithm, we immediately
check if the STNU is controllable with respect to γ = 0 or
whether it is dynamically controllable (lines 2-3).

Once we know that a solution can be found, we now have
to find the lowest-cost solution. Since we know that our cost
function C is component-wise monotonically decreasing, we
start with the lowest cost communication pattern possible,
γ =∞, and add it to our queue.

Every time we try a communication protocol that is too
limiting and get back a conflict, we use the conflict to gen-
erate a set of delay functions to try later. For the value of γ
we last checked, we derive modifications that each satisfy one
of the provided disjuncts. We always choose the lowest cost
value that satisfies the disjunct, which occurs when the delay
for a received timepoint is exactly equal to the conflict’s up-
per bound. By Theorem 1, we know that we will eventually
reach a solution and because we are using best-first search,
we know it will be optimal.

5 Experimental Results
The search algorithms we have presented differ in key ways.
Blind search and LCRS have much lower overhead but have
no guarantees of optimality. In contrast, CDBFS is guaran-
teed to output an optimal communication protocol but can be
quite slow in practice. In this section, we present our empiri-
cal analysis as a way to better characterize exactly how differ-
ent these approaches are and when it might be preferable to

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

88

Figure 2: The runtimes of the solutions when run on k-contrived
STNUs.

use one over the other. All tests were run on a machine with
an Intel i7 processor and 39GB of RAM.

We start by examining the performance on k-contrived
STNUs. We performed 50 trials each with parameters k =
10, 20, 30, 40, 50, and for all experiments, we assumed a cost
function of C(γ) =

∑
xe

1
1+γ(xe)

. As expected, LCRS always

outputted a solution with cost 1 + k
2 , blind search outputted

a cost that converged in expectation to 1 + k
4 , and CDBFS

always outputted a unit cost solution.
As we scale problem size, the difference between the sub-

optimal approaches and CDBFS starts to grow (Figure 2). For
each problem size, CDBFS has a significantly slower runtime
than the suboptimal searches (p << 0.01) with no significant
difference found between blind search and LCRS.

While there is a clear trade-off between the approaches,
the data we have presented so far is for one specific type of
graph. To validate that these trends hold more generally, we
ran our experiments for randomly generated STNUs as well.
Our random STNUs were composed of k independent contin-
gent links which each had a lower bound of 0 and an integer
upper bound that was uniformly chosen between 1 and 4. For
each pair of endpoints between distinct contingent links, we
added a requirement link between the two with probability
1
4k . Each requirement link also had a lower bound of 0 and
an integer upper bound chosen uniformly between 1 and 4.
For our analysis, we ensured that our 50 trials were selected
from the set of random STNUs that were dynamically con-
trollable but not delay controllable. In instances where the
STNU is either not dynamically controllable or is already de-
lay controllable, the algorithms behave identically.

Our experiments demonstrate that the differences we saw
in runtime between the optimal and suboptimal approaches
persist (Figure 3). At problem sizes of k = 30, 40, 50,
CDBFS is significantly slower than both suboptimal searches
(p < 0.05). We also start to see a difference between blind
search and LCRS. At k = 30, 40, 50, LCRS is also signifi-
cantly faster than blind search (p << 0.01).

When we turn our attention to cost, however, we see that

Figure 3: The runtimes of the solutions when run on random graphs.

Figure 4: The quality of the solutions when run on random graphs.
Quality is given by the optimal cost divided by the cost of the re-
turned solution. A score of 1.0 represents the optimal solution.

on random graphs, we see a strong improvement in our re-
sults (Figure 4). Across all problem sizes, we see that while
blind search is on average within 35% of optimal, remark-
ably, LCRS is on average within 1.5% of optimal. Given the
massive difference in speed and the close approximation of
optimal results, this provides strong support for the use of
LCRS in low-cost communication protocol generation.

6 Conclusion
In this paper, we introduced the problem of producing a
low-cost communication protocol that makes a temporal plan
feasible in the face of uncontrollable actions. To produce
such a protocol, we provided an efficient means of extract-
ing delay controllability conflicts and used those conflicts as a
means of guiding our search through a continuous state space.
The three algorithms we presented, blind search, LCRS, and
CDBFS, have very different properties with the first two be-
ing significantly faster with the last one guaranteeing opti-
mality. While we provide theoretical results demonstrating
that the suboptimal searches can be polynomially worse than

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

89

CDBFS, in practice we expect that LCRS provides highly
competitive results with significant improvements in speed.

Our current efforts demonstrate an effective way to plan
communication, but our approach makes the strong assump-
tion that communication is reliable and that plans are im-
mutable. In practice, however, communication is likely to
have some probability success and as execution happens,
plans can be changed to account for unexpected events. These
areas of focus are both important when considering commu-
nication in the context of planning and are promising subjects
for future areas of research.

Acknowledgments
This research was funded in part by the Toyota Research In-
stitute under grant number LP-C000765-SR.

References
[Bhargava et al., 2017] Nikhil Bhargava, Tiago Vaquero, and

Brian Williams. Faster conflict generation for dynamic
controllability. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-26, 2017, pages
4280–4286, 2017.

[Bhargava et al., 2018] Nikhil Bhargava, Christian Muise,
Tiago Vaquero, and Brian Williams. Delay controllabil-
ity: Multi-agent coordination under communication delay.
In DSpace@MIT, 2018.

[Cui et al., 2015] Jing Cui, Peng Yu, Cheng Fang, Patrik
Haslum, and Brian Charles Williams. Optimising bounds
in simple temporal networks with uncertainty under dy-
namic controllability constraints. In ICAPS, pages 52–60,
2015.

[Fang et al., 2014] Cheng Fang, Peng Yu, and Brian C
Williams. Chance-constrained probabilistic simple tem-
poral problems. 2014.

[Morris, 2006] Paul Morris. A structural characterization of
temporal dynamic controllability. In International Confer-
ence on Principles and Practice of Constraint Program-
ming, pages 375–389. Springer, 2006.

[Morris, 2014] Paul Morris. Dynamic controllability and dis-
patchability relationships. In International Conference on
AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pages 464–479.
Springer, 2014.

[Vidal and Fargier, 1999] Thierry Vidal and Helene Fargier.
Handling contingency in temporal constraint networks:
from consistency to controllabilities. Journal of Experi-
mental & Theoretical Artificial Intelligence, 11(1):23–45,
1999.

[Wang and Williams, 2015] Andrew J. Wang and Brian C.
Williams. Chance-constrained scheduling via conflict-
directed risk allocation. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January
2015.

[Williams and Ragno, 2007] Brian C Williams and Robert J
Ragno. Conflict-directed a* and its role in model-
based embedded systems. Discrete Applied Mathematics,
155(12):1562–1595, 2007.

[Yu et al., 2014] Peng Yu, Cheng Fang, and Brian C
Williams. Resolving uncontrollable conditional temporal
problems using continuous relaxations. In ICAPS, 2014.

[Yu et al., 2015] Peng Yu, Cheng Fang, and Brian C.
Williams. Resolving over-constrained probabilistic tem-
poral problems through chance constraint relaxation. In
Proceedings of the Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence, Austin, TX, July 2015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

90

