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Abstract 
In constraint programming one models a problem 
by stating constraints on acceptable solutions. The 
constraint model is then usually solved by inter­
leaving backtracking search and constraint propa­
gation. Previous studies have demonstrated that de­
signing special purpose constraint propagators for 
commonly occurring constraints can significantly 
improve the efficiency of a constraint programming 
approach. In this paper we present a fast, simple 
algorithm for bounds consistency propagation of 
the alldifferent constraint. The algorithm has the 
same worst case behavior as the previous best algo­
rithm but is much faster in practice. Using a variety 
of benchmark and random problems, we show that 
our algorithm outperforms existing bounds consis­
tency algorithms and also outperforms—on prob­
lems with an easily identifiable property—state-of-
the-art commercial implementations of propagators 
for stronger forms of local consistency. 

1 Introduction 
Many interesting problems can be modeled and solved us­
ing constraint programming. In this approach one models a 
problem by stating constraints on acceptable solutions, where 
a constraint is simply a relation among several unknowns or 
variables, each taking a value in a given domain. The con­
straint model is then usually solved by interleaving backtrack­
ing search and constraint propagation. In constraint propaga­
tion the constraints are used to reduce the domains of the vari­
ables by ensuring that the values in their domains are locally 
consistent with the constraints. 

Previous studies have demonstrated that designing special 
purpose constraint propagators for commonly occurring con­
straints can significantly improve the efficiency of a con­
straint programming approach (e.g., [Regin, 1994; Stergiou 
and Walsh, 1999]). In this paper we study constraint propaga­
tors for the alldifferent constraint. An alldifferent constraint 
over a set of variables states that the variables must be pair-
wise different. The alldifferent constraint is widely used in 
practice and because of its importance is offered as a builtin 
constraint in most, if not all, major commercial and research-
based constraint systems. 

Several constraint propagation algorithms for the alldiffer­
ent constraint have been developed, ranging from weaker to 
stronger forms of local consistency (see [van Hoeve, 2001] 
for an excellent survey). Regin [1994] gives an 0(n 2 , 5 ) algo­
rithm for domain consistency of the alldifferent constraint, 
where n is the number of variables, that is based on re­
lating alldifferent constraints to matchings. Leconte [1996] 
gives an 0(n2) algorithm for range consistency, a weaker 
form of consistency than domain consistency, that is based 
on identifying Hall intervals. Puget [1998], building upon 
the work of Leconte [1996], gives an O(n logn) algorithm 
for bounds consistency, which is in turn a weaker form of lo­
cal consistency than range consistency. Mehlhorn and Thiel 
[2000], building upon the work of Regin, give an algorithm 
for bounds consistency that is 0(n) plus the time needed to 
sort the bounds of the domains, and thus has the same worst-
case behavior as Puget's algorithm in the general case. 

In this paper we present a fast and simple algorithm for 
bounds consistency propagation of the alldifferent constraint. 
The algorithm has the same worst case behavior as the previ­
ous best algorithm but is much faster in practice. Using a vari­
ety of benchmark and random problems, we show that our al­
gorithm outperforms existing bounds consistency algorithms 
and also outperforms—on problems with an easily identifi­
able property—state-of-the-art commercial implementations 
of propagators for stronger forms of local consistency. 

A longer version of the paper containing proofs and addi­
tional experimentation is available [Lopez-Ortiz et al., 2003]. 

2 Background 
A constraint satisfaction problem (CSP) consists of a set of n 
variables, a finite domain dom of possible 
values for each variable xi{ and a collection of m constraints, 

. Each constraint C is a constraint over some 
set of variables, denoted by vars{C), that specifies the al­
lowed combinations of values for the variables in vars(C). 
Given a constraint (7, we use the notation t C to denote a 
tuple t—an assignment of a value to each of the variables in 
vars(C)—that satisfies the constraint C. We use the notation 
t[x] to denote the value assigned to variable x by the tuple 
t. A solution to a CSP is an assignment of a value to each 
variable that satisfies all of the constraints. 

We assume in this paper that the domains are totally or­
dered. The minimum and maximum values in the domain 
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3.1 F inding Hal l intervals 
Following Leconte [1996] and Puget [1998], we analyze the 
task in terms of Hall intervals. An interval / is a Hall interval 
if its size equals the number of variables whose domain is 
contained in I. Clearly, any solution must use all the values in 
/ for those variables, making these values unavailable for any 
other variable. Puget shows that an algorithm for updating 
lower bounds can also be used to update upper bounds. The 
lower bound for variable xi- gets updated where min i > b+1, 
whenever a Hall interval [a, b] with a < mini- < b < max,-
is found. This condition implies that any Hall interval [a', b] 

Capacity is dominated by in the sense that the former 
cannot reach 0 before the latter, and if both reach 0, then the 
Hall interval starting at k:' is not left-maximal. If k is not 
equal to any min,-, then it is always dominated by the next 
greater min,, hence we need only remember capacities for 
which k equals some min,-. The critical set C is the set of 
such indices of undominated capacities. This set starts out as 

and becomes smaller over time as variables 
are processed and capacities become dominated. We denote 
by Ci the critical set after processing x,-. The next lemma 
shows that we can effectively test when each particular ca­
pacity becomes zero or negative. 
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dom(x) of a variable x are denoted by min(dom(x)) and 
max(dom(x)), and the interval notation [a, b] is used as a 
shorthand for the set of values {a,a+ 1 , . . . b } . 

CSPs are usually solved by interleaving backtracking 
search and constraint propagation. During the backtracking 
search when a variable is assigned a value, constraint prop­
agation ensures that the values in the domains of the unas-
signed variables arc "locally consistent" with the constraints. 

A CSP can be made locally consistent by repeatedly re­
moving unsupported values from the domains of its variables. 

with a' < a causes the same update. Thus, for the purpose of 
updating lower bounds, it suffices to restrict attention to left-
maximal Hall intervals: those [a, b] for which a is minimal. 

Puget's algorithm first sorts the variables in increasing or­
der of max;. We assume for convenience that max,- < maxj, 
for i < j. The algorithm then processes each of the variables 
in turn, maintaining a set of counters which count how many 
of the variables processed so far have a minimum bound of 
at least k. More precisely, after processing x,-, the counter 
ci

k denotes the cardinality of the set {j < i : minj, > k}. 
The algorithm stores the counters in a balanced binary tree, 
allowing updates in 0( log n.) time per variable. 

Conceptually, our algorithm is similar to Puget's. The dif­
ference is in the maintenance of the counters. The key obser­
vation is that not all counters are relevant. 



3.2 Updat ing bounds 

Finding Hall intervals is only part of the solution. We also 
need to efficiently update the bounds. For this we use another 
linked list structure, in which indices inside a Hall interval 
point to the location representing its upper end, while those 
outside of any Hall interval point left toward the next such 
index. We store the list of bounds in a sorted array named 
bounds. Intervals are hereafter numbered by their order of 
occurrence in this array. The linked list is implemented as 
an array t using indices to the bounds as pointers. The 
differences between critical capacities appearing above the 
arrows in Example 2 are stored in an array d. The algorithm 
shown in Figure 1 solves one half of the problem: updating 
all lower bounds. Variable n holds the number of intervals, 

while nb holds the number of unique bounds. The algorithm 
uses the following arrays: 

• maxsorted [o . . n-1] : holds intervals sorted by max. 
• bounds [0 . . nb+ l ] : sorted array of ruin's and max's. 
• t [0 . . nb+ l ] : holds the critical capacity pointers; that 

is, t [ i ] points to the predecessor of/ in the bounds list. 

• d [0 . .nb+ l ] holds the differences between critical ca­
pacities; i.e., the difference of capacities between inter­
val i and its predecessor in t viz. t [ i ] . 

• h [ 0 . .nb+ l ] holds the Hall interval pointers; i.e., if 
h [ i ] < i then the half-open interval [bounds [h [ i ] ], 
bounds [ i ] ) forms a Hall interval, and otherwise holds 
a pointer to the Hall interval it belongs to. This Hall in­
terval is represented by a tree, with the root containing 
the value of its right end. 

The algorithm uses two functions for retrieving/updating 
pointer information, namely: pathmax(a, x) which fol­
lows the chain x, a [ x ] , a [a [x] ], . . . , until it stops increas­
ing, returning the maximum found and pathset (a, x, y, 
z) which sets each of the entries a [ x ] , a [a [x] ] a [w] 
to z, where w is such that a [w] equals y. The values minrank 
and maxrank give the index in array bounds of the min and 
(max-hi) of an interval. 

The algorithm examines each interval in turn, sorted by 
their upper bounds. It then updates capacities accordingly, 
followed by path compression operations on the underlying 
data structures. At each step we test for failure (a negative 
capacity) or a newly discovered Hall interval (a zero capacity, 
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This means that differences between adjacent critical capaci­
ties remain constant, except in one place: between capacities 
Vk and vi of the ZeroTest Lemma, where the difference is re­
duced by 1. Therefore, testing for a zero or negative capacity 
need only be done at this vk. Our linked list data structure is 
designed to perform this operation efficiently. Al l dominated 
indices form forests pointing toward the next critical index. A 
dummy index at the end, which never becomes dominated (3 
larger than the largest max suffices), ensures that every dom­
inated index has a critical one to point to. When a difference 
in capacity, say between indices k\ < k2, is reduced from 1 
to 0, k2 becomes dominated. It must then point to the next 
critical index, say k3, which instead of pointing to k2 must 
now point to A: 1. 



which indicates that the width of the interval is equal to the 
number of variables whose domain falls within that interval). 

Example 3 Table 1 shows a trace of the algorithm for updat­
ing lower bounds (Figure 1) when applied to the CSP from 
Examples 1 & 2. Each row represents an iteration where a 
variable is processed. In the first graph the nodes are the el­
ements of the vector bounds. The arrows illustrate the con­
tent of the vector t and the numbers over them are given by 
the vector d. The nodes of the second graph are also the val­
ues found in vector bounds but the arrows are given by the 
vector h that keeps track of the Hall intervals. 

Table 1: Trace of the example. 

3.3 Time complexity 
The running time of the algorithm is dominated by the various 
calls to pa thmax and p a t h s e t . Since each chain followed 
in a pathmax call is also followed in a subsequent p a t h -
s e t call, we can restrict our analysis to the time spent in the 

This implies that a linear number of path compressions take at 
most 0(n log n) steps. The situation with array h is similar. 
It follows then that the algorithm runs in time 0(n log n). 

The theoretical performance of the algorithm can be im­
proved further by observing that the union operations are al­
ways performed over sets whose bounds appear consecutively 
in a left to right ordering. This is known as the interval union-
find problem. Gabow and Tarjan [1985] gave a linear time 
solution in a RAM computer provided that the keys fit in 
a single word of memory. This is a reasonable assumption 
in current architectures with 32 or 64 bit words. Using this 
technique we obtain a linear time algorithm which matches 
the theoretical performance of Mehlhorn and Thiel's solution. 
We implemented this algorithm on the Intel x386 architec­
ture using direct assembly code calls from a C++ program. 
However, in practice, the 0(n log n) solution outperformed 
both Mehlhorn and Thiel's algorithm and the algorithm using 
the interval union find data structure (see [Lopez-Ortiz et al., 
2003] for additional discussion). 

4 Experimental results 
We implemented our new bounds consistency algorithm (de­
noted hereafter as BC) and Mehlhorn and Thiel's bounds con­
sistency algorithm (denoted MT) using the 1LOG Solver C++ 
library, Version 4.2 [ILOG S. A., 1998]1. The ILOG Solver 
already provides implementations of Leconte's range consis­
tency algorithm (denoted RC), Regin's domain consistency 
algorithm (denoted DC), and an algorithm that simply re­
moves the value of an instantiated variable from the domains 
of the remaining variables (denoted as VC, for value consis­
tency). To compare against Puget's bounds consistency algo­
rithm, we use the runtime results reported by Puget [ 1998] for 
RC and our own runtime results for RC as calibration points. 
We believe this is valid as Puget also uses a similar vintage of 
ILOG Solver and when we compared, we were careful to use 
the same constraint models and variable orderings. 

We compared the algorithms experimentally on various 
benchmark and random problems. Al l the experiments were 
run on a 300 MHz Pentium II with 228 MB of main memory. 
Each reported runtime is the average of 10 runs except for 
random problems where 100 runs were performed. 
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latter. Consider the right-running chains in array t. Lemma 3 
shows that all but a logarithmic number of indices see a rise 
in value as a result of a path compression operation. 



Figure 1: Time (sec.) to first solution for Pathological prob­
lems. 

BC propagator offers a clear performance improvement over 
propagators for stronger forms of local consistency (see Fig­
ure 1). Comparing against the best previous bounds consis­
tency algorithms, our BC propagator is approx. 2 times faster 
than MT and, using RC as our calibration point to compare 
against the experimental results reported by Puget [1998], ap­
prox. 5 times faster than Puget's algorithm. 

We next consider the Golomb ruler problem (see [Gent and 
Walsh, 1999], Problem 6). Following Smith et al. [2000] we 
modeled the problem using auxiliary variables (their "ternary 
and all-different model") and we used the lexicographic vari­
able ordering. This appears to be the same model as Puget 
[1998] uses in his experiments as the number of fails for each 
problem and each propagator are the same. Here, our BC 
propagator is approximately 1.6 times faster than the next 
fastest propagator used in our experiments (see Table 2) and, 
again using RC as our calibration point, approximately 1.5 
times faster than Puget's bounds consistency algorithm. 

Table 2: Time (sec.) to optimal solution for Golomb rulers. 

We next consider instruction scheduling problems for 
single-issue processors with arbitrary latencies. Instruction 
scheduling is one of the most important steps for improv­
ing the performance of object code produced by a compiler. 
Briefly, in the model for these problems there are n variables, 
one for each instruction to be scheduled, latency constraints 
of the form xi, < xj + d where d is some small integer value, 
a single alldifferent constraint over all n variables, and re­
dundant constraints called "distance constraints" In our ex­
periments, we used fifteen representative hard problems that 
were taken from the SPEC95 floating point, SPEC2000 float­
ing point and MediaBench benchmarks. The minimum do-

Table 3: Time (sec.) to optimal solution for instruction 
scheduling problems. A blank entry means the problem was 
not solved within a 10 minute time bound. 

main size variable ordering heuristic was used in the search 
(see Table 3). On these problem too, our BC propagator offers 
a clear performance improvement over the other propagators. 

To systematically study the scaling behavior of the algo­
rithms, we next consider random problems. The problems 
consisted of a single alldifferent constraint over n variables 
and each variable xi had its initial domain set to [a.b], where 
a and b, a < 6, were chosen uniformly at random from [1, n]. 
The problems were solved using the lexicographic variable 
ordering. In these "pure" problems nearly all of the run-time 
is due to the alldifferent propagators, and one can clearly see 
the quadratic behavior of the RC and DC propagators and 
the nearly linear incremental behavior of the BC propagator 
(see Figure 2). On these problems, VC (not shown) could not 
solve even the smallest problems {n = 100) within a 10 minute 
time bound and MT (also not shown) was 2.5 - 3 times slower 
than our BC propagator. 

Having demonstrated the practicality of our algorithm, 
we next study the limits of its applicability. Schulte and 
Stuckey [2001] investigate cases where it can be proven a 
priori that maintaining bounds consistency during the search, 
rather than a stronger form of local consistency such as do­
main consistency, does not increase the size of the search 
space. The Golomb ruler problem is one such example. In 
general, of course, this is not the case and using bounds con­
sistency can exponentially increase the search space. 

To systematically study the range of applicability of the al­
gorithms, we next consider random problems with holes in 
the domains of the variables. The problems consisted of a 
single alldifferent constraint over n variables. The domain of 
each variable was set in two steps. First, the initial domain 
of the variable was set to [a, 6], where a and b, a < b, were 
chosen uniformly at random from [1, n]. Second, each of the 
values a - | - 1 , . . . , b— 1 is removed from the domain with some 
given probability p. The resulting problems were then solved 
using both the lexicographic and the minimum domain size 
variable ordering heuristics. These problems are trivial for 
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Figure 2: Time (sec.) to first solution or to detect inconsis­
tency for random problems. 

domain consistency, but not so for bounds and range consis­
tency. We recorded the percentage that were not solved by BC 
and RC within a fixed time bound (see Figure 3). If there are 
no holes in the domains of the variables, then bounds con­
sistency is equivalent to range and domain consistency. As 
the number of holes increases, the performance of bounds 
and range consistency decreases and they become less ap­
propriate choices. The range of applicability of BC can be 
extended somewhat following a suggestion by Puget [1998] 
of combining bounds consistency with value consistency (de­
noted as BC+ and MT+). On these problems, BC, BC+, and 
RC are theoretically equivalent when using the lexicographic 
variable ordering and BC+ and RC are experimentally equiv­
alent when using minimum domain (see Figure 3). 

We also performed experiments on n-queens, quasigroup 
existence, and sport league scheduling problems. Interest­
ingly, in these experiments, RC was never the propagator of 
choice. On problems where holes arise in the domains, DC 
was the best choice (except for on n-queens problems, where 
VC was considerably faster), and on problems where holes 
do not arise in the domains, BC was the clear best choice. 
Clearly, whether the domains have holes in them is a prop­
erty that is easily identified and tracked during the search. 
Thus, the best choice of propagator could be automatically 
selected, rather than left to the constraint modeler to specify 
as is currently the case. 

5 Conclusions 
We presented an improved bounds consistency constraint 
propagation algorithm for the important alldifferent con­
straint. Using a variety of benchmark and random problems, 
we showed that our algorithm significantly outperforms the 
previous best bounds consistency algorithms for this con­
straint and can also significantly outperform propagators for 
stronger forms of local consistency. 
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Figure 3: Percentage not solved within a cutoff of 5 seconds 
for problems with 100 variables. The cutoff was chosen to 
be the value that was at least two orders of magnitude slower 
than DC, the fastest propagator on these problems. 
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