
A Fast and Simple Algorithm for Bounds Consistency of the
AllDifferent Constraint

Alejandro Lopez-Ortiz1, Claude-Guy Quimper1, John Tromp2, Peter van Beek1

1 School of Computer Science 2C WI
University of Waterloo P.O. Box 94079, 1090 GB

Waterloo, Canada Amsterdam, Netherlands

Abstract
In constraint programming one models a problem
by stating constraints on acceptable solutions. The
constraint model is then usually solved by inter­
leaving backtracking search and constraint propa­
gation. Previous studies have demonstrated that de­
signing special purpose constraint propagators for
commonly occurring constraints can significantly
improve the efficiency of a constraint programming
approach. In this paper we present a fast, simple
algorithm for bounds consistency propagation of
the alldifferent constraint. The algorithm has the
same worst case behavior as the previous best algo­
rithm but is much faster in practice. Using a variety
of benchmark and random problems, we show that
our algorithm outperforms existing bounds consis­
tency algorithms and also outperforms—on prob­
lems with an easily identifiable property—state-of-
the-art commercial implementations of propagators
for stronger forms of local consistency.

1 Introduction
Many interesting problems can be modeled and solved us­
ing constraint programming. In this approach one models a
problem by stating constraints on acceptable solutions, where
a constraint is simply a relation among several unknowns or
variables, each taking a value in a given domain. The con­
straint model is then usually solved by interleaving backtrack­
ing search and constraint propagation. In constraint propaga­
tion the constraints are used to reduce the domains of the vari­
ables by ensuring that the values in their domains are locally
consistent with the constraints.

Previous studies have demonstrated that designing special
purpose constraint propagators for commonly occurring con­
straints can significantly improve the efficiency of a con­
straint programming approach (e.g., [Regin, 1994; Stergiou
and Walsh, 1999]). In this paper we study constraint propaga­
tors for the alldifferent constraint. An alldifferent constraint
over a set of variables states that the variables must be pair-
wise different. The alldifferent constraint is widely used in
practice and because of its importance is offered as a builtin
constraint in most, if not all, major commercial and research-
based constraint systems.

Several constraint propagation algorithms for the alldiffer­
ent constraint have been developed, ranging from weaker to
stronger forms of local consistency (see [van Hoeve, 2001]
for an excellent survey). Regin [1994] gives an 0(n 2 , 5) algo­
rithm for domain consistency of the alldifferent constraint,
where n is the number of variables, that is based on re­
lating alldifferent constraints to matchings. Leconte [1996]
gives an 0(n2) algorithm for range consistency, a weaker
form of consistency than domain consistency, that is based
on identifying Hall intervals. Puget [1998], building upon
the work of Leconte [1996], gives an O(n logn) algorithm
for bounds consistency, which is in turn a weaker form of lo­
cal consistency than range consistency. Mehlhorn and Thiel
[2000], building upon the work of Regin, give an algorithm
for bounds consistency that is 0(n) plus the time needed to
sort the bounds of the domains, and thus has the same worst-
case behavior as Puget's algorithm in the general case.

In this paper we present a fast and simple algorithm for
bounds consistency propagation of the alldifferent constraint.
The algorithm has the same worst case behavior as the previ­
ous best algorithm but is much faster in practice. Using a vari­
ety of benchmark and random problems, we show that our al­
gorithm outperforms existing bounds consistency algorithms
and also outperforms—on problems with an easily identifi­
able property—state-of-the-art commercial implementations
of propagators for stronger forms of local consistency.

A longer version of the paper containing proofs and addi­
tional experimentation is available [Lopez-Ortiz et al., 2003].

2 Background
A constraint satisfaction problem (CSP) consists of a set of n
variables, a finite domain dom of possible
values for each variable xi{ and a collection of m constraints,

. Each constraint C is a constraint over some
set of variables, denoted by vars{C), that specifies the al­
lowed combinations of values for the variables in vars(C).
Given a constraint (7, we use the notation t C to denote a
tuple t—an assignment of a value to each of the variables in
vars(C)—that satisfies the constraint C. We use the notation
t[x] to denote the value assigned to variable x by the tuple
t. A solution to a CSP is an assignment of a value to each
variable that satisfies all of the constraints.

We assume in this paper that the domains are totally or­
dered. The minimum and maximum values in the domain

CONSTRAINTS 245

3.1 F inding Hal l intervals
Following Leconte [1996] and Puget [1998], we analyze the
task in terms of Hall intervals. An interval / is a Hall interval
if its size equals the number of variables whose domain is
contained in I. Clearly, any solution must use all the values in
/ for those variables, making these values unavailable for any
other variable. Puget shows that an algorithm for updating
lower bounds can also be used to update upper bounds. The
lower bound for variable xi- gets updated where min i > b+1,
whenever a Hall interval [a, b] with a < mini- < b < max,-
is found. This condition implies that any Hall interval [a', b]

Capacity is dominated by in the sense that the former
cannot reach 0 before the latter, and if both reach 0, then the
Hall interval starting at k:' is not left-maximal. If k is not
equal to any min,-, then it is always dominated by the next
greater min,, hence we need only remember capacities for
which k equals some min,-. The critical set C is the set of
such indices of undominated capacities. This set starts out as

and becomes smaller over time as variables
are processed and capacities become dominated. We denote
by Ci the critical set after processing x,-. The next lemma
shows that we can effectively test when each particular ca­
pacity becomes zero or negative.

246 CONSTRAINTS

dom(x) of a variable x are denoted by min(dom(x)) and
max(dom(x)), and the interval notation [a, b] is used as a
shorthand for the set of values {a,a+ 1 , . . . b } .

CSPs are usually solved by interleaving backtracking
search and constraint propagation. During the backtracking
search when a variable is assigned a value, constraint prop­
agation ensures that the values in the domains of the unas-
signed variables arc "locally consistent" with the constraints.

A CSP can be made locally consistent by repeatedly re­
moving unsupported values from the domains of its variables.

with a' < a causes the same update. Thus, for the purpose of
updating lower bounds, it suffices to restrict attention to left-
maximal Hall intervals: those [a, b] for which a is minimal.

Puget's algorithm first sorts the variables in increasing or­
der of max;. We assume for convenience that max,- < maxj,
for i < j. The algorithm then processes each of the variables
in turn, maintaining a set of counters which count how many
of the variables processed so far have a minimum bound of
at least k. More precisely, after processing x,-, the counter
ci

k denotes the cardinality of the set {j < i : minj, > k}.
The algorithm stores the counters in a balanced binary tree,
allowing updates in 0(log n.) time per variable.

Conceptually, our algorithm is similar to Puget's. The dif­
ference is in the maintenance of the counters. The key obser­
vation is that not all counters are relevant.

3.2 Updat ing bounds

Finding Hall intervals is only part of the solution. We also
need to efficiently update the bounds. For this we use another
linked list structure, in which indices inside a Hall interval
point to the location representing its upper end, while those
outside of any Hall interval point left toward the next such
index. We store the list of bounds in a sorted array named
bounds. Intervals are hereafter numbered by their order of
occurrence in this array. The linked list is implemented as
an array t using indices to the bounds as pointers. The
differences between critical capacities appearing above the
arrows in Example 2 are stored in an array d. The algorithm
shown in Figure 1 solves one half of the problem: updating
all lower bounds. Variable n holds the number of intervals,

while nb holds the number of unique bounds. The algorithm
uses the following arrays:

• maxsorted [o . . n-1] : holds intervals sorted by max.
• bounds [0 . . nb+ l] : sorted array of ruin's and max's.
• t [0 . . nb+ l] : holds the critical capacity pointers; that

is, t [i] points to the predecessor of/ in the bounds list.

• d [0 . .nb+ l] holds the differences between critical ca­
pacities; i.e., the difference of capacities between inter­
val i and its predecessor in t viz. t [i] .

• h [0 . .nb+ l] holds the Hall interval pointers; i.e., if
h [i] < i then the half-open interval [bounds [h [i]],
bounds [i]) forms a Hall interval, and otherwise holds
a pointer to the Hall interval it belongs to. This Hall in­
terval is represented by a tree, with the root containing
the value of its right end.

The algorithm uses two functions for retrieving/updating
pointer information, namely: pathmax(a, x) which fol­
lows the chain x, a [x] , a [a [x]], . . . , until it stops increas­
ing, returning the maximum found and pathset (a, x, y,
z) which sets each of the entries a [x] , a [a [x]] a [w]
to z, where w is such that a [w] equals y. The values minrank
and maxrank give the index in array bounds of the min and
(max-hi) of an interval.

The algorithm examines each interval in turn, sorted by
their upper bounds. It then updates capacities accordingly,
followed by path compression operations on the underlying
data structures. At each step we test for failure (a negative
capacity) or a newly discovered Hall interval (a zero capacity,

CONSTRAINTS 247

This means that differences between adjacent critical capaci­
ties remain constant, except in one place: between capacities
Vk and vi of the ZeroTest Lemma, where the difference is re­
duced by 1. Therefore, testing for a zero or negative capacity
need only be done at this vk. Our linked list data structure is
designed to perform this operation efficiently. Al l dominated
indices form forests pointing toward the next critical index. A
dummy index at the end, which never becomes dominated (3
larger than the largest max suffices), ensures that every dom­
inated index has a critical one to point to. When a difference
in capacity, say between indices k\ < k2, is reduced from 1
to 0, k2 becomes dominated. It must then point to the next
critical index, say k3, which instead of pointing to k2 must
now point to A: 1.

which indicates that the width of the interval is equal to the
number of variables whose domain falls within that interval).

Example 3 Table 1 shows a trace of the algorithm for updat­
ing lower bounds (Figure 1) when applied to the CSP from
Examples 1 & 2. Each row represents an iteration where a
variable is processed. In the first graph the nodes are the el­
ements of the vector bounds. The arrows illustrate the con­
tent of the vector t and the numbers over them are given by
the vector d. The nodes of the second graph are also the val­
ues found in vector bounds but the arrows are given by the
vector h that keeps track of the Hall intervals.

Table 1: Trace of the example.

3.3 Time complexity
The running time of the algorithm is dominated by the various
calls to pa thmax and p a t h s e t . Since each chain followed
in a pathmax call is also followed in a subsequent p a t h -
s e t call, we can restrict our analysis to the time spent in the

This implies that a linear number of path compressions take at
most 0(n log n) steps. The situation with array h is similar.
It follows then that the algorithm runs in time 0(n log n).

The theoretical performance of the algorithm can be im­
proved further by observing that the union operations are al­
ways performed over sets whose bounds appear consecutively
in a left to right ordering. This is known as the interval union-
find problem. Gabow and Tarjan [1985] gave a linear time
solution in a RAM computer provided that the keys fit in
a single word of memory. This is a reasonable assumption
in current architectures with 32 or 64 bit words. Using this
technique we obtain a linear time algorithm which matches
the theoretical performance of Mehlhorn and Thiel's solution.
We implemented this algorithm on the Intel x386 architec­
ture using direct assembly code calls from a C++ program.
However, in practice, the 0(n log n) solution outperformed
both Mehlhorn and Thiel's algorithm and the algorithm using
the interval union find data structure (see [Lopez-Ortiz et al.,
2003] for additional discussion).

4 Experimental results
We implemented our new bounds consistency algorithm (de­
noted hereafter as BC) and Mehlhorn and Thiel's bounds con­
sistency algorithm (denoted MT) using the 1LOG Solver C++
library, Version 4.2 [ILOG S. A., 1998]1. The ILOG Solver
already provides implementations of Leconte's range consis­
tency algorithm (denoted RC), Regin's domain consistency
algorithm (denoted DC), and an algorithm that simply re­
moves the value of an instantiated variable from the domains
of the remaining variables (denoted as VC, for value consis­
tency). To compare against Puget's bounds consistency algo­
rithm, we use the runtime results reported by Puget [1998] for
RC and our own runtime results for RC as calibration points.
We believe this is valid as Puget also uses a similar vintage of
ILOG Solver and when we compared, we were careful to use
the same constraint models and variable orderings.

We compared the algorithms experimentally on various
benchmark and random problems. Al l the experiments were
run on a 300 MHz Pentium II with 228 MB of main memory.
Each reported runtime is the average of 10 runs except for
random problems where 100 runs were performed.

248 CONSTRAINTS

latter. Consider the right-running chains in array t. Lemma 3
shows that all but a logarithmic number of indices see a rise
in value as a result of a path compression operation.

Figure 1: Time (sec.) to first solution for Pathological prob­
lems.

BC propagator offers a clear performance improvement over
propagators for stronger forms of local consistency (see Fig­
ure 1). Comparing against the best previous bounds consis­
tency algorithms, our BC propagator is approx. 2 times faster
than MT and, using RC as our calibration point to compare
against the experimental results reported by Puget [1998], ap­
prox. 5 times faster than Puget's algorithm.

We next consider the Golomb ruler problem (see [Gent and
Walsh, 1999], Problem 6). Following Smith et al. [2000] we
modeled the problem using auxiliary variables (their "ternary
and all-different model") and we used the lexicographic vari­
able ordering. This appears to be the same model as Puget
[1998] uses in his experiments as the number of fails for each
problem and each propagator are the same. Here, our BC
propagator is approximately 1.6 times faster than the next
fastest propagator used in our experiments (see Table 2) and,
again using RC as our calibration point, approximately 1.5
times faster than Puget's bounds consistency algorithm.

Table 2: Time (sec.) to optimal solution for Golomb rulers.

We next consider instruction scheduling problems for
single-issue processors with arbitrary latencies. Instruction
scheduling is one of the most important steps for improv­
ing the performance of object code produced by a compiler.
Briefly, in the model for these problems there are n variables,
one for each instruction to be scheduled, latency constraints
of the form xi, < xj + d where d is some small integer value,
a single alldifferent constraint over all n variables, and re­
dundant constraints called "distance constraints" In our ex­
periments, we used fifteen representative hard problems that
were taken from the SPEC95 floating point, SPEC2000 float­
ing point and MediaBench benchmarks. The minimum do-

Table 3: Time (sec.) to optimal solution for instruction
scheduling problems. A blank entry means the problem was
not solved within a 10 minute time bound.

main size variable ordering heuristic was used in the search
(see Table 3). On these problem too, our BC propagator offers
a clear performance improvement over the other propagators.

To systematically study the scaling behavior of the algo­
rithms, we next consider random problems. The problems
consisted of a single alldifferent constraint over n variables
and each variable xi had its initial domain set to [a.b], where
a and b, a < 6, were chosen uniformly at random from [1, n].
The problems were solved using the lexicographic variable
ordering. In these "pure" problems nearly all of the run-time
is due to the alldifferent propagators, and one can clearly see
the quadratic behavior of the RC and DC propagators and
the nearly linear incremental behavior of the BC propagator
(see Figure 2). On these problems, VC (not shown) could not
solve even the smallest problems {n = 100) within a 10 minute
time bound and MT (also not shown) was 2.5 - 3 times slower
than our BC propagator.

Having demonstrated the practicality of our algorithm,
we next study the limits of its applicability. Schulte and
Stuckey [2001] investigate cases where it can be proven a
priori that maintaining bounds consistency during the search,
rather than a stronger form of local consistency such as do­
main consistency, does not increase the size of the search
space. The Golomb ruler problem is one such example. In
general, of course, this is not the case and using bounds con­
sistency can exponentially increase the search space.

To systematically study the range of applicability of the al­
gorithms, we next consider random problems with holes in
the domains of the variables. The problems consisted of a
single alldifferent constraint over n variables. The domain of
each variable was set in two steps. First, the initial domain
of the variable was set to [a, 6], where a and b, a < b, were
chosen uniformly at random from [1, n]. Second, each of the
values a - | - 1 , . . . , b— 1 is removed from the domain with some
given probability p. The resulting problems were then solved
using both the lexicographic and the minimum domain size
variable ordering heuristics. These problems are trivial for

CONSTRAINTS 249

Figure 2: Time (sec.) to first solution or to detect inconsis­
tency for random problems.

domain consistency, but not so for bounds and range consis­
tency. We recorded the percentage that were not solved by BC
and RC within a fixed time bound (see Figure 3). If there are
no holes in the domains of the variables, then bounds con­
sistency is equivalent to range and domain consistency. As
the number of holes increases, the performance of bounds
and range consistency decreases and they become less ap­
propriate choices. The range of applicability of BC can be
extended somewhat following a suggestion by Puget [1998]
of combining bounds consistency with value consistency (de­
noted as BC+ and MT+). On these problems, BC, BC+, and
RC are theoretically equivalent when using the lexicographic
variable ordering and BC+ and RC are experimentally equiv­
alent when using minimum domain (see Figure 3).

We also performed experiments on n-queens, quasigroup
existence, and sport league scheduling problems. Interest­
ingly, in these experiments, RC was never the propagator of
choice. On problems where holes arise in the domains, DC
was the best choice (except for on n-queens problems, where
VC was considerably faster), and on problems where holes
do not arise in the domains, BC was the clear best choice.
Clearly, whether the domains have holes in them is a prop­
erty that is easily identified and tracked during the search.
Thus, the best choice of propagator could be automatically
selected, rather than left to the constraint modeler to specify
as is currently the case.

5 Conclusions
We presented an improved bounds consistency constraint
propagation algorithm for the important alldifferent con­
straint. Using a variety of benchmark and random problems,
we showed that our algorithm significantly outperforms the
previous best bounds consistency algorithms for this con­
straint and can also significantly outperform propagators for
stronger forms of local consistency.

Acknowledgements
We thank Kent Wilken for providing the instruction schedul­
ing problems used in our experiments.

Figure 3: Percentage not solved within a cutoff of 5 seconds
for problems with 100 variables. The cutoff was chosen to
be the value that was at least two orders of magnitude slower
than DC, the fastest propagator on these problems.

References
[Gabow and Tarjan, 1985] H. N. Gabow and R. E. Tarjan.

A linear-time algorithm for a special case of disjoint set
union. JCSS, 30(2):209-221,1985.

[Gent and Walsh, 1999] 1. P. Gent and T. Walsh. CSPlib: A
benchmark library for constraints. In CP-99, pp. 480-481.

[ILOG S. A., 1998] ILOG Solver 4.2 user's manual, 1998.
[Leconte, 1996] M. Leconte. A bounds-based reduction

scheme for constraints of difference. In Proc. of the
Constraint-96 Int 7 Workshop on Constraint-Based Rea­
soning, pp. 19-28, Key West, Florida, 1996.

[Lopez-Ortiz et al., 2003] A. Lopez-Ortiz, C. G. Quimper, J.
Tromp and P. van Beek. Faster practical algorithms for the
all-diff constraint. Technical Report, CS-2003-05, School
of Computer Science, University of Waterloo, 2003.

[Mehlhorn and Thiel, 2000] K. Mehlhorn and S. Thiel.
Faster algorithms for bound-consistency of the sortedness
and alldifferent constraint. In CP-2000, pp. 306-319.

[Puget, 1998] J.-F. Puget. A fast algorithm for the bound
consistency of alldiff constraints. AAAI-98, pp. 359-366.

[Regin, 1994] J.-C. Regin. A filtering algorithm for con­
straints of difference in CSPs. In AAAI-94, pp. 362-367.

[Schulte and Stuckey, 2001] C. Schulte and P. J. Stuckey.
When do bounds and domain propagation lead to the same
search space. In PPDP-2001, pp. 115-126.

[Smith et al. , 2000] B. M. Smith, K. Stergiou, and T. Walsh.
Using auxiliary variables and implied constraints to model
non-binary problems. In AAAI-2000, pp. 182-187.

[Stergiou and Walsh, 1999] K. Stergiou and T. Walsh. The
difference all-difference makes. In IJCA1-99, pp. 414-419.

[van Hoeve, 2001] W. J. van Hoeve. The alldifferent con­
straint: A survey. Submitted manuscript. Available from
http://www.cwi.nl/~wjvh/papers/alldiff.pdf, 2001.

250 CONSTRAINTS

http://www.cwi.nl/~wjvh/papers/alldiff.pdf

