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Abstract
Explanations of machine learning (ML) predictions
are of fundamental importance in different settings.
Moreover, explanations should be succinct, to en-
able easy understanding by human decision mak-
ers. Decision trees represent an often used ap-
proach for developing explainable ML models, mo-
tivated by the natural mapping between decision
tree paths and rules. Clearly, smaller trees trans-
late directly to smaller rules, and so one challenge
is to devise solutions for computing smallest size
decision trees given training data. Although simple
to formulate, the computation of smallest size de-
cision trees turns out to be an extremely challeng-
ing computational problem, for which no practical
solutions are known. This paper develops a SAT-
based model for computing smallest-size decision
trees given training data. In sharp contrast with past
work, the proposed SAT model is shown to scale for
publicly available datasets of practical interest.

1 Introduction
For a growing number of applications of Machine Learn-
ing (ML) and Data Mining (DM) there is a demand to as-
sociate explanations with the predictions made, such that
these explanations can be interpreted by a human decision
maker. The need for explanations associated with ML and
DM models in different settings motivates the general area
of eXplainable AI (XAI). The importance of XAI is illus-
trated by a range of work in the recent past ([Li et al., 2018;
Lakkaraju et al., 2017; Angelino et al., 2017; Lakkaraju et
al., 2016; Letham et al., 2015; Lou et al., 2012] among oth-
ers), by a number of recent events dedicated to the topic [IJ-
CAI XAI Workshop, 2017; ICML WHI Workshop, 2017;
NIPS IML Symposium, 2017], but also by recent research
programs [DARPA, 2016]. [Biran and Cotton, 2017] provides
a recent account of work on XAI. Furthermore, the relevance
of XAI is implicit in recent EU-level regulations [EU Data
Protection Regulation, 2016], which is motivated in part by a
demand for greater transparency in algorithmic decision mak-
ing [Goodman and Flaxman, 2017; Weller, 2017]. Although
XAI can also be seen as controversial in some works [Doshi-
Velez and Kim, 2017], it is also apparent that the demand

for greater transparency in algorithmic decision making rep-
resents one of the main driving forces towards devising ex-
plainable ML models.

One approach to achieve explainable ML models is to
use models that by construction provide explanations. This
is the case with decision trees [Bessiere et al., 2009], but
also with rule lists and rule sets [Lakkaraju et al., 2016;
Angelino et al., 2017]. Decision trees have been actively in-
vestigated since the early 80s [Breiman et al., 1984; Quinlan,
1986; Quinlan, 1993; Mitchell, 1997; Cockett and Hierrera,
1990], and find important practical applications in a wide
range of domains, including ML and DM [Quinlan, 1993;
Murthy, 1998; Rokach and Maimon, 2015]. Decision trees
can naturally associate explanations with predictions made,
and so represent a natural choice in the general area of XAI.
Indeed, decision trees are by construction capable of provid-
ing explanations for predictions made, which are often easy
to comprehend by human decision makers, provided decision
trees (and so their paths) are small in size. Thus, finding opti-
mal (in size) decision trees can enable computing small-size
explanations in XAI settings. We emphases that by optimal
decision trees we mean decision trees of the minimum size.

On the negative side, the construction of optimal decision
trees is well-known to be NP-hard, for different notions of
optimality [Hyafil and Rivest, 1976; Hancock et al., 1996].
As a result, practical algorithms for learning decision trees
are heuristic [Breiman et al., 1984; Quinlan, 1986], with no
guarantees in terms of size compared to the optimal. One
recent exception [Bessiere et al., 2009], based on constraint
programming (CP), enables learning optimal decision trees,
but existing results provide only approximate solutions. The
use of Boolean satisfiability (SAT) for computing optimal de-
cision trees has been shown to scale only for small-size exam-
ples [Bessiere et al., 2009], and only for decision tree of fixed
structure and size. Not surprisingly, it is generally believed
that learning optimal decision trees is impractical except for
very small examples [Rokach and Maimon, 2015].

This paper proposes a different take on learning optimal
decision trees from examples. The paper identifies a num-
ber of fundamental properties of decision trees, which can be
exploited when developing propositional models for learning
decision trees from examples. Furthermore, the paper devel-
ops a novel SAT model for deciding the existence of a deci-
sion tree consistent with training data, enabling the learning
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Ex. Lecture (L) Concert (C) Expo (E) Shop (S) Hike (H)

e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

Table 1: A classification example.

of optimal decision trees. The model is amenable to a num-
ber of improvements, but also to a number of variants. The
experimental results, all obtained on well-known datasets, for
which optimal decision trees were not known, show that the
proposed approach can learn optimal decision trees for many
representative datasets.

2 Preliminaries
2.1 Classification Problems
We follow the notation used in earlier work [Bessiere et al.,
2009]. We consider a set of features F = {f1, . . . , fK}, all
of which are assumed to be binary, taking a value in {0, 1}.
When necessary, the fairly standard one-hot-encoding is as-
sumed for handling non-binary categorical features. Numeric
features can be handled with standard techniques as well.
Furthermore, we start from given training data (or examples)
E = {e1, . . . , eM}. We consider binary classification, and
so E is partitioned into E+ and E−, denoting the examples
classified as positive and as negative, respectively. Moreover
examples are assumed to be consistent, i.e. a set of features is
either associated with the positive or negative clause, but not
both. Extensions to this basic formulation, including non-
binary features, handling of non-binary classes, and allowing
for inconsistent examples are beyond the scope of this paper
but are discussed in later sections. Furthermore, in this pa-
per we assume that all features are specified for all examples;
the work can be generalized for situations where the value of
some features for some examples is left unspecified.

Since all features are binary, a literal on a feature fr will be
represented as fr, denoting that the feature takes value 1, i.e.
fr = 1, or ¬fr, denoting that the feature takes value 0, i.e.
fr = 0. Moreover, an example eq ∈ E is represented as a 2-
tuple (Lq, cq), where Lq denotes the literals associated with
the example and cq ∈ {0, 1} is the class to which the example
belongs. We have cq = 1 if eq ∈ E+ and cq = 0 if eq ∈ E−.
A literal lr on a feature fr, lr ∈ {fr,¬fr}, discriminates an
example eq iff ¬lr ∈ Lq .
Example 1. Table 1 shows a simple classification example.
Binary features are F = {f1, f2, f3, f4} with f1 , L, f2 ,
C, f3 , E, and f4 , S. The example e1 is represented by the
2-tuple (L1, c1), with L1 = {f1,¬f2, f3,¬f4} and c1 = 0.
Moreover, the literals ¬f1, f2, ¬f3 and f4 discriminate e1.

The objective of classification is to learn some function
φ̂ which matches the actual function φ on the training data
and generalizes suitably well on unseen test data. In this pa-
per, we seek to learn representations of φ̂ represented by (bi-
nary) decision trees (DT). Many other representations have

been studied, including rule lists [Angelino et al., 2017], de-
cision sets [Lakkaraju et al., 2017], and sums of terms (i.e.
DNF) [Wang et al., 2015; Hauser et al., 2010], among others.
These are of interest, including for XAI, but are currently be-
yond the scope of this work.

2.2 Boolean Satisfiability
We assume notation and definitions standard in the area of
Boolean Satisfiability (SAT), i.e. the decision problem for
propositional logic [Biere et al., 2009]. Formulas are repre-
sented in Conjunctive Normal Form (CNF) and defined over
a set of variables X = {x1, . . . , xn}. A formula F is a
conjunction of clauses, a clause is a disjunction of literals,
and a literal is a variable xi or its complement ¬xi. Where
appropriate, formulas are viewed as sets of sets of literals.
CNF encodings of cardinality constraints have been studied
extensively, and will be assumed throughout [Biere et al.,
2009]. Moreover, standard clausification techniques are as-
sumed [Plaisted and Greenbaum, 1986].

2.3 Related Work
The complexity of learning optimal decision trees is well-
known, for different notions of optimality [Hyafil and Rivest,
1976; Hancock et al., 1996]. For example, finding a decision
tree that minimizes the average number of tests necessary to
classify an example is NP-hard [Hyafil and Rivest, 1976].
Motivated by these results, and also by existing experimen-
tal evidence, the learning of optimal decision trees is often
deemed infeasible in practice [Rokach and Maimon, 2015].

As a result, all practical approaches for learning decision
trees are heuristic [Breiman et al., 1984; Quinlan, 1986;
Quinlan, 1993; Mitchell, 1997; Rokach and Maimon, 2015].
These heuristic approaches often learn reasonably small de-
cision trees 1. Furthermore, most ML and DM packages im-
plement some algorithm for learning decision trees [Hall et
al., 2009; Pedregosa and et al., 2011]. One concrete example
used in the paper is ITI [Utgoff et al., 1997a] 2.

Despite the computational difficulty of the problem, there
are examples of earlier attempts at learning optimal decision
trees [Bessiere et al., 2009; Dufour, 2014]. Earlier work con-
sidered SAT and constraint programming (CP) [Bessiere et
al., 2009] and, more recently what can be viewed as an in-
complete variant of A* [Dufour, 2014], based on breadth-first
search, with backtracking, and different admissible heuris-
tics. The use of SAT was shown unrealistic by earlier re-
sults [Bessiere et al., 2009]. Moreover, the use of CP was
shown to enable obtaining approximate solutions for reason-
ably sized problems, this at the cost of sacrificing achieving
optimal solutions [Bessiere et al., 2009].

3 SAT-Based Learning of Decision Trees
This section proposes a different take on the problem of
learning a decision tree using SAT-based methods compared
to [Bessiere et al., 2009]. Our encoding exploits a structural

1As we show in the results, for larger data sets learnt decision
trees may be significantly larger than the optimal size.

2The use of ITI is motivated by also being used in earlier related
work [Bessiere et al., 2009].
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Var Description of variables
vi 1 iff node i is a leaf node, i = 1, . . . , N ,
lij 1 iff node i has node j as the left child, with j ∈ LR(i), where LR(i) = even([i+ 1,min(2i, N − 1)]), i = 1, . . . , N ,
rij 1 iff node i has node j as the right child, with j ∈ RR(i), where RR(i) = odd([i+ 2,min(2i+ 1, N)]), i = 1, . . . , N ,
pji 1 iff the parent of node j is node i, j = 2, . . . , N , i = 1, . . . , N − 1,

arj 1 iff feature fr is assigned to node j, r = 1, . . . , K, j = 1, . . . , N ,
urj 1 iff feature fr is being discriminated against by node j, r = 1, . . . , K, j = 1, . . . , N ,
d0rj 1 iff feature fr is discriminated for value 0 by node j, or by one of its ancestors, r = 1, . . . , K, j = 1, . . . , N ,
d1rj 1 iff feature fr is discriminated for value 1 by node j, or by one of its ancestors, r = 1, . . . , K, j = 1, . . . , N ,
cj 1 iff class of leaf node j is 1, j = 1, . . . , N .

Table 2: Description of propositional variables.

property of the learning problem. Namely, one way to learn a
decision tree with a given number of nodes is to, first, guess
a valid binary tree topology and, second, verify that we can
classify all positive and negative examples correctly for this
topology. Therefore, our encoding consists of two parts: con-
straints that encode a valid binary tree and constraints that
ensure the decision tree is accurate when classifying exam-
ples in the training data. We start with the generation of valid
binary trees constraints.

We develop the encoding for a specific number of nodes
N of the decision tree, but such that any binary tree of size
N can be learned. To search for the optimal value, a wealth
of approaches can be considered, which have been studied
in the context of SAT-based optimization. In this paper we
refine upper bounds on the size of the decision tree, until the
formula becomes unsatisfiable for a target size N , in which
case the optimal size is N + 2 as N must be an odd number.

3.1 Encoding Valid Binary Trees
In this section we consider an encoding of a binary tree for
a given number of nodes N . We note that we always build
a full binary tree where each node has two children. We as-
sume that nodes are numbered in the breadth-first order from
left to right. Any decision tree can be represented with this
numbering as we can number nodes using the breadth-first
order. Namely, the root node of the tree is numbered 1. The
two children of a node i can be numbered in the range from
i+ 1 to min(2i+ 1, N). The number of the left child and the
number of the right child are consecutive numbers.

For each node we introduce a propositional variable vi to
encode information about internal nodes and leaves. To en-
code the child-parent relationship, we introduce three sets of
propositional variables, lij , rij , pji (see the upper part of Ta-
ble 2) Note that lij and rij are defined for even/odd indices
as a left/right child must be an even/odd node. Moreover, the
shortcuts j ∈ LR(i) and j ∈ RR(i) are also defined in Table 2.

Example 2. Consider an example of an encoding for a
tree with N = 5 nodes. We introduce four sets of
variables: {v1, . . . , v5}, {l12, l2,4, l34}, {r13, r25, r35} and
{p21, p31, p32, p42, p43, p52, p53, p54}.

Next we describe the constraints used. We assume a non-
trivial learning problem, and so the root node is not a leaf.

(¬v1) (1)
If a node is a leaf node, then it has no children:

vi→¬lij j ∈ LR(i) (2)
The left child and the right child of the ith node are numbered

consecutively.
lij ↔ rij+1 j ∈ LR(i) (3)

A non-leaf node must have a child.

¬vi →

 ∑
j∈LR(i)

lij = 1

 (4)

If the ith node is a parent then it must have a child.
pji ↔ lij , j ∈ LR(i)
pji ↔ rij , j ∈ RR(i)

(5)

The binary tree must be a tree. Hence, all nodes but the first
must have a parent:(

min(j−1,N)∑
i=b j2 c

pji = 1

)
with j = 2, . . . , N (6)

Note that constraints (4) contain the cardinality constraints.
We used the sequential counters encoding [Sinz, 2005] to
model a cardinality constraint as a Boolean formula.
Example 3. We continue with Example 2. We will have the
following constraints to encode a binary tree construction.
First, we enforce that the root is not a leaf by adding ¬v1.
Then we encode constraints from (2): v1 → ¬l12; v2 →
¬l24; v3 → ¬l34. Second, we add constraints from (3) that
left and right nodes are numbered consecutively and a non-
leaf must have a child (constraints (4)):

l1,2 ↔ r13; l24 ↔ r25; l34 ↔ r35;
¬v1 → (l12 = 1);¬v2 → (l24 = 1);¬v3 → (l34 = 1);

Next, we encode parent-child relations using (5) and (6):
p21 ↔ l12; p42 ↔ l24; p43 ↔ l34,
p31 ↔ r13; p52 ↔ r25; p53 ↔ r35,

p21 = 1; p31 + p32 = 1; p42 + p43 = 1; p52 + p53 + p54 = 1.

As can be seen from this example, the encoding is both com-
pact and easy to implement. There are only two valid binary
trees. The first one has two internal nodes: v1 and v2. The
second one has two internal nodes: v1 and v3.

We also ensure a simple approach for breaking some sym-
metries. Concretely, for any internal node of a binary tree,
the left branch will always be associated with some feature
being assigned value 0, whereas the right branch will always
be associated with that feature being assigned value 1.

3.2 Computing Decision Trees with SAT
Given a valid binary tree, each leaf node will be associated
with the positive or the negative class. If the node’s class
is positive, then the path in the tree, and the literals asso-
ciated with each branch, must discriminate all the negative
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examples; otherwise the classification would not be (100%)
accurate. If the node’s class is negative, then the path in the
tree, and the literals associated with each branch, must dis-
criminate all the positive examples; otherwise the classifica-
tion would not be (100%) accurate. This section develops the
constraints that achieve the target discrimination. (As indi-
cated earlier, it is possible to allow for some examples not
to be discriminated, i.e. simply let some examples not to be
discriminated, but this is beyond the scope of the paper.)

Besides the variables used to generate valid binary trees,
we use additional variables to capture the constraints that the
decision tree must correctly classify all examples in E . (The
lower part of Table 2 summarizes these variables.) Five addi-
tional sets of variables are used. Variables arj and urj encode
information about the binary features that was branched on at
node j. Variables arj signal that the rth feature is branched
on in node j. Variables urj store information whether the
rth feature is discriminated at any node on the path from this
node to the root. Variables d0rj and d1rj are used to remember
if a feature was discriminated positively or negatively along
the path from the root to the jth node. Concretely, any exam-
ple exhibiting fr = 0 (resp. fr = 1) will be discriminated by
node j or by one of its ancestors iff d0rj = 1 (resp. d1rj = 1).

Next we present the constraints used. To discriminate a
feature for value 0 at node j, j = 2, . . . , N :

d0rj ↔

 j−1∨
i=b j2 c

(
(pji ∧ d0ri) ∨ (ari ∧ rij)

); d0r,1 = 0. (7)

To discriminate a feature for value 1 at node j, j = 2, . . . , N :

d1rj ↔

 j−1∨
i=b j2 c

(
(pji ∧ d1ri) ∨ (ari ∧ lij)

); d1r,1 = 0. (8)

Using a feature r at node j, with r = 1, . . . ,K, j = 1, . . . , N :
j−1∧
i=b j2 c

(uri ∧ pji→¬arj)

urj ↔

(
arj ∨

j−1∨
i=b j2 c

(uri ∧ pji)

) (9)

For a non-leaf node j, exactly one feature is used:

¬vj →
(

K∑
r=1

arj = 1

)
with j = 1, . . . , N (10)

For a leaf node j, no feature is used:

vj →
(

K∑
r=1

arj = 0

)
with j = 1, . . . , N (11)

Let eq ∈ E+, and let the sign of the literal on feature fr for
eq be σ(r, q) ∈ {0, 1}. For every leaf node j, j = 1, . . . , N :

vj ∧ ¬cj →
K∨
r=1

d
σ(r,q)
r,j (12)

i.e. any positive example must be discriminated if the leaf
node is associated with the negative class.

Let eq ∈ E−, and let the sign of the literal on feature fr for

L?

0

1

C?

0

1

1

0

0

Figure 1: Decision tree for the example in Table 1

eq be σ(r, q). Then, for every leaf node j, with j = 1, . . . , N :

vj ∧ cj →
K∨
r=1

d
σ(r,q)
r,j (13)

i.e. any negative example must be discriminated if the leaf
node is associated with the positive class.

Proposition 1 (Propositional model size). For a DT learning
problem with K binary features, M = |E| examples, and a
target decision tree withN nodes, the proposed encoding size
(on the number of literals) is in O(K ×N2 +M ×N ×K).

Proof. (Sketch) By inspection of the constraints proposed in
this section, noting that r ranges from 1 to K, i, j range from
1 to N , and the the size of E is M . The term M ×N results
from (12) and (13), each contains O(K) literals. The term
K ×N2 depends on the remaining constraints.

Remark 1. The proposed model is far tighter than the one
proposed in [Bessiere et al., 2009] in terms of the size of the
SAT encoding, i.e. inO(K×N2×M2+N×K2+K×N3),
which exhibits the additional drawback of requiring a fixed
target binary tree. Moreover, in practice one would in
general expect M to be far larger than either K or N .
Thus, in practice the proposed model will in general be
orders of magnitude tighter than the model proposed in
earlier work [Bessiere et al., 2009]. Our experimental results
confirm this observation (see Table 3).

Example 4. Figure 1 shows a binary tree of size 5 that classi-
fies examples from Table 1 correctly. We observe that this tree
is one of two valid binary trees (see Example 3). (7)– (13) rule
out the second valid binary tree as it does not ensure correct
classification of examples.

3.3 Additional Inference Constraints
We propose additional constraints that aim at pruning the
search space, by filtering as soon as possible tree arrange-
ments that are invalid. During the search, a partial structure
of the tree is constructed. Hence, we can reduce the search
space by pruning invalid extensions of this partial tree. We
recall that, in general, for a node i, the left child ranges from
i + 1 to min(2i,N − 1), among even-numbered nodes, and
the right child ranges from i + 2 to min(2i + 1, N), among
odd-numbered nodes.

For each k, with k < i, such that vk holds, then the up-
per bound on the number of left and right children of i is
reduced. Likewise, if vk does not hold, then the lower bound
on the number of left and right children of i is increased. The
following example demonstrates our intuition.
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Example 5. Suppose we are looking for a binary tree of size
N = 7. We focus on the third node, i = 3. In general, nodes
4, 5, 6 or 7 can be children of this node. If we have a balanced
binary tree then nodes 6 and 7 are children of node 3. If we
have highly a unbalanced binary tree where each left branch
is of length one then nodes 4 and 5 are children of node 3.

Suppose that during the search we learn that there exists
(at least) one node that is a leaf and it is numbered 3 or less.
In this case, node 2 is a leaf and we conclude that only nodes
4 and 5 can be children of node 3.

Let λt,i denote the number of leaf nodes until (and includ-
ing) node i. Clearly, 0 ≤ t ≤

⌊
i
2

⌋
. λt,i is defined inductively:

1. λ0,i = 1, for 1 ≤ i ≤ N .
2. λt,i↔ (λt,i−1 ∨ λt−1,i−1 ∧ vi),i = 1..N, t = 1..b i2c.

Similarly, we can define the number of non-leaf (tree) nodes
until node i, τt,i, with 0 ≤ t ≤ i. Again, τt,i is defined
inductively as follows:

1. τ0,i = 1, for 1 ≤ i ≤ N .
2. τt,i↔ (τt,i−1 ∨ τt−1,i−1 ∧ ¬vi), for i = 1..N, t = 1..i.

Proposition 2 (Refine upper bound on descendants’ num-
bers). If λt,i = 1, with 0 < t ≤

⌊
i
2

⌋
, then li,2(i−t+1) = 0

and ri,2(i−t+1)+1 = 0.
Proposition 3 (Refine lower bound on descendants’ num-
bers). If τt,i = 1, with

⌈
i
2

⌉
< t ≤ i, then li,2(t−1) = 0

and ri,2t−1 = 0.
Overall, additional inference constraints give 10% to 50%

speed up in our experiments.

Extending the model. As indicated earlier, the model can
be extended to handle non-binary features, e.g. by exploiting
the well-known one-hot-encoding to replace non-binary fea-
tures with a set of binary features. The model naturally en-
ables non-binary classes, simply by ensuring that a node of a
given class discriminates all others. Finally, the model can be
extended to accommodate for inconsistent training data, i.e.
multiple classes associated with the same assignment of fea-
ture. This requires allowing some classes not to be discrim-
inated in some decision tree path. This solution represents a
more challening combinatorial optimization problem.

4 Experimental Results
We perform an experimental evalution on a set of benchmarks
from [Bessiere et al., 2009; Olson et al., 2017]. We ran our
experiments on Intel(R) Xeon(R) CPU 3.50GHz. The Glu-
cose3 SAT solver [Audemard and Simon, 2009] was used,
with a total timeout of 1000 sec in all experiments. The
memory limit is 2GB. We also employed the ITI algorithm
to produce decision trees from labeled examples [Utgoff et
al., 1997a; Utgoff et al., 1997b]. The ITI algorithm does not
guarantee optimality, so the size of the tree produced by ITI
serves as an upper bound on the size of the optimal tree in our
experiments. We refer to our encoding as DT1.

4.1 Comparison with Existing SAT Encodings
Our first experiment is to compare our SAT encoding (DT1)
with results for the SAT model reported in [Bessiere et al.,

SAT Weather Mouse Cancer Car Income

DT2∗ 27K 3.5M 92G 842M 354G
DT1 190K 1.2M 5.2M 4.1M 1.2G

Table 3: Comparison of sizes of CNF encodings. ∗Note that DT2
assumes a fixed tree structure. DT1 searches for the best tree struc-
ture, so it encodes more general problem.

Name #ndub #nd time

Mouse 15 15 12.94
Weather 13 9 0.05

Irish 7 7 0.10
Corral 13 13 0.001
Mux6 35 15 0.11

Table 4: Results on small benchmarks.

2009] that we refer to as DT2. The encodings are compared
in terms of their size and performance on a subset of bench-
marks from [Bessiere et al., 2009] that the authors kindly
shared with us. For a given tree size of depth 4, we build
a CNF encoding of the problem. The first row shows results
reported in [Bessiere et al., 2009]. Note that results for the
Income benchmark were reported for 10% of data samples in
Table 1 in [Bessiere et al., 2009], so we report on the same
amount of data randomly sampled. We would like to point
out that our encoding is more general compared to DT2 that
only solves the classification problem for a fixed binary tree.
In our case, we encode both the tree construction for a given
number of nodes and the classification task. The second row
shows our results. As can be seen from Table 3, our encoding
is more compact compared to the CNF encoding in [Bessiere
et al., 2009]. As can be observed, the encoding size can be
1000 times smaller than DT2 on some examples. Next, we
discuss the performance of these encodings. DT2 was able
to find the optimal only for the two small instances Weather
and Mouse with the total time to prove optimality 0.37s and
577.27s, respectively. Using our encoding, the total time to
prove optimality are 0.05s and 12.94s. Even though these re-
sults were obtained on different machines, it is plain that our
encoding is more effective in finding and proving optimality.

4.2 Comparison on Extended Set of Benchmarks
We perform a series of experiments on an extended set of
benchmarks. The goal is to demonstrate that for problems
that admit relatively small decision trees we can find the op-
timal decision tree and prove its optimality. We start with toy
benchmarks from [Bessiere et al., 2009; Olson et al., 2017]
that admit a small DT (less than 15 nodes). Table 4 shows
our results. The second column (#ndub) shows the size of
the decision tree produced by ITI. The third column (#nd)
shows the size of optimal tree that we find. To find the op-
timal tree we perform a linear search on the total number of
nodes starting from the upper bound provided by the ITI tree.
We only consider trees with an odd number of nodes. The
‘time’ column shows the total time in seconds to perform this
linear search procedure. As can be seen from the table, our
encoding is very efficient and we can improve results of ITI
and prove optimality for these benchmarks.

Next we consider larger benchmarks. Finding an optimal
tree is a hard combinatorial problem as the search space is
huge even for trees of size around 100 nodes. Exploring such
search space is a challenging problem. However, [Bessiere et
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Name r #ndub #nd avg. time #o #b/#f test acc. ITI/DT1

Car 0.05 22.30 18.80 75.41 20 86 / 21 0.69/0.47
0.1 33.67 23.67 684.12 3 172 / 21 0.69/0.55

Cancer
0.1 10.50 9 5.60 20 44 / 89 0.50/ 0.45
0.2 17.71 12.86 110.11 14 89 / 89 0.49/0.46

0.25 18.33 14.33 281.96 3 112 / 89 0.50/0.51

Shuttle 0.05 10.23 10.23 142.35 13 725 / 691 0.79/0.66
0.1 11.67 11.67 409.19 9 1450 / 691 0.79/0.56

Colic 0.05 6.90 6.30 2.11 20 17 / 415 0.46/0.43
0.1 11.92 9.92 130.48 13 35 / 415 0.55/0.53

Appen-tis 0.3 11.25 10.62 117.62 12 31 / 530 0.27/0.35
0.4 9.40 9.40 204.71 5 42 / 530 0.34/0.23

Australian 0.05 12.05 10.89 271.45 19 34 / 1163 0.48/0.41
0.1 17 13 719.22 1 69 / 1163 0.44/0.44

Backache 0.3 13 9.50 116.40 8 54 / 475 0.59/0.51
0.4 12.33 11.67 519.27 3 72 / 475 0.38/0.17

Cleve 0.1 12.90 10.80 42.65 14 30 / 395 0.50/0.51

Table 5: Results on subsampled instances solved to optimality.

al., 2009] showed that it is often sufficient to learn a tree on a
small fraction of dataset randomly sampled, i.e. considering a
reduced-size training data given the universe of samples. This
gives smaller and more understandable DT with a small loss
in training accuracy. We perform a similar experiment here.
We randomly sampled a fraction r of samples from datasets.
For each sub-sampled benchmark, we find a DT using ITI and
use it as an upper bound on the size of the tree. Then we per-
form linear search from this upper bound as described above.
Table 5 shows our results. We sample 20 benchmarks for
each fraction value r and show averaged results in columns
#ndub, #nd and ‘avg. time’. The next column shows the
number of instances where we prove optimality. The next
column show the number of samples (#b) and the number of
features (#f ) in the corresponding benchmarks. The last col-
umn ‘test acc. ITI/DT1’ shows the accuracy of the decision
trees on the test set which was 25% of all datapoints for ITI
and DT1 averaged over all benchmarks where DT1 proved
optimality. As can be seen from the table, we can improve
ITI’s decision trees by up to 30%, which is a significant im-
provement. Contrasting our results with results in [Bessiere
et al., 2009], we note that the CP model does not prove op-
timality in any of tested benchmarks so our results are a step
toward to tackling this problem. On the other hand, the CP
model scales to much larger trees, up to 300 nodes, which is
not feasible for our model at the moment. The key compo-
nent of the CP model is an information gain-based decision
heuristic, which gives an important guidance to the search
procedure. It is a subject of future research how to combine
this heuristic and VSIDS to provide similar guidance for the
SAT solver. Another point to observe is that accuracy on the
test set is around 50% for the trees that ITI/DT1 generate.
The reason for this is that we build a tree using a small sub-
sample of the benchmark set at the moment. Note that in most
cases larger training sets lead to better accuracy is on the test
data. For example, consider the ‘Car’ benchmark. If we use
r = 0.1 fraction of the data to build a tree the accuracy is 0.55
which is 0.08 higher compared to trees built with r = 0.05.
Comparing the accuracy of DT1 and ITI, we can see that on
the majority of benchmarks DT1 accuracy is the similar as
ITI while the size of trees is smaller.

Another powerful approach to perform dimensionality re-
duction of data is to extract relevant features. We performed
the feature selection using scikit-learn [Pedregosa and et al.,

Name #ndub
o #ndub #nd time #b/#fo/#fr

Appen-tis 39 25 25 176.51 106 / 530 / 40
Australian 203 21 19 2.97 690 / 1163 / 23
Backache 49 23 23 2.24 180 / 475 / 15

Car 95 19 19 0.24 1728 / 21 / 8
Cancer 73 41 35 198.71 683 / 89 / 9
Colic 95 21 19 0.49 368 / 415 / 10
Cleve 117 15 15 0.01 303 / 395 / 6

Haberman 171 31 25 37.37 306 / 92 / 15
Heart-statlog 99 27 25 4.76 270 / 381 / 8

Hepatitis 57 7 7 0.001 155 / 361 / 7
HouseVotes 67 29 27 2.84 435 / 16 / 7
Hungarian 101 21 19 1.40 294 / 330 / 10

New-thyroid 101 5 5 0.001 215 / 334 / 3
Promoters 25 25 23 0.31 106 / 334 / 6

Shuttle 67 7 7 0.001 14500 / 691 / 5
Spect 117 33 23 11.56 267 / 22 / 9

Table 6: Results on reduced instances solved to optimality.

2011]. Namely, we use SelectKBest method to select the
most important features. The value of K, which is the number
of features, was selected based on the loss of accuracy on the
training set. In all tested benchmarks, we lost at most 15% of
accuracy due to the dimensionality reduction. Table 6 shows
our results. The second column (#ndubo ) shows the number
of nodes in an ITI decision tree on the original dataset where
all features are present. The third column (#ndub) shows the
number of nodes in an ITI decision tree on reduced dataset
projected on important features. The fourth column (#nd)
shows the number of nodes in the optimal tree that is con-
structed using important features. The fifth column shows the
time in seconds to prove optimality. The last column show
the number of samples (#b), the number of features (#fo)
in original benchmarks and the number of features (#fr) in
the reduced benchmarks. First, we observe that dimensional-
ity reduction reduces the decision tree size in all benchmarks.
Second, our encoding is capable to find much smaller trees
and prove optimality on these benchmarks.

5 Conclusions
This paper develops novel SAT-based solutions for comput-
ing optimal decision trees. The proposed approach exploits
a number of well-established techniques for SAT-based prob-
lem solving, including exploiting properties of decision trees,
breaking symmetries in the problem formulation, and using
tight encodings for standard constraints, including AtMost1
constraints. In contrast with earlier work [Bessiere et al.,
2009], the paper shows that optimal decision trees can be
computed for datasets of reasonable size. To our best knowl-
edge, this paper presents for the first time the size of optimal
decision trees for several well-known datasets.

Despite the promising results, it is also the case that learn-
ing optimal decision trees remains a challenging combinato-
rial problem, for which a number of additional optimations
can be envisioned, and which are expected to enable target-
ing even more challenging datasets.
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