
Multi-Level Policy and Reward Reinforcement Learning for Image Captioning

An-An Liu1, Ning Xu1, Hanwang Zhang2, Weizhi Nie1, Yuting Su1, Yongdong Zhang3

1 School of Electrical and Information Engineering, Tianjin University, Tianjin, China
2 School of Computer Science and Engineering, Nanyang Technological University, Singapore

3 University of Science and Technology of China, Hefei, China
liuanan@tju.edu.cn

Abstract
Image captioning is one of the most challenging
hallmark of AI, due to its complexity in visual and
natural language understanding. As it is essentially
a sequential prediction task, recent advances in im-
age captioning use Reinforcement Learning (RL) to
better explore the dynamics of word-by-word gen-
eration. However, existing RL-based image cap-
tioning methods mainly rely on a single policy net-
work and reward function that does not well fit the
multi-level (word and sentence) and multi-modal
(vision and language) nature of the task. To this
end, we propose a novel multi-level policy and re-
ward RL framework for image captioning. It con-
tains two modules: 1) Multi-Level Policy Network
that can adaptively fuse the word-level policy and
the sentence-level policy for the word generation;
and 2) Multi-Level Reward Function that collabo-
ratively leverages both vision-language reward and
language-language reward to guide the policy. Fur-
ther, we propose a guidance term to bridge the pol-
icy and the reward for RL optimization. Extensive
experiments and analysis on MSCOCO and Flick-
r30k show that the proposed framework can achieve
competing performances with respect to different
evaluation metrics.

1 Introduction
Image captioning is the task of describing the visual content
of an image using natural language. Unlike traditional com-
puter vision tasks, such as image classification and object de-
tection, image captioning requires not only visual understand-
ing the image, but also the compositions of natural language.
This technique can be widely applied to semantic image re-
trieval [Karpathy et al., 2014] and human-robot interaction-
s [Das et al., 2017].

Image captioning is a sequential word prediction task.
State-of-the-art approaches [Xu et al., 2015; You et al., 2016;
Karpathy and Fei-Fei, 2017; Li et al., 2017] generally fol-
low an encoder-decoder framework: they deploy convolu-
tional neural networks (CNN) to encode the image into a
visual embedding vector, and then use recurrent neural net-
works (RNN) to decode the vector into a sentence; during

training and inference, they try to maximize the probabili-
ty of the next word based on the current prediction contex-
t. Recently, it has been shown that Reinforcement Learning
(RL) [Sutton et al., 1999] can better fit in this task. The rea-
son is that RL aims to learn a policy that decides sequential
actions by maximizing the cumulative future rewards [Sil-
ver et al., 2016]. Therefore, RL can help to explore more
fruitful language in sentence generation, avoiding severe bias
in training samples [Rennie et al., 2017]. However, exist-
ing RL-based image captioning methods [Liu et al., 2017b;
Rennie et al., 2017] mainly rely on a single policy network
and reward function that does not well fit the multi-level
(word and sentence) and multi-modal (vision and language)
nature of the task.

In this paper, we propose a novel multi-level policy and
reward reinforcement learning framework for image caption-
ing. The multi-level policy network aims to adaptively fuse
the word-level and the sentence-level policies for word gen-
eration, and the multi-level reward function aims to col-
laboratively leverage the vision-language and the language-
language rewards to guide the policy. To further bridge the
policy network and the reward function, we propose a guid-
ance term by minimizing the distance between the sentence-
level policy and the vision-language reward for optimization.

As shown in Figure 1, the multi-level policy network con-
sists of the word-level policy and the sentence-level policy.
The former is the CNN-RNN-based network, which provides
the word confidence by locally predicting the next word based
on the current state; the latter is a visual-semantic embed-
ding network, which provides the sentence (context) confi-
dence by globally evaluating the current state. The multi-level
reward function consists of the vision-language reward and
the language-language reward. The former is also a visual-
semantic embedding network, which measures the cross-
modality similarity between the visual content and the gen-
erated description, and defines a specific optimization goal
for reinforcement learning; the later is the CIDEr [Vedantam
et al., 2015] metric on a pre-defined rule and a stable supple-
ment to the former. Particularly, the vision-language reward
and the sentence-level policy leverage the same embedding
architecture while owning different parameters. We pre-train
an embedding network to initialize the former while the later
is directly trained in RL framework.

The contributions are summarized as follows.
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• We propose a novel multi-level policy and reward re-
inforcement learning framework for image captioning.
To the best of our knowledge, it is the first RL frame-
work that explores the multi-level (word and sentence)
and multi-modal (vision and language) nature of image
captioning task.
• We design a multi-level policy network that adaptively

fuses word and sentence confidences for sentence gener-
ation, and a multi-level reward function that collabora-
tively leverages vision-language and language-language
rewards to guide the generation. A proposed guidance
term further bridges the policy and the reward modules.
• We perform comprehensive evaluations on MSCOCO

and Flickr30k datasets. Our framework achieves the
competing performances against state-of-the-art meth-
ods. Ablative studies showcase the effect of the pro-
posed framework.

2 Related Work
2.1 Image Captioning
Many image captioning methods have been proposed in the
literature. In the early stage, the template-based methods
[Farhadi et al., 2010] detected objects from images to gen-
erate sentences by pre-defined grammar rules. Recently, a
CNN-RNN-based framework was explored and variants were
proposed [Vinyals et al., 2015; Karpathy and Fei-Fei, 2017;
Dai et al., 2017; Liu et al., 2017a; Nie et al., 2013]. For exam-
ples, [Wu et al., 2016] incorporated high-level semantic con-
cepts into the CNN-RNN framework. Additionally, attention-
based methods weighted each feature to exploit the spatial
structure and rich intermediate description for images [X-
u et al., 2015; Anderson et al., 2017; Zhang et al., 2017;
Cheng et al., 2018]. For examples, [Xu et al., 2015] used
the attention model to learn where to focus in images dur-
ing sentence generation. [Anderson et al., 2017] incorpo-
rated bottom-up and top-down attention models and [Lu et
al., 2017] proposed the adaptive attention model that decided
whether to attend to the image or to the visual sentinel.

2.2 Reinforcement Learning
RL aims to learn a policy that decides sequential actions
by maximizing the cumulative future rewards [Silver et al.,
2016]. Recently, many challenging problems, such as the
game of Go [Silver et al., 2016], can be successfully solved
by RL algorithms. Several RL methods have been proposed
to solve the computer vision problems, such as visual track-
ing [Yun et al., 2017] and image captioning [Ren et al., 2017].
For examples, [Ren et al., 2017] proposed a “policy network”
and a “value network” to collaboratively generate captions,
with a reward defined by visual-semantic embedding. [Ren-
nie et al., 2017] and [Liu et al., 2017b] directly optimized
image captioning systems by the test rewards.

3 Approach
3.1 Problem Formulation
We formulate image captioning as a RL process. In image
captioning, the goal is, given an image F , to generate a sen-
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Figure 1: Illustration of the proposed multi-level policy and re-
ward RL framework. A multi-level policy network can adaptively
fuse both word-level and sentence-level policies to generate each
word, and a multi-level reward function collaboratively leverages
both vision-language and language-language rewards to guide the
policy.

tence Ŝ = {ŵ1, . . . , ŵT }which correctly describes the image
content, where ŵi is a word in sentence Ŝ and T is the length.
In RL, there is an agent (policy) that interacts with the envi-
ronment, and executes a series of actions, so as to optimize a
goal. Particularly, the environment is the given image F and
the words predicted so far {ŵ1, . . . , ŵt}. An action is to pre-
dict the next word ŵt+1. After each action a, a state s is ob-
served. The state st at time step t consists of the image F and
the words predicted until t, {ŵ1, . . . , ŵt}. The action space is
the dictionary D that the words are drawn from, i.e., at ⊂ D.
However, existing RL-based image captioning methods rely
on a single policy network and reward function that does not
well fit the multi-level (word and sentence) and multi-modal
(vision and language) nature of the task. To this end, we pro-
pose a novel multi-level policy and reward RL framework for
image captioning.

3.2 Multi-Level Policy Network
The multi-level policy network consists of the word-level pol-
icy and the sentence-level policy.
Word-level policy consists of a Convolutional Neural Net-
work (CNN) and a Long Short Term Memory Network (L-
STM). It is similar to the image captioning model [Karpathy
and Fei-Fei, 2017] used in the encoder-decoder framework.
We first extract the CNN feature I for the input image, and
then embed it through a linear mapping. Words are repre-
sented by one hot vectors which are embedded with the same
dimension as mapped image features. The beginning of each
sentence is marked with a special 〈BOS〉 token, and the end
with an 〈EOS〉 token. In this policy, words are generated and
then fed back into LSTM, with the image feature I treated as
the first word. LSTM outputs a distribution w̄t over all words
by updating the hidden states and cells of it. Let θπ denote
the parameters of the word-level policy. {w̄1, . . . , w̄t−1} is
denoted by S̄1:t−1. The objective is to minimize the sum of
the negative log likelihood of the correct word at each step:

L(θπ) = −
T∑
t=1

log
(
pπ(w̄t|I, S̄1:t−1)

)
(1)
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Figure 2: Illustration of the visual-semantic embedding network,
which are synchronously used in the sentence-level policy and the
vision-language reward. It is comprised of two mapping layers and
a RNN unit. By projecting image feature I and sentence S into one
common embedding space, it measures the similarity between vision
and semantic.

Sentence-level policy is a visual-semantic embedding net-
work, which has been successfully applied to image retrieval
[Kiros et al., 2015] and captioning [Pan et al., 2016]. Inspired
by [Ren et al., 2017], we map the image feature I and the sen-
tence S into one common embedding space that measures the
similarity between them. As shown in Figure 2, given a sen-
tence S, its embedding feature is represented using the last
hidden state of RNN. We denote a sentence mapping layer
by hp(RNN(S)) and a image mapping layer by fp(I). As
shown in Figure 1, the sentence-level policy is fed by the im-
age feature I and the partially generated caption S̄1:t from the
word-level policy. The confidence between them is computed
by:

c(I, S̄1:t) =
fp(I)hp(RNN(S̄1:t))

‖fp(I)‖‖hp(RNN(S̄1:t))‖
(2)

Further, the sentence-level policy can provide the sentence
confidence by globally evaluating the current state.

3.3 Multi-Level Reward Function
The multi-level reward function consists of the vision-
language reward and the language-language reward.
Vision-language reward is a visual-semantic embedding
network that has the same architecture with the sentence-level
policy. But there are two different points between them. The
first point is this reward is fed by the image feature I and
the fully generated caption Ŝ, instead of partially generat-
ed caption S̄1:t, from the multi-level policy network, which
fuses both word-level and sentence-level policies. It can e-
valuate the vision-language correlation on the fully generated
caption, and define a specific goal for RL optimization. As
shown in Figure 2, we denote a sentence mapping layer by
hr(RNN(Ŝ)) and a image mapping layer by fr(I). This re-
ward is defined by:

rvl(I, Ŝ) =
fr(I)hr(RNN(Ŝ))

‖fr(I)‖‖hr(RNN(Ŝ))‖
(3)

The second point is that we pre-train the embedding space for
this reward while the sentence-level policy is directly trained
in the RL framework. Let θr denote the parameters of the
vision-sentence reward. Inspired by [Ren et al., 2017], we use
the image-sentence pairs as in the image captioning dataset,
and learn the RNN weights as well as mapping layers using a
bi-directional ranking loss:
L(θr) =

∑
I

∑
S−

max
(
0, γ − fr(I)hr(S) + fr(I)hr(S

−)
)

+
∑
S

∑
I−

max
(
0, γ − hr(S)fr(I) + hr(S)fr(I

−)
) (4)

where γ is the margin cross-validated, every (I, S) are a
ground truth image-sentence pair, S− denotes a negative de-
scription for the image corresponding to I , and vice-versa
with I−.
Language-language reward is the CIDEr metric which has
been successfully applied to image captioning task [Rennie
et al., 2017]. Because CIDEr is calculated on the pre-defined
rule, it can steadily evaluate the sequential actions. We use
language-language reward as the supplement to the vision-
language one. It is computed by comparing the fully generat-
ed caption Ŝ with the corresponding ground truth S, which is
denoted by rll(S, Ŝ).

In this paper, we directly optimize a linear combination of
both rewards as follows:

rtotal =

{
0 0 < t < T

λrvl(I, Ŝ) + (1− λ)rll(S, Ŝ) t = T
(5)

where rtotal is the linear combination of both rewards. T is
the length of sentences. 0 ≤ λ ≤ 1 is a hyperparameter.

3.4 Training Using Reinforcement Learning
The key problem of RL lies in correlating the policy and
the reward parts for joint learning. Except that we co-train
both parts in the traditional RL framework, we design a guid-
ance term G. It minimizes the distance between the vision-
language reward and the sentence-level policy by calculating
the mean squared loss. Since the vision-language reward is
pre-trained with ground truth, it can be regarded as an expert
to measure the correlation between images and sentences.
However, the sentence-level policy is trained in the RL frame-
work by leveraging all information in the environment. It can
be regarded as an amateur for the similarity measure between
images and sentences. Therefore, by minimizing G, the ex-
pert reward will guide the amateur policy for optimization and
further benefit joint learning both parts. Let θa denote the pa-
rameters of the sentence-level policy. The guidance term can
be formulated as:

G(θa) = ‖rvl(I, Ŝ)− c(I, S̄1:t)‖2 (6)

We denote the parameters of the multi-level policy network
by Θ = {θπ, θa}, and we learn Θ by minimizing the negative
expected combination reward rtotal, the guidance term G, and
the distribution of generated words pŵt (will be defined later
in Section 3.5). The objective function can be formulated as:

J (Θ) = −rtotal × pŵt × G (7)

The training process consists of two steps.

• By standard supervised learning, we pre-train the word-
level policy θπ and the vision-language reward θr in Eq.
1 and Eq. 4, respectively.

• θπ and θa are jointly trained in Eq. 7. We baseline RL
with not only the sentence-level policy c(I, S̄1:t) but also
the language-language reward rll(S, Ŝ′) that is obtained
by the current model under the inference algorithm used
at test time. A sample approximation to the gradient is:
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∇θπJ ≈
T∑
t=1

∇θπ logpπ(w̄t|I, S̄1:t−1)

(rtotal − λc(I, S̄1:t)− (1− λ)rll(S, Ŝ
′))

∇θaJ ≈ ∇θac(I, S̄1:t)

(rtotal − λc(I, S̄1:t)− (1− λ)rll(S, Ŝ
′))

(8)

Here, c(I, S̄1:t) and rll(S, Ŝ
′) serve as a combine-

moving baseline by λ. The subtraction with the eval-
uation leads to a much lower variance estimate of the
policy gradient. Scaling the gradient can be seen as an
estimate of the advantage of action at in state st.

3.5 Lookahead Inference with Multi-Level Policy
For the multi-level policy network, the inference is guided
by the word-level and the sentence-level policies. The for-
mer provides the word confidence that locally predicts the
next word according to current state. The later provides the
sentence confidence that globally evaluates the current state.
These complement confidences are collaboratively used to
adjust the distribution of next word towards the goal of gen-
erating captions that are similar to ground truth.

The agent executes each action by fusing both policies:

pŵt = βlogpπ(w̄t|I, S̄1:t−1) + (1− β)c(I, S̄1:t) (9)

where pŵt is the adjusted distribution of the next word. 0 ≤
β ≤ 1 is a hyperparameter.

4 Experiments
4.1 Datasets
We evaluate our framework on captioning datasets: MSCO-
CO and Flickr30k. For fair comparison, we adopt the split-
s consistent with [Karpathy and Fei-Fei, 2017], which us-
es 5,000 images for validation and test on MSCOCO; 1,000
images for validation and test on Flickr30k. We drop any
word that has count less then five, yielding a vocabulary of
size 9,487 and 7,615 words for MSCOCO and Flickr30k, re-
spectively. All the reported results are computed using Mi-
crosoft COCO caption evaluation tool 1, including the metrics
BLEU(B@N), Meteor(M), Rouge-L(R) and CIDEr(C).

4.2 Protocol
As shown in Figure 1, we take the output of the 2048-d pool5
layer from ResNet-101 as image feature I . Both the sentence-
level policy and the vision-language reward are the visual-
semantic embedding networks. We adopt the same architec-
ture for them, but train them independently. As shown in Fig-
ure 2, we use one LSTM unit with 2048-d hidden layers to
construct RNN, and the dimension of both linear mapping
layers is set to 2048×512.

We use two types of RNN-based captioning models to con-
struct the word-level policy. 1) CNN-RNN model. It is in-
troduced in Section 3.2. 2) Attention model. It is similar to
[Xu et al., 2015]. We encode the image by spatially adaptive
max-pooling and then the size of output is 14×14×2048. At
each time step, the attention model enables LSTM decoder

1https://github.com/tylin/coco-caption

to emphasize features from spatial regions depending on the
current context.

In training, the LSTM hidden, image, word and attention
embedding dimension are fixed to 512 for the word-level pol-
icy. We use Adam optimizer with an initial learning rate of
5× 10−5 and minibatches of size 64. The maximum number
of epochs is 30. The margin λ in Eq. 5, β in Eq. 9, and γ
in Eq. 4 are set as 0.6, 0.6, and 0.2, respectively. In testing,
beam search is set to 1. All experiments are implemented by
PyTorch.

4.3 Comparing with State-Of-The-Art Methods

In this paper, we use CNN-RNN or Attention captioning
models to construct the word-level policy, denoted by Ours-
CNN-RNN or Ours-Attention, respectively. For fair compar-
ison, we only provide the results of these two types of models
and existing RL models in Table 1. Our framework consis-
tently achieves competing performances against state-of-the-
art methods across all metrics.

Particularly, we discuss it in three parts. 1) CNN-RNN
models. Ours-CNN-RNN is based on a network similar to
DeepVS and Google-NIC. The significant improvement over
them shows the advantages of multi-level policy and reward.
ATT-CNN+LSTM and MSM@MSRA use explicit high-level
attributes, and m-RNN uses external data to prove its unique
transfer capacity. Even though our method performs better
than them. 2) Attention models. Ours-Attention is based
on a network similar to Hard-Attention, ERD, and ATT-FCN.
The results show we can further improve performances by a
large margin. Comparing to Adaptive, that proposes a better
attention model to decide whether to attend to the image or
to the visual sentinel, Ours-Attention achieves better results,
which confirms the effect of our framework. 3) RL models.
MIXER is a BLEU@4-driven RL method. It is hard to gen-
eralize to other metrics while our method performs well in all
metrics. Especially, Decision-Making also uses both policies,
i.e., “policy network”(CNN-RNN) and “value network”, also
with the visual-semantic embedding reward. However, Ours-
CNN-RNN performs better, which validates the effect of the
multi-level reward function. Meanwhile, Ours-Attention out-
performs SCST that trains the policy network (Attention) al-
so with the CIDEr reward. Additionally, Ours-Attention per-
forms better than Ours-CNN-RNN. It illustrates other power-
ful mechanisms can be directly integrated into our word-level
policy and further improve the performance.

Figure 3 shows the values of reward and loss during train-
ing. We observe that both reward curves gradually increase
along with the iteration. For the language-language reward, it
indicates the generated captions is becoming more and more
similar to the ground truth. For the vision-language reward,
it is that the distance between the semantics of the generat-
ed caption and visual content is becoming closer and closer.
Meanwhile, both loss curves are gradually to converge, and
stable during training. Note that the word-level policy con-
verges faster than the sentence-level policy. It is because word
confidence and sentence confidence are often asynchronous,
i.e., changes in word is more sensitive than sentence.
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Models MSCOCO Flickr30k

B@2 B@3 B@4 M C B@2 B@3 B@4 M C
C

N
N

-R
N

N DeepVS [Karpathy and Fei-Fei, 2017] 0.450 0.321 0.230 0.195 0.660 0.369 0.240 0.157 0.153 0.247
Google-NIC [Vinyals et al., 2015] 0.451 0.304 0.203 - - 0.423 0.277 0.183 - -
m-RNN [Mao et al., 2015] 0.490 0.350 0.250 - - 0.410 0.280 0.190 - -
ATT-CNN+LSTM [Wu et al., 2016] 0.560 0.420 0.310 0.260 0.940 0.550 0.400 0.280 - -
MSM@MSRA [Yao et al., 2017] 0.565 0.429 0.320 0.251 0.986 - - - - -

A
tte

nt
io

n Hard-Attention [Xu et al., 2015] 0.504 0.357 0.250 0.230 - 0.439 0.296 0.199 0.185 -
ERD [Yang et al., 2016] - - 0.298 0.240 0.895 - - - - -
ATT-FCN [You et al., 2016] 0.537 0.402 0.304 0.243 - 0.460 0.324 0.230 0.189 -
Adaptive [Lu et al., 2017] 0.580 0.439 0.332 0.266 1.085 0.494 0.354 0.251 0.204 0.531

R
L MIXER [Ranzato et al., 2016] - - 0.290 - - - - - - -

Decision-Making [Ren et al., 2017] 0.539 0.403 0.304 0.251 0.937 - - - - -
SCST* [Rennie et al., 2017] - - 0.313 0.260 1.013 - - - - -

O
ur

s Ours-CNN-RNN 0.601 0.449 0.330 0.252 1.042 0.562 0.408 0.282 0.219 0.586
Ours-Attention 0.619 0.464 0.340 0.266 1.109 0.575 0.416 0.289 0.225 0.615

Table 1: Performance of the proposed framework on MSCOCO and Flickr30k test splits. (-) indicates unknown scores. (*) indicates we only
compare with the single model reported in that paper for fair comparison.

Variant
ID

word-level
policy

sentence-level
policy

vision-language
reward

language-language
reward

guidance
term

B@4 M R C

1 X 0.295 0.239 0.528 0.921
2 X X X 0.318 0.249 0.542 1.009
3 X X X 0.311 0.246 0.541 1.007
4 X X X 0.315 0.247 0.539 0.996
5 X X X X 0.323 0.249 0.544 1.011

Ours X X X X X 0.330 0.252 0.547 1.042
Table 2: Comparison of variants for the proposed framework on MSCOCO. (X) indicates “used”. (None) indicates “removed”.
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Figure 3: Performance of our framework on the validation set during
the first 1,000 gradient steps.

4.4 Ablation Studies of Proposed Framework
In this section, we examine the efficacy of the proposed
method by assessing several variants. We divide our frame-
work into five components, i.e., word-level policy, sentence-
level policy, vision-language reward, language-laguage re-
ward, and guidance term. Table 2 presents five variants on
Ours-CNN-RNN with respect to different IDs. The mark “X”
stands for “used” while “None” is “removed”. For example,
variant 3 measures the effect of vision-language reward by
removing this component, where λ in Eq. 5 is set to 0. To
explicitly validate the contribution of each component, we re-
move the guidance term in all variants.

Our method outperforms all the variants. For clarity, we
discuss the results in Table 2 from Ours to variant 1. First,
our method performs better than variant 5, which concludes
the proposed guidance term can further bridge the policy and
the reward modules. Then, we compare variant 5 with vari-

ants 2∼4 that only use single-level policy and reward. The
improved results shows the merit of multi-level policy and
reward in RL. Finally, variant 1 is a supervised learning base-
line which results fall behind others slightly.

4.5 Qualitative Results
We show some qualitative results generated by our method
and variants in Table 2. As shown in Figure 4, we can observe
three points. 1) single-level vs. multi-level policies. Variants
2∼4 use single-level policy and reward while variant 5 us-
es multi-level ones. The results show the later can generate
competing descriptions against ground truth while the former
often miss key information. For examples, variant 5 gener-
ates the phrases wine glasses and talking on a cell phone in
case(b) and (f), respectively, while variant 3 and 4 miss these
key words. It shows the merit of the proposed multi-level
framework. 2) the effect of guidance term. Thanks to the
guidance term, our method can further improve the descrip-
tions on variant 5, and perform better at recognizing explicit
objects, e.g., the hill other than field in case(a) and the around
other than at in case(b). Further, the generated captions by
our method are more similar to ground truth than others, e.g.,
we generate the word people that cannot be captured by oth-
ers in case(g). 3) some failure cases. We show two fail-
ure cases in the last column, where all methods fail to under-
stand the important visual contents, i.e., holding an umbrella
in case(d) and video game in case(h). It is because our pol-
icy cannot capture the explicit objects under the noisy back-
ground. Adding more detailed visual modeling techniques
such as detection can alleviate such problem in the future.
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1: a large building with a sign on it. 

2 :  a red sign is in front of a tall 
building.
3: a red sign that is on a pole. 

4 :  a red sign on a pole in front of a 
building. 
5:  a street sign with a large building 
in the background. 
Ours: a red sign with a large building 
in the background. 
GT: a post with three signs and a 
building in the background. 

1 :  a group of people walking in a 
field with elephants. 
2: a man is herding a herd of cattle.

3 :  a group of people standing 
around a herd of cattle. 
4 :  a man is walking with a herd of 
cattle. 
5: a man is feeding a herd of cattle. 

O u r s :  a man is standing next to a 
herd of cattle.  
GT: a young man holding an 
umbrella next to a herd of cattle. 

1 :  a giraffe is walking through a 
grassy area. 
2: a giraffe standing in a field with a 
mountain range.
3: a giraffe standing on a lush green 
hillside. 
4: a giraffe standing in the grass near 
a mountain. 
5: a giraffe standing in a field with a 
mountain in the background. 
Ours: a giraffe standing on a hill with 
a mountain in the background. 
GT: a giraffe walking on a grassy hill 
with mountains in the background. 

1: a woman is sitting at a table with a 
wine. 
2: a group of people sitting at a table 
with wine glasses.
3: a group of people sitting around a 
table. 
4 :  a group of people sitting at a 
table. 
5: a group of people sitting at a table 
with wine glasses. 
O u r s :  a group of people sitting 
around a table with wine glasses. 
GT: a group of people sitting around 
a table with glasses of wine. 

1 :  a yellow fire hydrant in a park 
area. 
2: a yellow fire hydrant sitting in the 
middle of a dirt road.
3 :  a yellow fire hydrant in a park 
with a fence. 
4: a yellow fire hydrant sitting on the 
side of a road. 
5: a yellow fire hydrant sitting in the 
middle of a dirt field. 
Ours: a yellow fire hydrant sitting on 
a sidewalk next to a fence. 

1: a man is talking on a cell phone.
 
2 :  a woman in a suit and tie is 
standing in front of a window.
3: a woman is standing in front of a 
window. 
4 :  a woman in a suit and tie is 
standing in front of a window. 
5 :  a woman standing in front of a 
window talking on a cell phone. 
O u r s :  a woman in a black shirt 
talking on a cell phone. 
GT: a woman talking on a phone 
while wearing a black shirt. 

1 :  a large clock tower on a city 
street.
2: a large brick building with a clock 
on the side of it.
3: a large clock tower in the middle 
of a city. 
4: a large brick building with a clock 
on the top of it. 
5 :  a city street with a large clock 
tower in the background. 
O u r s :  a group of people walking 
down a street with a clock tower. 
GT: a tall clock tower with people 
walking down a city street. 

1 :  a man standing in a living room 
with a remote.
2: a man standing in front of a tv in a 
living room.
3 :  a man standing in a living room 
with a tv. 
4 :  a man standing in a living room 
with a couch. 
5 :  a man standing in a living room 
with a christmas tree. 
Ours: a man standing in a living room 
with a couch and a television. 
GT: a man is playing a video game in 
a living room. 

(a) (b) (c) (d)

(e) (f) (g) (h)

GT: a  bright yellow fire hydrant sits 
among landscaping rocks between 
the sidewalk and the fence. 

Figure 4: Qualitative results of the proposed framework on MSCOCO. The output sentences are generated by our method and the variants
1∼5 (Table 2). GT stands for the randomly selected ground truth.

5 Conclusion

In this work, we present a multi-level policy and reward rein-
forcement learning framework for image captioning. Differ-
ent from previous methods, it explores the multi-level (word
and sentence) and multi-modal (vision and language) nature
of image captioning task. Particularly, the multi-level policy
network can adaptively fuse the word-level and the sentence-
level policies for word generation, and the multi-level reward
function collaboratively leverages the vision-language and
the language-language rewards to guide the policy. For the
optimization, we propose a guidance term to further bridge
the policy network and the reward function. Our frame-
work achieves competing performances against state-of-the-
art methods on MSCOCO and Flickr30k. Further, we explore
the effect of each component by variants of the framework. In
the future, we plan to investigate the multi-agent algorithm to
learn the policy for image captioning.
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