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Abstract
We study Stackelberg games where the underly-
ing structure is a congestion game. We recall that,
while leadership in 2-player games has been widely
investigated, only few results are known when the
number of players is three or more. The intractabil-
ity of finding a Stackelberg equilibrium (SE) in
normal-form and polymatrix games is among them.
In this paper, we focus on congestion games in
which each player can choose a single resource
(a.k.a. singleton congestion games) and a player
acts as leader. We show that, without further as-
sumptions, finding an SE when the followers break
ties in favor of the leader is not in Poly-APX, un-
less P = NP. Instead, under the assumption that
every player has access to the same resources and
that the cost functions are monotonic, we show that
an SE can be computed efficiently when the follow-
ers break ties either in favor or against the leader.

1 Introduction
The problem of finding a Stackelberg equilibrium (SE) when
mixed-strategy commitments are allowed is receiving a lot
of attention in the artificial intelligence literature, also thanks
to the many successful real-world applications in, e.g., secu-
rity [Tambe, 2011]. In Stackelberg games, a player acts as
leader, committing to a (potentially) mixed strategy, while
the other players act as followers [Von Stengel and Zamir,
2010]. Different versions of SEs can be defined based on
how the followers break ties: optimistic (OSE) if in favor of
the leader, and pessimistic (PSE) if against her.

Finding an OSE or a PSE in 2-player normal-form games
is easy, as shown by, respectively, Conitzer and Sand-
holm [2006] and Von Stengel and Zamir [2010]. The same
holds for finding an OSE in n-player games where the follow-
ers play simultaneously in a correlated fashion [Conitzer and
Korzhyk, 2011]. In more general situations, though, the prob-
lem is hard. Indeed, computing an O/PSE for normal-form
games with two followers who play simultaneously a Nash
equilibrium (NE) is not in Poly-APX unless P = NP [Basil-
ico et al., 2017]. In polymatrix games with the followers re-
stricted to pure strategies, finding an OSE is not in Poly-APX
unless P = NP if the number of followers is not fixed, while

it is easy if their number is a constant [De Nittis et al., 2018].
Finding a PSE is NP-hard in normal-form games even with
two followers playing pure strategies [Coniglio et al., 2017].
Finding an OSE is also NP-hard [Conitzer and Sandholm,
2006] with multiple followers playing sequentially.

We focus, here, on congestion games (CGs)—game mod-
els which, in spite of their simplicity, enjoy nice computa-
tional properties even with many players—with the aim of in-
vestigating whether, in these games, a Stackelberg paradigm
is computationally tractable. In CGs, given a set of resources,
the players’ actions are subsets of the resources and the costs
the players perceive depend (monotonically or not) on the
level of resource utilization (congestion). CGs always ad-
mit pure-strategy NEs which are achievable by best-response
dynamics [Rosenthal, 1973; Monderer and Shapley, 1996].
CGs where each player cannot use more than a single re-
source are called singleton CGs (SCGs). Computing their
NEs is easy [Ackermann et al., 2008]. Furthermore, in SCGs
in which all the players have the same action space, finding a
social-cost minimizing NE is also easy [Ieong et al., 2005].

Original contributions. We apply a Stackelberg paradigm
to SCGs, assuming the presence of a special player acting
as leader. We also allow the leader to perceive costs which
are potentially different from the followers’. The leader com-
mits to a (potentially) mixed strategy, while all the other play-
ers, acting as followers, observe the leader’s commitment and
then play, simultaneously, reaching an NE.1 In particular, we
study the case in which the followers play pure strategies
after observing the leader’s commitment, which is reason-
able as this followers’ game always admits at least a pure-
strategy NE reachable by some best-response dynamics. A
simple practical scenario is when a player has a higher prior-
ity to decide which resource to use before the other players,
e.g., when the resources can be used for free, but gaining a
higher priority requires a payment. We show that, when no
further assumptions are made, computing an OSE is not in
Poly-APX unless P = NP, even when the leader has only
one available action and her costs are equal to the followers’.
This shows that the same inapproximability result also holds

1To our knowledge, the only works related to ours are [Rough-
garden, 2004; Fotakis, 2010] and their extensions. However, they
analyze a different Stackelberg paradigm where the leader is an au-
thority whose objective is to minimize the social cost of the NE
reached by the followers.
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for finding an NE minimizing the cost for a given player in
an SCG without leadership. Instead, when every player has
access to the same set of resources and the costs are mono-
tonically increasing functions of the congestion, the problem
of finding an OSE or a PSE can be solved in polynomial
time. Such result holds even when leader’s and followers’
costs are different. While the derivation is straightforward
when the leader’s commitment is a pure strategy, the analysis
is more involved with mixed-strategy commitments, and the
result follows from the fact that mixed-strategy commitments
do not allow the leader to incur a cost smaller than the one she
gets with pure-strategy ones. Furthermore, we show that the
previous result holds only when the resource cost functions
are monotonic, as, in the non-monotonic case, the leader’s
cost with mixed-strategy commitments can be strictly smaller
than that obtained with a commitment in pure strategies.

2 Preliminaries
In this work, we analyze CGs in which a leader commits to a
strategy beforehand, and, then, the followers simultaneously
decide how to play, reaching an NE in the game that results
from observing the leader’s commitment. Following the nota-
tion by Shoham and Leyton-Brown (2008), we formally de-
fine a Stackelberg SCG (SSCG) as a tuple (N,R,A, c`, cf )
where: N = F ∪ {`} is a finite set of players, with player
` denoting the leader and F the set of followers, R is a fi-
nite set of resources, A = {Ap}p∈N , where Ap ⊆ R rep-
resents the set of player p’s actions, and c` = {ci,`}i∈R and
cf = {ci,f}i∈R are, respectively, the leader’s and followers’
cost functions, with ci,`, ci,f : N → Q denoting the costs
of resource i as a function of its congestion. As usual, we
assume ci,`(0) = ci,f (0) = 0 for every i ∈ R. In the follow-
ing, let |N | = n and |R| = r be the number of players and
resources, respectively.

A strategy σp of player p ∈ N is a probability distribution
overAp where σp(ap) denotes the probability that ap ∈ Ap is
played. Let ∆p be the set of player p’s strategies. A strategy
σp ∈ ∆p is said pure if it prescribes to always play action
ap ∈ Ap, i.e., σp(ap) = 1; otherwise, σp is called mixed.
A collection of players’ strategies is called strategy profile in
general, and action profile if all the strategies are pure. In this
work, we use σ = (σ`, a) to collectively denote a strategy
profile in which the leader plays a (potentially) mixed strat-
egy σ` ∈ ∆` and the followers play pure strategies which
determine an action profile a = (ap)p∈F ∈×p∈FAp.

In the following, given a followers’ action profile a =
(ap)p∈F ∈ ×p∈FAp, let νai = |{p ∈ F | ap = i}|
be the number of followers selecting resource i ∈ R in a,
i.e., the resource congestion caused by the followers’ pres-
ence only. We define the followers’ configuration induced
by a as the vector νa ∈ Nr whose i-th component is νai .
In addition, for σ` ∈ ∆` we define cσ`i,f : N → Q, the
followers’ expected cost of resource i ∈ R given σ`, as
a function of the number x of followers selecting i, i.e.,
cσ`i,f (x) = σ`(i)ci,f (x + 1) + (1 − σ`(i))ci,f (x). Indeed,
given a leader’s strategy σ`, all followers who select resource
i ∈ R experience a congestion that may (with probabil-
ity σ`(i)) or may not (with probability 1 − σ`(i)) be incre-

mented by one, depending on whether the leader would or
would not choose resource i. Finally, given σ = (σ`, a), let
cσ` =

∑
i∈A` σ`(i)ci,`(ν

a
i + 1) be the leader’s cost.

Notice that, after observing a leader’s strategy σ`, the fol-
lowers play a new CG where resource costs are specified by
functions cσ`i,f , for i ∈ R. Being a CG, such game always ad-
mits an NE in which the players adopt pure strategies [Rosen-
thal, 1973]. Moreover, we assume that the followers play
pure-strategy NEs, which are reached by playing some best-
response dynamics [Monderer and Shapley, 1996].

Given strategy profile σ = (σ`, a), a is an NE for σ` if, for
every p ∈ F and a′p ∈ Ap, cσ`ap,f (νaap) ≤ cσ`a′p,f

(νaa′p + 1), i.e.,
if no follower has an incentive to unilaterally deviate from ap
by selecting another resource a′p. For σ` ∈ ∆`, let Eσ` be the
set of NEs in the followers’ game resulting from σ`.

In the second part of the work, we restrict our attention
to a subclass of SSCGs where each player can select every
resource, i.e., where Ap = R for all p ∈ N . We refer to
these games as Simple SSCGs (SSSCGs). Formally, an SSS-
CGs is a tuple (N,R, c`, cf ) whose elements are defined as
in an SSCG where all the followers are identical as they are
allowed to choose the same resources. Thus, only the num-
ber of followers selecting each resource is significant. As a
consequence, a followers’ action profile a can be equivalently
represented with the followers’ configuration νa induced by
it. Thus, when studying SSSCGs, we do not explicitly re-
fer to followers’ action profiles but, rather, use ν ∈ Nr with∑
i∈R νi = n−1 to denote a followers’ configuration. More-

over, let us notice that a followers’ configuration ν is an NE
for σ` ∈ ∆` if, for every i ∈ R : νi > 0 and j ∈ R,
cσ`i,f (νi) ≤ cσ`j,f (νj + 1).

Observe that, given a leader’s strategy, there might be mul-
tiple NEs in the followers’ game and, hence, different defini-
tions of SE can be considered depending on the equilibrium-
selection rule adopted by the followers. As customary in the
literature, we consider two definitions: optimistic SE (OSE)
and pessimistic SE (PSE). In the first one, the followers act in
favor of the leader, thus selecting an NE minimizing her cost,
while, in the second one, the followers always select an NE
which results in the maximum leader’s cost. Formally:
Definition 1. A strategy profile σ = (σ`, a) is an OSE if it
solves the following bilevel problem:

min
σ`∈∆`

min
a∈Eσ`

c
(σ`,a)
`

As it is clear, an OSE always exists in SSCGs.
Definition 2. A PSE, if it exists, is a strategy profile σ =
(σ`, a) which solves the following bilevel problem:

min
σ`∈∆`

max
a∈Eσ`

c
(σ`,a)
`

Let us recall that, in general, the problem in Definition 2
may not admit a minimum (but only an infimum) and, thus, a
PSE may not exist [Von Stengel and Zamir, 2010].

3 SSCG NP-Hardness and Inapproximability
Let us start our analysis with a negative result, showing that
the problem of computing an OSE in SSCGs is computation-
ally intractable, even if the leader can select a single resource
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and her costs are monotonic. Our result is based on a reduc-
tion from 3SAT, a well-known NP-complete problem [Garey
and Johnson, 1979] which reads as follows:

Definition 3 (3SAT). Given a finite set C of 3-literal clauses
defined over a finite set V of variables, is there a truth assign-
ment to the variables which satisfies all clauses?

Theorem 1. Computing an OSE in SSCGs is NP-hard.

Proof. We provide a reduction from 3SAT showing that the
existence of a polynomial-time algorithm for computing an
OSE in SSCGs would allow us to solve any 3SAT instance in
polynomial time. Specifically, given a 3SAT instance (C, V )
and a number 0 < ε < 4, we build an SSCG Γε(C, V ) such
that there exists an OSE where the leader’s cost is ε if and
only if (C, V ) is satisfiable (if not, the leader’s cost is 4 in any
OSE). In the following, l ∈ φ denotes a literal (i.e., a variable
or its negation) appearing in φ ∈ C, while v(l) denotes the
variable corresponding to that literal. Moreover, we let |C| =
m and |V | = s be, respectively, the number of clauses and
variables.

Mapping. Γε(C, V ) is defined as follows:
• N = F ∪ {`}, with F = {pφ, pφ,t | φ ∈ C} ∪
{pv,t, pv, pv̄ | v ∈ V } ∪ {pφ,v, pφ,v̄ | φ ∈ C, v ∈ V };
• R = {rt} ∪ {rφ | φ ∈ C} ∪ {rv,t, rv, rv̄ | v ∈ V } ∪
{rφ,v, rφ,v̄ | φ ∈ C, v ∈ V };
• Apφ = {rφ}∪{rφ,l | l ∈ φ}, Apφ,t = {rφ, rt} ∀ φ ∈ C;
• Apv = {rv,t, rv}, Apv̄ = {rv,t, rv̄}, Apv,t =
{rv,t, rt} ∀ v ∈ V ;
• Apφ,v = {rv, rφ,v}, Apφ,v̄ = {rv̄, rφ,v̄} ∀ φ ∈ C, v ∈
V ;
• A` = {rt}.

Moreover, cost functions are specified by the following table,
where crv̄,f = crv,f , crφ,v̄,f = crφ,v,f , and crt,f = crt,`:

x crφ,f crv,f crv,t,f crφ,v,f crt,f
1 2 7 7 1 ε

[2,m] 5 7 3 6 4

m+ 1 5 0 3 6 4

Figure 1 shows an example of game Γε(C, V ). Clearly,
given (C, V ), Γε(C, V ) can be constructed in polynomial
time, as it features n = 2m + 3s + 2ms + 1 players
and r = m + 3s + 2ms + 1 resources. Observe that, in
Γε(C, V ), the leader has a single resource available. Hence,
the only leader’s commitment is to select resource rt, setting
σ`(rt) = 1. As a result, the leader’s cost is ε if and only if no
follower selects resource rt; otherwise, it is 4.

If. Suppose that (C, V ) is satisfiable, and let τ : V →
{T,F} be a truth assignment satisfying all clauses in C. Us-
ing τ , we recover a followers’ action profile a = (ap)p∈F ∈
×p∈FAp such that a ∈ Eσ` , with σ = (σ`, a) providing
the leader with a cost of ε. Since ε is the minimum cost the
leader can achieve and the followers behave optimistically,
σ is an OSE. In particular, let apφ,t = rφ, for all φ ∈ C,
and apv,t = rv,t, for all v ∈ V . Moreover, if τ(v) = T,
let apv = apφ,v = rv , apv̄ = rv,t, and apφ,v̄ = rφ,v̄ for all
φ ∈ C, while, if τ(v) = F, let apv̄ = apφ,v̄ = rv̄ , apv = rv,t,
and apφ,v = rφ,v for all φ ∈ C. Notice that, since either

τ(v) = T or τ(v) = F, one between rv and rv̄ is selected by
m+ 1 followers and the other one by none, respectively. Say,
w.l.o.g., νarv = m + 1 and νarv̄ = 0, as the other case is anal-
ogous. First, no follower pφ,v would deviate from rv to rφ,v ,
as, otherwise, she would incur a cost of at least 1, rather than
0. The same holds for followers pφ,v̄ , as their cost is at most 6
while, if any of them switched to rv̄ , she would incur a cost of
7. Similarly, since there are exactly two followers selecting
rv,t, follower pv would not deviate from rv (as 0 < 3), while
pv̄ and pv,t would not switch from rv,t, as they would get 7
and 4, respectively, rather than 3. Furthermore, since τ is a
truth assignment satisfying (C, V ), at least one literal l ∈ φ
evaluates to true under τ for every φ ∈ C. Let apφ = rφ,l for
every φ ∈ C. Since l evaluates to true, it must be apφ,l = rl,
thus pφ is the only follower who selects rφ,l. As a result, pφ
experiences a cost equal to 1, and she has no incentive to de-
viate. Finally, pφ,t does not deviate from rφ to rt as 2 < 4.
Thus, we can conclude that a is an NE and, since there is no
follower using rt, the leader’s cost is ε.

Only if. Suppose there exists an OSE σ = (σ`, a) in which
the leader’s cost is ε. We show that a = (ap)p∈F ∈×p∈FAp
can be employed to recover, in polynomial-time, a truth as-
signment τ that satisfies all clauses in C. First, let us note
that no follower selects rt in a as, otherwise, the leader’s cost
would be 4 > ε. As a consequence, all followers pφ,t and
pv,t must select the other resource they have available, i.e,
apφ,t = rφ and apv,t = rv,t. Moreover, there cannot be
two followers using resource rφ, for every φ ∈ C, as, oth-
erwise, pφ,t would have an incentive to deviate from rφ to rt,
as 5 > 4. Thus, apφ 6= rφ, i.e., there must be a literal l ∈ φ
such that apφ = rφ,l, for all φ ∈ C. In addition, there cannot
be two followers selecting rφ,l as, otherwise, pφ would have
an incentive to deviate to rφ, as 5 < 6. Thus, it must be the
case that apφ,l = rl. This implies that νarl = m+ 1 as, other-
wise, the cost of pφ,l would be 7 > 6, and the follower would
change resource, paying rφ,l. Furthermore, at least one be-
tween pv and pv̄ must select rv,t as, otherwise, player pv,t’s
cost would be 7 < 4, and she would prefer switching to re-
source rt. As a result, at least one between rv and rv̄ must be
selected by a number of followers strictly smaller thanm+1;
in that case, no follower pφ,v (or pφ,v̄) selects that resource
as, otherwise, she would incur a cost of 7 and she would have
an incentive to deviate. We thus define a truth assignment τ
such that: τ(v) = T if νarv = m+1, τ(v) = F if νarv̄ = m+1,
and τ(v) is either T or F whenever νarv = νarv̄ = 0. Clearly,
τ is well-defined. Moreover, we previously showed that, for
every φ ∈ C, there exists a literal l ∈ φ such that apφ,l = rl,
which implies that rl = m + 1, and, thus, τ(v(l)) = T if l
is positive, while τ(v(l)) = F if it is negative. Therefore, τ
satisfies all clauses.

The proof of Theorem 1 also shows the following:

Observation 1. In SCGs without leadership, computing an
NE minimizing the cost of a given player is NP-hard.

Furthermore, from Theorem 1, it directly follows that the
leader’s cost in an OSE cannot be efficiently approximated to
within any approximation factor which depends polynomially
on the size of the input:
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Figure 1: Example of Γε(C, V ) with V = {x, y, z} and C = {φ1, φ2}, where φ1 = x ∨ y ∨ z and φ2 = x̄ ∨ y ∨ z̄.

Corollary 1. The problem of computing an OSE in SSCGs is
not in Poly-APX unless P = NP.

Proof. Given a 3SAT instance (C, V ), let us build an SSCG
Γε(C, V ) as in the proof of Theorem 1. We have already
proven that Γε(C, V ) has an OSE in which the leader’s cost
is ε if and only if (C, V ) is satisfiable and that, otherwise, the
leader’s cost is 4. Let ε = 4

2n+r . Assume that there exists
a polynomial-time approximation algorithm A with approxi-
mation factor poly(n, r), i.e., a polynomial function of n and
r. Assume (C, V ) is satisfiable. A applied to Γε(C, V ) would
return a solution with leader’s cost at most 4

2n+r poly(n, r).
Since, for n and r large enough, 4

2n+r poly(n, r) < 4, A
would allow us to decide in polynomial time whether (C, V )
is satisfiable, a contradiction unless P = NP.

Notice that, since the followers break ties in favour of the
leader in the reduction, the result in Theorem 1 does not apply
to the problem of finding a PSE. Our conjecture is that, as it is
the case for all the problems with known results on computing
SEs, computing a PSE is as hard as finding an OSE.

4 SSSCGs with Monotonic Costs
We focus, in this section, on SSSCGs, showing that, assuming
players’ costs which are monotonic functions of the resource
congestion, an O/PSE can be computed efficiently. Formally,
we call the players’ cost functions weakly monotonic if, for
every resource i ∈ R, ci,`(x) ≤ ci,`(x + 1) and ci,f (x) ≤
ci,f (x + 1) for all x ∈ N, and strictly monotonic if all the
inequalities are strict.

First, notice that, in these games, searching for an O/PSE
is not as easy as it might appear, for the following reason:
Observation 2. There are SSSCGs with weakly monotonic
cost functions where some followers’ configurations are NEs
only for leader’s mixed strategies.

Consider a game with three followers, R = {r1, r2, r3},
and followers’ costs as in Figure 2(a). The followers’ config-
uration in which each follower selects a different resource is

not an NE if the leader commits to a pure strategy, while, for
instance, it is an NE for σ`(r1) = σ`(r3) = 1

2 , σ`(r2) = 0.
In the following, we show that, when searching for an OSE,

one can restrict the attention without loss of generality to pure
strategies of the leader, provided that the players’ cost func-
tions are weakly monotonic.

Intuitively, given an OSE in which the leader plays a
mixed strategy, we can easily construct another equilibrium
in which, instead, the leader’s strategy is pure.

Theorem 2. Every SSSCG with weakly monotonic cost func-
tions admits an OSE σ = (σ`, ν) in which σ` is pure.

Proof. Given an OSE σ = (σ`, ν), with σ` mixed, we con-
struct another OSE σ̂ = (σ̂`, ν̂) such that σ̂` is pure. Let
S = {i ∈ R | σ`(i) > 0} be the set of resources played
by the leader with positive probability in σ`, and let i? ∈
arg mini∈S ci,`(νi + 1). Clearly, cσ` =

∑
i∈A` σ`(i)ci,`(νi +

1) ≥ ci?,`(νi? + 1). Moreover, given that ν is an NE for σ`,
the following holds:

cσ`i,f (νi) ≤ cσ`j,f (νj + 1) ∀ i ∈ R : νi > 0, j ∈ R. (1)

Let us define σ̂` such that σ̂`(i?) = 1. We now show that such
σ̂` is part of an OSE. Notice that cσ̂`i,f (x) = ci,f (x) ∀ x ∈ N
for every i 6= i? ∈ R, while cσ̂`i?,f (x) = ci?,f (x+ 1) ∀ x ∈ N.
Given that the followers behave optimistically, it is sufficient
to provide a ν̂ ∈ Eσ̂` such that σ̂ = (σ̂`, ν̂) satisfies cσ̂` ≤ cσ` .
Specifically, we construct a sequence of followers’ configura-
tions reaching such ν̂. Given σ̂`, let us consider the sequence
(ν(0) = ν, ν(1), . . . , ν(T ) = ν̂) such that each configura-
tion differs from the previous one in that a single follower
has changed resource, strictly decreasing her cost in the fol-
lowers’ game resulting from σ̂`. Formally, for all 0 ≤ t < T ,
there exists i, j ∈ R such that ν(t)i > 0, ν(t+1)i = ν(t)i−1,
ν(t + 1)j = ν(t)j + 1, and cσ̂`i,f (ν(t)i) > cσ̂`j,f (ν(t + 1)j).
Moreover, let us assume that a follower deviates to resource
i?, i.e., ν(t + 1)i? > ν(t)i? , only if this is the only way of
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strictly decreasing some follower’s cost. Now, we prove:

ν(t+ 1)i? ≤ ν(t)i? ∀ 0 ≤ t < T. (2)

By contradiction, suppose there exists 0 ≤ t < T such that
ν(t + 1)i? > ν(t)i? . Then, in ν(t), there exists a follower
who can strictly decrease her cost by choosing i? instead of
resource j 6= i? ∈ R : ν(t)j > 0. Thus,

cσ`i?,f (νi? + 1) ≤ ci?,f (ν(t)i? + 2) < cj,f (ν(t)j), (3)

where the first inequality holds since ν(t)i? = νi? . Two
cases are possible. In the first one, ν(t)j ≤ νj , implying
cj,f (ν(t)j) ≤ cj,f (νj) ≤ cσ`j,f (νj), which, together with
Equations (1) and (3), leads to a contradiction. In the second
case, ν(t)j > νj implies that there exists k 6= i? ∈ R such
that ν(t)k < νk (and νk > 0), otherwise

∑
i∈R ν(t)i > n−1.

It follows that cj,f (ν(t)j) ≤ ck,f (ν(t)k + 1) ≤ cσ`k,f (νk),
where the first inequality holds since, due to our assumptions
on the sequence, it cannot be cj,f (ν(t)j) > ck,f (ν(t)k+1) as
ν(t + 1)i? > ν(t)i? , and the second inequality follows from
ν(t)k < νk. Thus, Equations (1) and (3) give a contradiction.
As a result, Equation (2) holds, and, thus, ν̂i? ≤ νi? . Given
the monotonicity of the costs, σ̂ is an OSE.

Now, we prove that a similar result holds for the pes-
simistic case. The result is weaker though, as it requires
the stronger assumption that the followers’ cost functions be
strictly monotonic.

Theorem 3. Every SSSCG in which leader’s and followers’
cost functions are weakly monotonic and strictly monotonic,
respectively, admits a PSE σ = (σ`, ν) in which σ` is pure.

Proof. Suppose there exists a PSE σ = (σ`, ν) in which σ` is
mixed. We show that there must be another PSE σ̂ = (σ̂`, ν̂)
such that σ̂` is pure. Let us define i? ∈ R as in the proof
of Theorem 2, so that cσ` ≥ ci?,`(νi? + 1) and Equation (1)
holds. Given that the followers behave pessimistically, we
need to show that, for every ν̂ ∈ Eσ̂` , σ̂ = (σ̂`, ν̂) satisfies
cσ̂` ≤ cσ` . By contradiction, assume that cσ̂` > cσ` , which
implies ci?,`(ν̂i? + 1) > ci?,`(νi? + 1). It easily follows
from the monotonicity of the costs that ν̂i? > νi? . Thus,
there must be a resource j ∈ R such that ν̂j < νj , otherwise∑
i∈R ν̂i > n− 1. Moreover, let us notice that νj > 0. Thus,

cσ`i?,f (νi?+1) ≤ ci?,f (ν̂i?+1) ≤ cj,f (ν̂j+1) ≤ cσ`j,f (νj), (4)

where the first inequality follows from νi? < ν̂i? , the second
one from the fact that ν̂ is an NE for σ̂`, while the third one
from ν̂j < νj . Equation (1) implies cσ`j,f (νj) ≤ cσ`i?,f (νi? +1).
If cσ`j,f (νj) < cσ`i?,f (νi? + 1), then Equation (4) leads to a
contradiction. Otherwise, if cσ`j,f (νj) = cσ`i?,f (νi? + 1), all
inequalities in Equation (4) must hold as equalities. How-
ever, this would imply cσ`i?,f (νi? + 1) = ci?,f (ν̂i? + 1) and
cj,f (ν̂j + 1) = cσ`j,f (νj), a contradiction as σ` is mixed and
the followers’ cost functions are strictly monotonic.

Moreover, let us notice that Theorem 3 fails to hold when-
ever the followers’ cost functions are weakly monotonic.

x cr1,f cr2,f cr3,f
1 1 4 0
2 3 7 2
3 5 7 5

(a)

x cr1,` cr1,f cr2,` cr2,f
1 1 1 1 1
2 2 1 2 1

(b)
x cr1,` cr1,f cr2,` cr2,f
1 1 2 1 2
2 2 1 2 1

(c)

x cr1,` cr1,f cr2,` cr2,f
1 2 1 2 1
2 0 2 0 2

(d)

Figure 2: Cost functions of some SSSCG examples.

Observation 3. There are SSSCGs with weakly monotonic
cost functions where any PSE prescribes the leader to play a
mixed strategy.

Consider a game with two followers, R = {r1, r2}, and
players’ costs as in Figure 2(b). Clearly, any followers’ con-
figuration is an NE, independently of the leader’s commit-
ment. Thus, whenever the leader commits to a pure strategy,
she incurs a cost of 2, while she can pay only 1 by uniformly
randomizing between the two resources.

Theorems 2 and 3 provide the fundamental insights which
allow us to efficiently compute O/PSEs in SSSCGs with
monotonic cost functions. Specifically, we can compute an
OSE (resp., PSE) by enumerating the leader’s pure strategies
and, for each of them, computing the followers’ NE which re-
sults in the leader’s cost being minimized (resp., maximized).
An O/PSE is then obtained by picking a pure strategy which
minimizes then leader’s cost. The detailed procedure is de-
scribed in Algorithm 1, where function O-Pick(S) (resp.,
P-Pick(S)) returns some resource j? ∈ S, giving prece-
dence to resources j? 6= i (resp., j? = i).

Algorithm 1: Algorithm computing an O/PSE of an SSSCG.
input : An SSSCG Γ = (N,R, c`, cf )
output: σ that is an O/P-LFE of Γ

Function Compute-O/P-LFE(Γ)
for i ∈ R do

σ`[i]← σ` ∈ ∆` : σ`(i) = 1;
ν[i, j]← 0 ∀ i, j ∈ R;
while

∑
j∈R ν[i, j] < n do

S ← arg minj∈R c
σ`[i]
j,f (ν[i, j] + 1);

j? ← O/P-Pick(S);
ν[i, j?]← ν[i, j?] + 1;

c`[i]← ci,`(ν[i, i] + 1);

i? ← arg mini∈R c`[i];
return σ = (σ`[i

?], ν[i?, ·]);

Let us remark that, in Algorithm 1, σ`[·], ν[·, ·], and c`[·]
are the algorithm’s variables, and, for every i ∈ R, ν[i, j]
denotes the number of followers selecting resource j ∈ R in
the NE that is reached when the leader’s strategy is σ`[i].

Theorem 4. Algorithm 1 is correct and it runs in time
O(nr log r).
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Proof. In order to show that Algorithm 1 is correct, due to
Theorems 2 and 3 we only need to prove that, for every i ∈ R
and after the execution of the while loop, the followers’ con-
figuration ν is such that νj = ν[i, j] for j ∈ R is an NE for
σ`[i] minimizing (or maximizing) the leader’s cost. First, let
us show that ν is an NE. Suppose, by contradiction, it is not.
Then, there exists j ∈ R : νj > 0 and k ∈ R such that
c
σ`[i]
j,f (νj) > c

σ`[i]
k,f (νk + 1). Let ν̄k be the value of ν[i, k] dur-

ing the step in which ν[i, j] is set to its final value νj . Clearly,
c
σ`[i]
j,f (νj) > c

σ`[i]
k,f (νk+1) ≥ cσ`[i]k,f (ν̄k+1), and the algorithm

would have not incremented ν[i, j] during that step, a contra-
diction. In the rest of the proof, we focus on the optimistic
case, as the pessimistic one can be treated analogously. Sup-
pose, by contradiction, that ν is not an NE minimizing the
leader’s cost for σ`[i]. Then, there exists another NE ν̂ for
σ`[i] such that ci,`(ν̂i + 1) < ci,`(νi + 1). Given the mono-
tonicity of the costs, ν̂i < νi. Therefore, there must exist
j 6= i ∈ R such that ν̂j > νj . Let us consider the step in
which ν[i, i] is set to νi, and let ν̄j be the value of ν[i, j] dur-
ing that step. It must be that cσ`[i]i,f (νi) < c

σ`[i]
j,f (ν̄j+1) as, oth-

erwise, the algorithm would have incremented ν[i, j] instead
of ν[i, i]. But then cσ`[i]j,f (ν̄j+1) ≤ cσ`[i]j,f (νj+1) ≤ cσ`[i]j,f (ν̂j),

which implies cσ`[i]i,f (ν̂i + 1) ≤ c
σ`[i]
i,f (νi) < c

σ`[i]
j,f (ν̄j + 1) ≤

c
σ`[i]
j,f (ν̂j), contradicting the fact that ν̂ is an NE for σ`[i].

Clearly, the while loop is executed exactly r times, and
each execution performs n steps. Moreover, using efficient
data structures each step takes time O(log r). Thus, the over-
all running time is O(nr log r)

We conclude the section by showing that, in SSSCGs with
monotonic costs and under the additional assumption that
leader’s and followers’ costs be equal, all O/PSEs in which
the leader plays a pure strategy are NEs in the game where all
players play simultaneously (i.e., without leadership).

Theorem 5. Given an SSSCG with monotonic costs and c` =
cf = {ci}i∈R, any O/PSE σ = (σ`, a) with σ` pure is an NE.

Proof. Let σ = (σ`, ν) be an O/PSE with σ`(i?) = 1 for
some i? ∈ R. Clearly, given that ν ∈ Eσ` , for every i ∈ R :
νi > 0 and j ∈ R, cσ`i (νi) ≤ cσ`j (νj + 1). Therefore, there
is no follower who has an incentive to change resource, and,
thus, it is sufficient to prove that the leader does not deviate
from resource i? either, unilaterally. If νi? > 0, we have
ci?(νi? +1) = cσ`i? (νi?) ≤ cσ`j (νj +1) = cj(νj +1) for every
j 6= i? ∈ R, and it immediately follows that the leader does
not deviate and σ is an NE. The case in which νi? = 0 is more
involved. By contradiction, suppose that σ is not an NE. As a
consequence, the leader must have an incentive to deviate for
some j 6= i? ∈ R, i.e., ci?(νi? + 1) = ci?(1) > cj(νj + 1).
Suppose the leader commits to a strategy σ̂` such that σ̂`(j) =
1. We prove that, for every ν̂ ∈ Eσ̂` , σ̂ = (σ̂`, ν̂) provides
the leader with a cost strictly smaller than ci?(1). Suppose,
instead, cj(ν̂j + 1) ≥ ci?(1). Three cases are possible. In
the first case, ν̂j < νj and ci?(1) > cj(νj + 1) ≥ cj(ν̂j +
1) ≥ ci?(1). In the second one, ν̂j = νj and cj(ν̂j + 1) ≥
ci?(1) > cj(νj+1). Finally, in the third case, ν̂j > νj , which

implies that there must be a resource k 6= i? ∈ R such that
ν̂k < νk, and ci?(1) > cj(νj + 1) ≥ ck(νk) ≥ ck(ν̂k + 1) ≥
cj(ν̂j + 1) ≥ ci?(1). As all cases lead to a contradiction, it
must be cj(ν̂j + 1) < ci?(1). The proof is complete as, in σ̂,
the leader’s cost is cj(ν̂j + 1) < ci?(1), contradicting the fact
that σ is an O/PSE.

5 SSSCGs with Arbitrary Costs
Finally, let us shift our attention to general SSSCGs, i.e.,
games in which the costs need not be monotonic functions
of the resource congestion.
Observation 4. Given an SSSCG, an optimal leader’s pure
strategy to commit to can be computed efficiently, both in the
optimistic and the pessimistic case.

Clearly, when the followers’ costs are monotonic func-
tions, we can find an optimal leader’s pure strategy using
Algorithm 1. In general, we can apply a procedure sim-
ilar to that of Algorithm 1, enumerating the leader’s pure
strategies while computing, for each of them, an NE mini-
mizing/maximizing the leader’s cost in the resulting follow-
ers’ game. In order to find one such NE, we can adapt an
algorithm proposed in [Ieong et al., 2005], which relies on
dynamic programming to compute in O(r5n6) an NE mini-
mizing the social-cost in SSSCGs without leadership. It suf-
fices to change the objective function from the social cost to
the leader’s cost of the resource selected in the current pure
strategy. Thus, in general, the overall computation requires
O(r6n6).

Unfortunately, the assumption that the leader always plays
pure strategies is not safe in SSSCGs with arbitrary costs, as
Theorems 2 and 3 do not hold if the monotonicity assumption
is dropped.
Observation 5. There are SSSCGs such that:
• the followers’ costs only are non-monotonic, and any

O/PSE prescribes the leader to play a mixed strategy;
• the leader’s costs only are non-monotonic, and any

O/PSE prescribes the leader to play a mixed strategy.
Consider a game with a single follower, R = {r1, r2},

and players’ costs as in Figure 2(c). Clearly, the follower
selects r2 whenever σ`(r1) ≤ 1

2 , while, if σ`(r1) ≥ 1
2 , she

chooses r1, providing the leader with a cost of 2 − σ`(r1)
and 1 + σ`(r1), respectively. Thus, any O/PSE prescribes the
leader to play σ` such that σ`(r1) = 1

2 .
Moreover, when the players’ costs are as in Figure 2(d),

the follower selects r2 if σ`(r1) ≥ 1
2 , and r1 if σ`(r1) ≤ 1

2 ,
providing the leader with a cost of 2σ`(r1) and 2 − 2σ`(r1),
respectively. As a result, any O/PSE of the game prescribes
the leader to play σ` such that σ`(r1) = 1

2 .

6 Conclusions and Future Works
We analyzed Stackelberg games where the underlying struc-
ture is a congestion game, focusing on the case in which the
players’ actions are singletons. We proved that, without fur-
ther assumptions on the players’ action spaces and the re-
source cost functions, it is not possible to approximate in
polynomial time the leader’s cost in an OSE up to within a
polynomial factor in the size of the game, unless P = NP.
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Differently, when each player can select any resource and the
cost functions are monotonic, an O/PSE can be computed ef-
ficiently, as there is always a leader’s optimal pure strategy.

In the future, we will study the computational complexity
of finding an O/PSE in SSSCGs with arbitrary costs in order
to establish whether the problem can be solved efficiently or
not, in spite of the fact that the leader’s optimal commitment
may be a mixed strategy. Moreover, we will extend our results
for SSCGs—studying the complexity of finding a PSE, also
considering the special case where cost functions are mono-
tonic in the resource congestion—and we will analyze other
classes of CGs with different combinatorial structures.
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