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Abstract
In this work, we address the open problem of find-
ing low-complexity near-optimal multi-armed ban-
dit algorithms for sequential decision making prob-
lems. Existing bandit algorithms are either sub-
optimal and computationally simple (e.g., UCB1)
or optimal and computationally complex (e.g., kl-
UCB). We propose a boosting approach to Upper
Confidence Bound based algorithms for stochas-
tic bandits, that we call UCBoost. Specifically,
we propose two types of UCBoost algorithms. We
show that UCBoost(D) enjoysO(1) complexity for
each arm per round as well as regret guarantee
that is 1/e-close to that of the kl-UCB algorithm.
We propose an approximation-based UCBoost al-
gorithm, UCBoost(ε), that enjoys a regret guarantee
ε-close to that of kl-UCB as well as O(log(1/ε))
complexity for each arm per round. Hence, our
algorithms provide practitioners a practical way
to trade optimality with computational complexity.
Finally, we present numerical results which show
that UCBoost(ε) can achieve the same regret per-
formance as the standard kl-UCB while incurring
only 1% of the computational cost of kl-UCB.

1 Introduction
Multi-armed bandits, introduced by Thompson [1933], have
been used as quintessential models for sequential decision
making. In the classical setting, at each time, a decision
maker must choose an arm from a set of K arms with un-
known probability distributions. Choosing an arm i at time
t reveals a random reward Xi(t) drawn from the probability
distribution of arm i. The goal is to find policies that minimize
the expected regret due to uncertainty about arms’ distribu-
tions over a given time horizon T . Lai and Robbins [1985],
followed by Burnetas and Katehakis [1996], have provided
an asymptotically lower bound on the expected regret.

Upper confidence bounds (UCB) based algorithms are an
important class of bandit algorithms. The most celebrated
UCB-type algorithm is UCB1 proposed by Auer et al. [2002],
which enjoys simple computations per round as well as
O(log T ) regret guarantee. Variants of UCB1, such as UCB-
V proposed by Audibert et al. [2009] and MOSS proposed by

Audibert and Bubeck [2010], have been studied and shown
improvements on the regret guarantees. However, the regret
guarantees of these algorithms have unbounded gaps to the
lower bound. Recently, Maillard et al. [2011] and Garivier
and Cappé [2011] have proposed a UCB algorithm based on
the Kullback-Leibler divergence, kl-UCB, and proven it to
be asymptotically optimal when all arms follow a Bernoulli
distribution, i.e., they reach the lower bound by Lai and Rob-
bins [1985]. They have generalized the algorithm to KL-UCB
[Cappé et al., 2013], which is asymptotically optimal under
general distributions with bounded supports.

However, these UCB algorithms exhibit a complexity-
optimality dilemma in the real world applications that are
computationally sensitive. On one hand, the UCB1 algorithm
enjoys closed-form updates per round while its regret gap to
the lower bound can be unbounded. On the other hand, the
kl-UCB algorithm is asymptotically optimal but it needs to
solve a convex optimization problem for each arm at each
round. Though there are many standard optimization tools
to solve the convex optimization problem numerically, there
is no regret guarantee for the implemented kl-UCB with ar-
bitrary numerical accuracy. Practitioners usually set a suffi-
cient accuracy (for example, 10−5) so that the behaviors of
the implemented kl-UCB converge to the theory. However,
this means that the computational cost per round by kl-UCB
can be out of budget for applications with a large number of
arms. The complexity-optimality dilemma is because there
is currently no available algorithm that can trade-off between
complexity and optimality.

Such a dilemma occurs in a number of applications with
a large K. For example, in an online recommendation sys-
tem [Li et al., 2010; Buccapatnam et al., 2017], the algorithm
needs to recommend an item from hundreds of thousands of
items to a customer within a second. Another example is
the use of bandit algorithms as a meta-algorithm for other
machine learning problems, e.g., using bandits for classifier
boosting [Busa-Fekete and Kégl, 2010]. The number of data
points and features can be large.

Another scenario that the dilemma appears is in real-
time applications such as robotic systems [Matikainen et al.,
2013], 2D planning [Laskey et al., 2015] and portfolio opti-
mization [Moeini et al., 2016]. In these applications, a de-
layed decision may turn out to be catastrophic.

Cappé et al. [2013] proposed the open problem of finding a

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2440



kl-UCB UCBoost(ε) UCBoost(D) UCB1

Regret/log(T ) O

(∑
a

µ∗−µa

dkl(µa,µ∗)

)
O

(∑
a

µ∗−µa

dkl(µa,µ∗)−ε

)
O

(∑
a

µ∗−µa

dkl(µa,µ∗)−1/e

)
O

(∑
a

µ∗−µa

2(µ∗−µa)2

)
Complexity unbounded O(log(1/ε)) O(1) O(1)

Table 1: Regret guarantee and computational complexity per arm per round of various algorithms

low-complexity optimal UCB algorithm, which has remained
open till now. In this work, we make the following contri-
butions to this open problem. (Table 1 summarizes the main
results.)

• We propose a generic UCB algorithm. By plugging a
semi-distance function, one can obtain a specific UCB
algorithm with regret guarantee (Theorem 1). As a by-
product, we propose two new UCB algorithms that are
alternatives to UCB1 (Corollary 1 and 2).

• We propose a boosting algorithm, UCBoost, which can
obtain a strong (i.e., with regret guarantee close to the
lower bound) UCB algorithm from a set of weak (i.e.,
with regret guarantee far away from the lower bound)
generic UCB algorithms (Theorem 2). By boosting a
finite number of weak generic UCB algorithms, we find
a UCBoost algorithm that enjoys the same complexity
as UCB1 as well as a regret guarantee that is 1/e-close
to the kl-UCB algorithm (Corollary 3)1. That is to say,
such a UCBoost algorithm is low-complexity and near-
optimal under the Bernoulli case.

• We propose an approximation-based UCBoost algo-
rithm, UCBoost(ε), that enjoys ε-optimal regret guaran-
tee under the Bernoulli case and O(log(1/ε)) computa-
tional complexity for each arm at each round for any
ε > 0 (Theorem 3). This algorithm provides a non-
trivial trade-off between complexity and optimality.

Related Work. There are other asymptotically optimal
algorithms, such as Thompson Sampling [Agrawal and
Goyal, 2012], Bayes-UCB [Kaufmann et al., 2012] and
DMED [Honda and Takemura, 2010]. However, the com-
putations involved in these algorithms become non-trivial
in non-Bernoulli cases. First, Bayesian methods, including
Thompson Sampling, Information Directed Sampling [Russo
and Van Roy, 2014; Liu et al., 2017] and Bayes-UCB, require
updating and sampling from the posterior distribution, which
is computationally difficult for models other than exponen-
tial families [Korda et al., 2013]. Second, the computational
complexity of DMED policy is larger than UCB policies be-
cause the computation involved in DMED is formulated as
a univariate convex optimization problem. In contrast, our
algorithms are computationally efficient in general bounded
support models and don’t need the knowledge of prior infor-
mation on the distributions of the arms.

Our work is also related to DMED-M proposed by Honda
and Takemura [2012]. DMED-M uses the first d empirical
moments to construct a lower bound of the objective func-
tion involved in DMED. As d goes to infinity, the lower
bound converges to the objective function and DMED-M

1Note that e is the natural number

converges to DMED while the computational complexity in-
creases. However, DMED-M has no explicit form when
d > 4 and there is no guarantee on the regret gap to the op-
timality for any finite d. Unlike DEMD-M, our UCBoost al-
gorithms can provide guarantees on the complexity and regret
performance for arbitrary ε, which offers a controlled tradeoff
between complexity and optimality.

Agarwal et al. [2017] proposed a boosting technique to ob-
tain a strong bandit algorithm from the existing algorithms,
that is adaptive to the environment. However, our boosting
technique is specifically designed for stochastic setting and
hence allows us to obtain near-optimal algorithms that have
better regret gurantees than those obtained using the boosting
technique by Agarwal et al. [2017].

2 Preliminaries
We consider a stochastic bandit problem with finitely many
arms indexed by a ∈ K , {1, . . . ,K}, where K is a positive
integer. Each arm a is associated with an unknown probabil-
ity distribution va over the bounded support2 Θ = [0, 1]. At
each time step t = 1, 2, . . . , the agent chooses an action At
according to past observations (possibly using some indepen-
dent randomization) and receives a reward XAt,NAt (t) inde-
pendently drawn from the distribution vAt

, where Na(t) ,∑t
s=1 1{As = a} denotes the number of times that arm a

was chosen up to time t. Note that the agent can only observe
the reward XAt,NAt (t) at time t. Let X̄a(t) be the empirical
mean of arm a based on the observations up to time t.

For each arm a, we denote by µa the expectation of its
associated probability distribution va. Let a∗ be any optimal
arm, that is a∗ ∈ arg maxa∈K µa.We write µ∗ as a shorthand
notation for the largest expectation µa∗ and denote the gap of
the expected reward of arm a to µ∗ as ∆a = µ∗ − µa. The
performance of a policy π is evaluated through the standard
notion of expected regret, defined at time horizon T as

Rπ(T ) =
∑
a∈K

∆aE[Na(T )]. (1)

The goal of the agent is to minimize the expected regret.
Now, we introduce the concept of semi-distance functions,

which measure the distance between two expectations of ran-
dom variables over Θ, and show several related properties.

Definition 1. (Candidate semi-distance) A function d : Θ ×
Θ→ R is said to be a candidate semi-distance function if

1. d(p, p) ≤ 0, ∀p ∈ Θ;

2. d(p, q) ≤ d(p, q′), ∀p ≤ q ≤ q′ ∈ Θ;

3. d(p, q) ≥ d(p′, q), ∀p ≤ p′ ≤ q ∈ Θ.

2If the supports are bounded in another interval, rescale to [0,1].
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Clearly, a candidate semi-distance function satisfies the
monotone properties3 of a distance function. However, it does
not need to be non-negative and symmetric.

Definition 2. (Semi-distance) A function d : Θ × Θ → R is
said to be a semi-distance function if it is a candidate semi-
distance function such that d(p, q) ≥ 0, ∀p, q ∈ Θ.

A semi-distance function satisfies the non-negative condi-
tion, and is stronger than a candidate semi-distance function.
The following lemma reveals a simple way to obtain a semi-
distance function from a candidate semi-distance function.

Lemma 1. If d1 : Θ × Θ → R is a candidate semi-distance
function and d2 : Θ × Θ → R is a semi-distance function,
then max(d1, d2) is a semi-distance function.

Remark 1. In particular, d ≡ 0 is a semi-distance function.
So one can easily obtain a semi-distance function from a can-
didate semi-distance function.

As discussed in Remark 1, a semi-distance function may
not distinguish two different distributions. So we introduce
the following strong notion of semi-distance functions.

Definition 3. (Strong semi-distance) A function d : Θ×Θ→
R is said to be a strong semi-distance function if it is a semi-
distance function such that d(p, q) = 0 if and only if p = q.

One can obtain a strong semi-distance function from a can-
didate semi-distance function as shown in Lemma 2.

Lemma 2. If d1 : Θ × Θ → R is a candidate semi-distance
function and d2 : Θ × Θ → R is a strong semi-distance
function, then max(d1, d2) is a strong semi-distance function.

A typical strong semi-distance function is the Kullback-
Leibler divergence between two Bernoulli distributions,

dkl(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
. (2)

In this work, we are interested in semi-distance functions that
are dominated by the KL divergence as mentioned above.

Definition 4. (kl-dominated) A function d : Θ × Θ → R is
said to be kl-dominated if d(p, q) ≤ dkl(p, q), ∀p, q ∈ Θ.

Consider a set of candidate semi-distance functions. A for-
mal definition of feasible set is presented in Definition 5.

Definition 5. (Feasible set) A set D of functions from Θ×Θ
to R is said to be feasible if maxd∈D d is a kl-dominated and
strong semi-distance function.

The following proposition shows a sufficient condition for
a set to be feasible.

Proposition 1. A set D of kl-dominated and candidate semi-
distance functions from Θ×Θ to R is feasible if ∃d ∈ D such
that d is a strong semi-distance function.

Note that we only need one of the functions to be a strong
semi-distance function in order to have a feasible set. This
allows us to consider some useful candidate semi-distance
functions in our boosting approach.

3The monotone properties are equivalent to the triangle inequal-
ity in one-dimensional case.

Algorithm 1 The generic UCB algorithm

Require: semi-distance function d
Initialization: t from 1 to K, play arm At = t.
for t from K + 1 to T do

Play arm At = arg maxa∈Kmax{q ∈ Θ : Na(t −
1)d(X̄a(t− 1), q) ≤ log(t) + c log(log(t))}

end for

3 Boosting
We first present a generic form of UCB algorithm, which can
generate a class of UCB algorithms. We then provide a boost-
ing technique to obtain a good UCBoost algorithm based on
these UCB algorithms.

3.1 The Generic UCB Algorithm
Algorithm 1 presents a generic form of UCB algorithm,

which only uses the empirical means. The instantiation
of the UCB algorithm requires a semi-distance function.
Given a semi-distance function d, UCB(d) algorithm finds
upper confidence bounds {ua(t)}a∈K such that the dis-
tance d(X̄a(t − 1), ua(t)) is at most the exploration bonus
((log(t) + c log(log(t)))/Na(t− 1)) for any arm a. Note that
c is a constant to be determined. In other words, ua(t) is the
solution of the following optimization problem P1(d),

P1(d) : max
q∈Θ

q s.t. d(p, q) ≤ δ, (3)

where p ∈ Θ is the empirical mean and δ > 0 is the explo-
ration bonus. The computational complexity of the UCB(d)
algorithm depends on the complexity of solving the prob-
lem P1(d). The following result shows that the regret of the
UCB(d) algorithm depends on the semi-distance function d.

Theorem 1. If d : Θ×Θ→ R is a strong semi-distance func-
tion and is also kl-dominated, then the regret of the UCB(d)
algorithm when c = 3 satisfies:

lim sup
T→∞

E[RUCB(d)(T )]

log T
≤

∑
a:µa<µ∗

∆a

d(µa, µ∗)
. (4)

Theorem 1 is a generalization of the regret gurantee of kl-
UCB proposed by Garivier and Cappé [2011], which is recov-
ered by UCB(dkl). Recall that dkl is the KL divergence be-
tween two Bernoulli distributions. Note that Theorem 1 holds
for general distributions over the support Θ. If the reward dis-
tributions are Bernoulli, the kl-UCB algorithm is asymptoti-
cally optimal in the sense that the regret of kl-UCB matches
the lower bound provided by Lai and Robbins [1985]:

lim inf
T→∞

E[Rπ(T )]

log T
≥

∑
a:µa<µ∗

∆a

dkl(µa, µ∗)
. (5)

However, there is no closed-form solution to the problem
P1(dkl). Practical implementation of kl-UCB needs to solve
P1(dkl) via numerical methods with high accuracy, which
means that the computational complexity is non-trivial.

In addition to the KL divergence function dkl, we can find
other kl-dominated and strong semi-distance functions such
that the complexity of solving P1(d) is O(1). Then we can
obtain some low-complexity UCB algorithms with possibly

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2442



Algorithm 2 UCBoost

Require: candidate semi-distance function set D
Initialization: t from 1 to K, play arm At = t.
for t from K + 1 to T do

Play arm At = arg maxa∈Kmind∈D max{q ∈ Θ :
Na(t− 1)d(X̄a(t− 1), q) ≤ log(t) + c log(log(t))}

end for

weak regret performance. For example, consider the l2 dis-
tance function, dsq(p, q) = 2(p − q)2. It is clear that dsq is
a kl-dominated and strong semi-distance function. Note that
UCB(dsq) recovers the traditional UCB1 [Auer et al., 2002].

Now, we introduce two alternative functions to the func-
tion dsq: biquadratic distance function and Hellinger distance
function. The biquadratic distance function is dbq(p, q) =
2(p − q)2 + 4

9 (p − q)4. The Hellinger distance function4 is
dh(p, q) =

(√
p−√q

)2
+
(√

1− p−
√

1− q
)2
. As shown

in Lemma 3 and Lemma 4, they are kl-dominated and strong
semi-distance functions and the solutions of the correspond-
ing P1(d) have closed forms.
Lemma 3. The biquadratic distance function dbq is a kl-
dominated and strong semi-distance function. The solution

of P1(dbq) is q∗ = min

{
1, p+

√
− 9

4 +
√

81
16 + 9

4δ

}
.

Lemma 4. The Hellinger distance function dh is a kl-
dominated and strong semi-distance function. The solution
of P1(dh) is q∗ =((

1− δ

2

)
√
p+

√
(1− p)

(
δ − δ2

4

))2×1{δ<2−2
√
p}

,

where 1{·} is the indicator function.
The following result follows from Theorem 1 and Lemma

3. Note that UCB(dbq) enjoys the same complexity of UCB1
and better regret guarantee than UCB1.
Corollary 1. If c = 3, then the regret of UCB(dbq) satisfies

lim sup
T→∞

E[RUCB(dbq)(T )]

log T
≤

∑
a:µa<µ∗

∆a

dbq(µa, µ∗)
. (6)

The following result follows from Theorem 1 and Lemma
4. Note that UCB(dh) enjoys the same complexity of UCB1.
In terms of regret guarantees, no one dominates the other.
Corollary 2. If c = 3, then the regret of UCB(dh) satisfies

lim sup
T→∞

E[RUCB(dh)(T )]

log T
≤

∑
a:µa<µ∗

∆a

dh(µa, µ∗)
. (7)

3.2 The UCBoost Algorithm
The generic UCB algorithm provides a way of generating

UCB algorithms from semi-distance functions. Among the
class of semi-distance functions, some have closed-form so-
lutions of the corresponding problems P1(d). Thus, the corre-
sponding algorithm UCB(d) enjoysO(1) computational com-
plexity for each arm in each round. However, these UCB(d)

4Actually, dh is 2 times the square of the Hellinger distance.

algorithms are weak in the sense that the regret guarantees
of these UCB(d) algorithms are worse than that of kl-UCB.
Moreover, the decision maker does not know which weak
UCB(d) is better when the information {µa}a∈K is unknown.
A natural question is: is there a boosting technique that one
can use to obtain a stronger UCB algorithm from these weak
UCB algorithms? The following regret result of Algorithm 2
offers a positive answer.
Theorem 2. If D is a feasible set, then the regret of
UCBoost(D) when c = 3 satisfies:

lim sup
T→∞

E[RUCBoost(D)(T )]

log T
≤

∑
a:µa<µ∗

∆a

max
d∈D

d(µa, µ∗)
.

The UCBoost algorithm works as the following. Given
a feasible set D of candidate semi-distance functions,
UCBoost(D) algorithm queries the upper confidence bound
of each weak UCB(d) once and takes the minimum as the up-
per confidence bound. Suppose that for any d ∈ D, UCB(d)
enjoys O(1) computational complexity for each arm in each
round. Then, UCBoost(D) enjoys O(|D|) computational
complexity for each arm in each round, where |D| is the car-
dinality of set D. Theorem 2 shows that UCBoost(D) has a
regret guarantee that is no worse than any UCB(d) such that
d ∈ D. Hence, the UCBoost algorithm can obtain a stronger
UCB algorithm from some weak UCB algorithms. Moreover,
the following remark shows that the ensemble does not dete-
riorate the regret performance.
Remark 2. If D1 and D2 are feasible sets, and D1 ⊂ D2,
then the regret guarantee of UCBoost(D2) is no worse than
that of UCBoost(D1).

By Theorem 2, UCBoost({dbq, dh}) enjoys the same com-
plexity as UCB1, UCB(dbq) and UCB(dh), and has a no
worse regret guarantee. However, the gap between the re-
gret guarantee of UCBoost({dbq, dh}) and that of kl-UCB
may still be large since dbq and dh are bounded while dkl
is unbounded. To address this problem, we are ready to intro-
duce a candidate semi-distance function that is kl-dominated
and unbounded. The candidate semi-distance function is a
lower bound of the KL divergence function dkl, dlb(p, q) =

p log(p) + (1− p) log
(

1−p
1−q

)
.

Lemma 5. The function dlb is a kl-dominated and candidate
semi-distance function. The solution of P1(dlb) is

q∗ = 1− (1− p) exp

(
p log(p)− δ

1− p

)
. (8)

By Lemma 3-5, Proposition 1 and Theorem 2, we have the
following result.
Corollary 3. If D = {dbq, dh, dlb}, then the regret of
UCBoost(D) when c = 3 satisfies:

lim sup
T→∞

E[RUCBoost(D)(T )]

log T
≤

∑
a:µa<µ∗

∆a

max
d∈D

d(µa, µ∗)
.

Note that dkl(µa, µ∗)− 1/e ≤ max
d∈D

d(µa, µ
∗) ≤ dkl(µa, µ∗)

for any a ∈ K such that µa < µ∗. Thus, we have that

lim sup
T→∞

E[RUCBoost(D)(T )]

log T
≤

∑
a:µa<µ∗

∆a

dkl(µa, µ∗)− 1/e
.
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Although dlb is not a strong semi-distance function, the set
D = {dbq, dh, dlb} is still feasible by Proposition 1. The ad-
vantage of introducing dlb is that its tightness to dkl improves
the regret guarantee of the algorithm. To be specific, the gap
between dlb(µa, µ∗) and dkl(µa, µ∗) is µa log(1/µ∗), which
is uniformly bounded by 1/e since µa < µ∗. Note that e is
the natural number. Hence, UCBoost({dbq, dh, dlb}) achieves
near-optimal regret performance with low complexity.

3.3 The UCBoost(ε) Algorithm
First, we show an approximation of the KL divergence func-
tion dkl. Then we design a UCBoost algorithm based on the
approximation, which enjoys low complexity and regret guar-
antee that is arbitrarily close to that of kl-UCB.

Recall that p ∈ Θ and δ > 0 are the inputs of the problem
P1(dkl). Given any approximation error ε > 0, let η = ε

1+ε

and qk = 1 − (1 − η)k ∈ Θ for any k ≥ 0. Then there exist
τ1(p) =

⌈
log(1−p)
log(1−η)

⌉
and τ2(p) =

⌈
log(1−exp(−ε/p))

log(1−η)

⌉
such

that p ≤ qk ≤ exp(−ε/p) if τ1(p) ≤ k ≤ τ2(p). For each
τ1(p) ≤ k ≤ τ2(p), we construct a step function, dks(p, q) =
dkl(p, qk)1{q > qk}. These step functions can approximate
the function dkl on the interval [p, exp(−ε/p)]. Then we use
dlb to approximate dkl on the interval [exp(−ε/p), 1]. The
following result shows that the step function dks(p, q) is a kl-
dominated and semi-distance function.
Lemma 6. For each k ≥ τ1(p), the step function dks(p, q) is
a kl-dominated and semi-distance function. The solution of
P1(dks) is q∗ = q

1{δ<dkl(p,qk)}
k .

Let D(p) = {dsq, dlb, dτ1(p)
s , d

τ1(p)+1
s , . . . , d

τ2(p)
s }. Then

the following result shows that the envelope maxd∈D(p) d is
an ε-approximation of the function dkl on the interval [p, 1].
Proposition 2. Given p ∈ Θ and ε > 0. Let D(p) =

{dsq, dlb, dτ1(p)
s , d

τ1(p)+1
s , . . . , d

τ2(p)
s }. For any q ∈ [p, 1], we

have that 0 ≤ dkl(p, q)− max
d∈D(p)

d(p, q) ≤ ε.

Lemma 6 and Proposition 2 allow us to bound the regret of
the UCBoost algorithm based on the approximation, which is
shown in the following result.
Theorem 3. Given any ε > 0, let D = {dsq, dlb} ∪ {dks :
k ≥ 0}. The regret of UCBoost(D) with c = 3 that restricts
D to D(p) for each arm with empirical mean p, satisfies

lim sup
T→∞

E[RUCBoost(D)(T )]

log T
≤

∑
a:µa<µ∗

∆a

dkl(µa, µ∗)− ε
.

(9)
The complexity for each arm per round is O(log( 1

ε )).
We denote the algorithm described in Theorem 3 as

UCBoost(ε) for shorthand. The UCBoost(ε) algorithm offers
an efficient way to trade regret performance with complexity.
Remark 3. The practical implementation of kl-UCB needs
numerical methods for searching the q∗ of P1(dkl) with some
sufficiently small error ε. For example, the bisection search
can find a solution q′ such that |q′ − q∗| ≤ ε with O(log( 1

ε ))
iterations. However, there is no regret guarantee of the imple-
mented kl-UCB when ε is arbitrary. Our UCBoost(ε) algo-
rithm fills this gap and bridges computational complexity to

regret performance. Moreover, the empirical performance of
the implemented kl-UCB when ε is relatively large, becomes
unreliable. This is because the gap |dkl(p, q∗) − dkl(p, q′)|
is unbounded even though |q′ − q∗| is bounded. On the con-
trary, our approximation method guarantees bounded KL di-
vergence gap, thus allowing reliable regret performance.

4 Numerical Results
In this section, we support our results by numerical exper-
iments that compare our algorithms with the baseline algo-
rithms in three scenarios. All the algorithms are run exactly
as described in the previous sections. For implementation of
kl-UCB, we use the MATLAB code in py/maBandits package
developed by Cappé et al. [2012]. All the other algorithms
are also implemented using MATLAB for fairness. Note that
we choose c = 0 in the experiments as suggested by Garivier
and Cappé [2011]. All the results are obtained from 10, 000
independent runs of the algorithms.
Bernoulli Scenario 1. We first consider the basic scenario
with Bernoulli rewards. There are K = 9 arms with expecta-
tions µi = i/10 for each arm i. The average regret of various
algorithms as a function of time is shown in Figure 1a.

First, UCB(dbq) performs as expected, though it is slightly
better than UCB1. However, UCB(dh) performs worse than
UCB1 in this scenario. The reason is that the regret guarantee
of UCB(dh) under this scenario is worse than that of UCB1.

Second, the performance of UCBoost({dbq, dh, dlb}) is be-
tween that of UCB1 and kl-UCB. UCBoost({dbq, dh, dlb})
outperforms UCB(dh) and UCB(dbq) as expected, which
demonstrates the power of boosting. The candidate semi-
distance function dlb plays an important role in improving
the regret performance.

Third, UCBoost(ε) algorithm fills the gap between
UCBoost({dbq, dh, dlb}) and kl-UCB with moderate ε. As
ε decreases, UCBoost(ε) approaches to kl-UCB, which veri-
fies our result in Theorem 3. When ε = 0.01, UCBoost(ε)
matches the regret of kl-UCB. Note that the numerical
method for kl-UCB, such as Newton method and bisection
search, usually needs the accuracy to be at least 10−5. Other-
wise, the regret performance of kl-UCB becomes unreliable.
Compared to kl-UCB, UCBoost(ε) can achieve the same re-
gret performance with less complexity by efficiently bound-
ing the KL divergence gap.
Bernoulli Scenario 2. We consider a more difficult sce-
nario of Bernoulli rewards, where the expectations are very
low. This scenario has been considered by Garivier and
Cappé [2011] to model the situations like online recommen-
dations and online advertising. For example, in Yahoo! Front
Page Today experiments [Li et al., 2010], the rewards are the
click through rates of the news and articles. The rewards are
binary and the average click through rates are very low. In this
scenario, we consider ten arms, with µ1 = µ2 = µ3 = 0.01,
µ4 = µ5 = µ6 = 0.02, µ7 = µ8 = µ9 = 0.05 and
µ10 = 0.1. Figure 1b shows the average regret of various
algorithms as a function of time.

First, the performance of UCB(dbq) is the same as UCB1.
This is because the term ∆4

a vanishes for all suboptimal arms
in this scenario. So the improvement of UCB(dbq) over UCB1
vanishes as well. However, UCB(dh) outperforms UCB1
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(a) Bernoulli scenario 1

Time
0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 r

e
g
re

t
0

20

40

60

80

100

120

140

160

UCBoost({d
bq

,d
h
,d

lb
})

UCBoost(0.08)
UCBoost(0.005)
UCBoost(0.001)
kl-UCB

(b) Bernoulli scenario 2
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(c) Beta scenario

Figure 1: Regret of the various algorithms as a function of time in three scenarios.

Scenario kl-UCB UCBoost(ε) UCBoost(ε) UCBoost(ε) UCBoost({dbq, dh, dlb}) UCB1
ε = 0.01(0.001) ε = 0.05(0.005) ε = 0.08

Bernoulli 1 933µs 7.67µs 6.67µs 5.78µs 1.67µs 0.31µs
Bernoulli 2 986µs 8.76µs 7.96µs 6.27µs 1.60µs 0.30µs

Beta 907µs 8.33µs 6.89µs 5.89µs 2.01µs 0.33µs

Table 2: Average computational time for each arm per round of various algorithms.

because the Hellinger distance between µa and µ∗ is much
larger than the l2 distance in this scenario. So UCB(dh) en-
joys better regret performance than UCB1 in this scenario.

Second, UCBoost({dbq, dh, dlb}) performs as ex-
pected and is between UCB1 and kl-UCB. Although
the gap between UCB1 and kl-UCB becomes larger
when compared to Bernoulli scenario 1, the gap between
UCBoost({dbq, dh, dlb}) and kl-UCB remains. This ver-
ifies our result in Corollary 3 that the gap between the
constants in the regret guarantees is bounded by 1/e. This
result also demonstrates the power of boosting in that
UCBoost({dbq, dh, dlb}) performs no worse than UCB(dh)
and UCB(dbq) in all cases.

Third, UCBoost(ε) algorithm fills the gap between
UCBoost({dbq, dh, dlb}) and kl-UCB, which is consistent
with the results in Bernoulli scenario 1. The regret of
UCBoost(ε) matches with that of kl-UCB when ε = 0.001.
Compared to the results in Bernoulli scenario 1, we need
more accurate approximation for UCBoost when the expecta-
tions are lower. However, this accuracy is moderate compared
to the requirements in numerical methods for kl-UCB.
Beta Scenario. Our results in the previous sections hold for
any distributions with bounded support. In this scenario, we
considerK = 9 arms with Beta distributions. More precisely,
each arm 1 ≤ i ≤ 9 is associated with Beta(αi,βi) distribu-
tion such that αi = i and βi = 2. Note that the expectation
of Beta(αi,βi) is αi/(αi + βi). The regret results shown in
Figure 1c are consistent with that of Bernoulli scenario 1.

Computational time. We obtain the average running time for
each arm per round by measuring the total computational time
of 10, 000 independent runs of each algorithms in each sce-
nario. Note that kl-UCB is implemented by the py/maBandits
package developed by Cappé et al. [2012], which sets accu-
racy to 10−5 for the Newton method. The average computa-
tional time results are shown in Table 2. The average running
time of UCBoost(ε) that matches the regret of kl-UCB is no
more than 1% of the time of kl-UCB.

5 Conclusion
In this work, we introduce the generic UCB algorithm and
provide the regret guarantee for any UCB algorithm gener-
ated by a kl-dominated strong semi-distance function. Then,
we propose a boosting framework, UCBoost, to boost any set
of generic UCB algorithms. We find a specific finite set D,
such that UCBoost(D) enjoys O(1) complexity for each arm
per round as well as regret guarantee that is 1/e-close to the
kl-UCB algorithm. Finally, we propose an approximation-
based UCBoost algorithm, UCBoost(ε), that enjoys regret
guarantee ε-close to that of kl-UCB as well as O(log(1/ε))
complexity for each arm per round. This algorithm bridges
the regret guarantee to the computational complexity, thus of-
fering an efficient trade-off between regret performance and
complexity for practitioners. By experiments, we show that
UCBoost(ε) can achieve the same regret performance as stan-
dard kl-UCB with only 1% computational cost of kl-UCB.
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