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Abstract 
Cyclic definitions in description logics have un­
til now been investigated only for description log­
ics allowing for value restrictions. Even for the 
most basic language which allows for con­
junction and value restrictions only, deciding sub-
sumption in the presence of terminological cycles 
is a PSPACE-complete problem. This paper inves­
tigates subsumption in the presence of terminolog­
ical cycles for the language . , which allows for 
conjunction, existential restrictions, and the top-
concept. In contrast to the results for , sub-
sumption in remains polynomial, independent 
of whether we use least fixpoint semantics, greatest 
fixpoint semantics, or descriptive semantics. 

1 Introduction 
Early description logic (DL) systems allowed the use of value 
restrictions but not of existential restrictions 
Thus, one could express that all children are male using the 
value restriction Male, but not that someone has a son 
using the existential restriction The main rea­
son was that, when clarifying the logical status of property 
arcs in semantic networks and slots in frames, the decision 
was taken that arcs/slots should be read as value restrictions 
(see, e.g., [Nebel, 1990]). Once one considers more expres­
sive DLs allowing for full negation, existential restrictions 
come in as the dual of value restrictions [Schmidt-SchauB 
and Smolka, 1991]. Thus, for historical reasons, DLs that 
allow for existential, but not for value restrictions, are largely 
unexplored. In the present paper, we investigate termino­
logical cycles in the DL which allows for conjunction, 
existential restrictions, and the top-concept. In contrast to 
(even very inexpressive) DLs with value restrictions, sub-
sumption in remains polynomial in the presence of ter­
minological cycles. It should be noted that there are in­
deed applications where the small appears to be suffi­
cient. In fact, SNOMED, the Systematized Nomenclature of 
Medicine [Cote et a/., 1993] employs [Spackman, 2001; 
Spackman et al., 1997]. Even though SNOMED does not 
appear to use cyclic definitions, this may be due to a lack 
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of technology rather than need. In fact, the Galen medical 
knowledge base contains many cyclic dependencies [Rector 
and Horrocks, 1997]. Also, even in the case of acyclic ter­
minologies, our polynomial subsumption algorithm improves 
on the usual approach that first unfolds the TBox (a poten­
tially exponential step) and then applies the polynomial sub­
sumption algorithm for -concept descriptions [Baader et 
al., 1999]. 

The first thorough investigation of cyclic terminologies in 
description logics (DL) is due to Nebel [1991], who intro­
duced three different semantics for such terminologies: least 
fixpoint (lfp) semantics, which considers only the models that 
interpret the defined concepts as small as possible; greatest 
fixpoint (gfp) semantics, which considers only the models 
that interpret the defined concepts as large as possible; and 
descriptive semantics, which considers all models. 

In [Baader, 1990; 1996], subsumption w.r.t. cyclic termi­
nologies in the small DL which allows for conjunction 
and value restrictions only, was characterized with the help of 
finite automata. This characterization provided PSPACE de­
cision procedures for subsumption in with cyclic termi­
nologies for the three types of semantics introduced by Nebel. 
In addition, it was shown that subsumption is PSPACE-hard. 
The results for cyclic -terminologies were extended by 
Kiisters [ 1998] to ALN, which extends by atomic nega­
tion and number restrictions. 

The fact that the DL ACC (which extends FL0 by full 
negation) is a syntactic variant of the multi-modal logic K 
opens a way for treating cyclic terminologies and more gen­
eral recursive definitions in more expressive languages like 
ACC and extensions thereof by a reduction to the modal mu-
calculus [Schild, 1994; De Giacomo and Lenzerini, 1994]. In 
this setting, one can use a mix of the three types of semantics 
introduced by Nebel. However, the complexity of the sub­
sumption problem is EXPTIME-complete. 

In spite of these very general results for cyclic definitions 
in expressive languages, there are still good reasons to look 
at cyclic terminologies in less expressive (in particular sub-
Boolean) description logics. One reason is, of course, that 
one can hope for a lower complexity of the subsumption prob­
lem. For DLs with value restrictions, this hope is not fulfilled, 
though. Even in the inexpressive DL subsumption be­
comes PSPACE-complete if one allows for cyclic definitions. 
This is still better than the EXPTIME-completeness that one 
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has in ACC with cyclic definitions, but from the practical 
point of view it still means that the subsumption algorithm 
may need exponential time. 

In contrast, the subsumption problem in can be decided 
in polynomial time w.r.t. the three types of semantics intro­
duced by Nebel. The main tool used to show these results 
is a characterization of subsumption through the existence of 
so-called simulation relations. 

In the next section we will introduce the DL as well 
as cyclic terminologies and the three types of semantics for 
these terminologies. Then we wil l show in Section 3 how 
such terminologies can be translated into description graphs. 
In this section, we will also define the notion of a simulation 
between nodes of a description graph, and mention some use­
ful properties of simulations. The next three sections are then 
devoted to the characterization of subsumption in w.r.t. 
gfp, Ifp, and descriptive semantics, respectively. 

2 Cyclic terminologies in the DL 
Concept descriptions arc inductively defined with the help of 
a set of constructors, starting with a set Nc ofconcept names 
and a set NR of role names. The constructors determine the 
expressive power of the DL. We restrict the attention to the 

whose concept descriptions are formed using the con­
structors top-concept (T) , conjunction , and existen­
tial restriction . The semantics of £L-concept descrip­
tions is defined in terms of an interpretation 
The domain is a non-empty set of individuals and the 
interpretation function I maps each concept name A £ Nc 

to a subset of _ and each role to a binary re­
lation The extension of to arbitrary concept 
descriptions is inductively defined, as shown in the third col­
umn of Table 1. 

A terminology (or TBox for short) is a finite set of con­
cept definitions of the form where A is a concept 
name and D a concept description. In addition, we require 
that TBoxes do not contain multiple definitions, i.e., there 
cannot be two distinct concept descriptions D\ and D2 such 
that both belongs to the TBox. Con­
cept names occurring on the left-hand side of a definition are 
called defined concepts. Al l other concept names occurring 
in the TBox are called primitive concepts. Note that we al­
low for cyclic dependencies between the defined concepts, 
i.e., the definition of A may refer (directly or indirectly) to 
A itself. An interpretation X is a model of the TBox T i f f 
it satisfies all its concept definitions, i.e., for all 
definitions 

The semantics of (possibly cyclic) we have 
just defined is called descriptive semantic by Nebel [1991]. 

For some applications, it is more appropriate to interpret 
cyclic concept definitions with the help of an appropriate fix-
point semantics. Before defining least and greatest fixpoint 
semantics formally, let us illustrate their effect on an exam­
ple. 
Example 1 Assume that our interpretations are graphs where 
we have nodes (elements of the concept name Node) and 
edges (represented by the role edge), and we want to define 
the concept I node of all nodes lying on an infinite (possibly 
cyclic) path of the graph. The following is a possible defini­
tion of Inode: 

Now consider the following interpretation of the primitive 
concepts and roles: 

Where there 
are four possible ways of extending this interpretation of the 
primitive concepts and roles to a model of the TBox consist­
ing of the above concept definition: Inode can be interpreted 
by M U N, M, N, or Al l these models are admissible 
w.r.t. descriptive semantics, whereas the first is the gfp-model 
and the last is the lfp-model of the TBox. Obviously, only 
the gfp-model captures the intuition underlying the definition 
(namely, nodes lying on an infinite path) correctly. 

It should be noted, however, that in other cases descrip­
tive semantics appears to be more appropriate. For example, 
consider the definitions 

With respect to gfp-semantics, the defined concepts Tiger and 
Lion must always be interpreted as the same set whereas this 
is not the case for descriptive semantics.l 

Before we can define lfp- and gfp-semantics formally, we 
must introduce some notation. Let T be an con­
taining the roles the primitive concepts Nprim and the 
defined concepts . . A primitive inter­
pretations J for T is given by a domain , an interpreta­
tion of the roles . by binary relations 
and an interpretation of the primitive concepts 
by subsets . Obviously, a primitive interpretation 
differs from an interpretation in that it does not interpret the 
defined concepts in We say that the interpretation X 
is based on the primitive interpretation J i f f it has the same 
domain as J and coincides with J on Nrole and Nprim. For 
a fixed primitive interpretation J, the interpretations X based 
on i t are uniquely determined by the t u p l e o f 
the interpretations of the defined concepts in , We define 

lnt{J) := {X I X is an interpretation based on J}. 

Interpretations based on J can be compared by the following 
ordering, which realizes a pairwise inclusion test between the 

'This example is similar to the "humans and horses" example 
used by Nebel [ 1991 ] to illustrate the difference between descriptive 
semantics and gfp-semantics in ACM. 
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respective interpretations of the defined concepts: if 
Int(J), then 

It is easy to see that induces a complete lattice on Jnt(J), 
i.e., every subset of Int (J) has a least upper bound (lub) and 
a greatest lower bound (gib). Using Tarski 's fixpoint theorem 
[Tarski, 1955] for complete lattices, it is not hard to show 
[Nebel, 1991] that, for a given primitive interpretation J, 
there is always a greatest and a least model of 
T based on J. We call these models respectively the greatest 
fixpoint model (gfp-model) and the least fixpoint model (lfp-
model) of T. Greatest (least) fixpoint semantics considers 
only gfp-models (lfp-models) as admissible models. 

Definition 2 Let T be an £L-TBox and A, B be defined con­
cepts2 occurring in T. Then, 

• A is subsumed by B w.r.t. descriptive semantics 
B) i ff. holds for all models I of T. 

• A is subsumed by B w.r.t. gfp-scmantics 
iff _ holds for all gfp-models X of T. 

• A is subsumed by B w.r.t. lfp-semantics 
iff holds for all lfp-models 1 of T. 

We wil l show in the following that all three subsumption 
problems are decidable in polynomial time. To do this, we 
represent EL-TBoxes as graphs. 

3 Description graphs and simulations 
£L-TBoxes as well as primitive interpretations can be rep­
resented as description graphs. Before we can translate £L-
TBoxes into description graphs, we must normalize them. In 
the following, let T be an Ndef the defined con­
cepts of T, Nprim the primitive concepts of T, and Nrol€ the 
roles of T. 

We say that the is normalized iff 
implies that D is of the form 

Since there is a polynomial translation of general TBoxes 
into normalized ones [Baader, 2002], one can restrict the at­
tention to normalized TBoxes. Thus, we wil l assume that 
all TBoxes are normalized. Normalized £L-TBoxes can 
be viewed as graphs whose nodes are the defined concepts, 
which are labeled by sets of primitive concepts, and whose 
edges are given by the existential restrictions. For the rest of 
this section, we f ix a n o r m a l i z e d w i t h primitive 
concepts defined c o n c e p t s a n d roles 
Definition 3 An £ C-description graph is a graph G = 
{V,E,L) where 

• V is a set of nodes; 
2Obviously, we can restrict the attention to subsumption between 

defined concepts since subsumption between arbitrary concept de­
scriptions can be reduced to this problem by introducing definitions 
for the descriptions. 

• is a set of edges labeled by role 
names; 

• is a function that labels nodes with sets 
of primitive concepts. 

The normalized TBox T can be translated into the follow­
ing £ L-description graph 

• the nodes of GT are the defined concepts of T; 
• if A is a defined concept and 

its definition in T, then 

Any primitive interpretation can be trans­
lated into the following EL-description graph Gj = 

• the nodes of Gj are the elements of 

The translation between £L-TBoxes (primitive interpreta­
tions) and £L-description graphs works in both directions, 
i.e., any EL-description graph can also be view as an £L-
TBox (primitive interpretation). 

Simulations are binary relations between nodes of two £C-
description graphs that respect labels and edges in the sense 
defined below. 

Definition 4 
description graphs. The binary relation 
simulation from Gi to G-i i f f 

It is easy to see that the set of all simulations from G\ to G2 
is closed under arbitrary unions. Consequently, there always 
exists a greatest simulation from G1 to G2- If G1, G2 are finite, 
then this greatest simulation can be computed in polynomial 
time [Henzinger et a/., 1995]. The following proposition is 
an easy consequence of this fact (see [Baader, 2002]). 

Propositions Let G1,G2 be two finite EL-description 
graphs, V1 a node of G\ and V2 a node of G2. Then we 
can decide in polynomial time whether there is a simulation 

4 Subsumption w.r.t gfp-semantics 
In the following, let T be a normalized EL-TBox with primi­
tive concepts Nprim, defined concepts Ndef, and roles Nrole. 
Before characterizing subsumption w.r.t. gfp-semantics, we 
give a characterization of when an individual of a gfp-model 
belongs to a defined concept in this model. 

DESCRIPTION LOGICS 327 



Proposition 6 Let J be a primitive interpretation and X the 
gfp-model of T based on J. Then the following are equiva-
lent for any. 

2. There is a simulation 
This proposition (whose proof can be found in [Baader, 

2002]), can now be used to prove the following characteriza­
tion of subsumption w.r.t. gfp-semantics in 
Theorem 7 Let T be an £C-TBox and A, B defined concepts 
in T. Then the following are equivalent: 

1. A C g f , r B. 

2. There is a simulation Z: GT ~ GT WITH (B, A) E Z. 

Proof (2 => 1) Assume that the simulation Z: GT ~ GT
 sa t" 

isfies . Let J be a primitive interpretation and I 
the gfp-model of T based on J. We must show that x € A1 

implies x € BI. 
By Proposition 6, implies that there is a simulation 

such that (A, x) Y. It is easy to show that the 
composition X :— Z o Y is a simulation from such 
that (B, x) X. By Proposition 6, this implies 

(1 => 2 ) Assume t h a t W e consider the graph 
£7r> and view it as an description graph of a primitive 
interpretation. Thus, let J be the primitive interpretation with 
GT = GJ and let I be the gfp-model of T based on J. 

Since the identity is a simulation Id: GT GT = Gj that 
satisfies , Proposition 6 yields A A1. But then 

B implies A , and thus Proposition 6 yields 
the existence of a simulation such that 
(B,A) Z. D 

The theorem together with Proposition 5 shows that sub-
sumption w.r.t. gfp-semantics in is tractable. 
Corollary 8 Subsumption w.r.t. gfp-semantics in can be 
decided in polynomial time. 
Example 9 Consider the TBox T consisting of the following 
concept definitions: 

The £ L-description graph GT corresponding to this TBox can 
be found in Figure 1. Let VT - {A, A',B, C, D} denote the 
set of nodes of this graph. Then is a simulation 
from GT to GT- Consequently, all the defined concepts in T 
subsume each other w.r.t. gfp-semantics. 

5 Subsumption w.r.t. Ifp-semantics 
For the sake of completeness, we also treat lfp-semantics. 
It should be noted, however, that the results of this section 
demonstrate that lfp-semantics is not interesting in 

Let T be an and GT THE corresponding 
description graph. Where A,B are nodes of GT, We write 

B to denote that there is a path in GT from AtoB, 
and B to denote that there is a non-empty path in GT 
from A to B. We define the set as 

there exists a node B such that 

Figure 1: The £L-description graph GT of Example 9. 

i.e., CycT consists of the nodes in GT that can reach a cyclic 
path in GT• The following proposition is an easy consequence 
of the definition of lfp-semantics and of (see [Baader, 
2002]). 

Proposition 10 Let T be an £C-TBox and A a defined con­
cept i n T . t h e n A i s unsatisfiable w.r.t. lfp-
semantics, i. e., holds for all Ifp-models X of T. 

In Example 9, all the defined concepts belong to CycT, and 
thus they are all unsatisfiable w.r.t. lfp-semantics. 

Since all the defined concepts in Cycr are unsatisfiable, 
their definitions can be removed from the TBox without 
changing the meaning of the concepts not belonging to CycT. 
(Their definition cannot refer to an element of Cycr.) This 
leaves us with an acyclic terminology, on which gfp- and lfp-
semantics coincide [Nebel, 1991]. Thus, subsumption w.r.t. 
lfp-semantics in £L can be reduced to subsumption w.r.t. gfp-
semantics. 

Corollary 11 Subsumption w.r.t. lfp-semantics in £C can be 
decided in polynomial time. 

6 Subsumption w.r.t. descriptive semantics 
Let T be an £L-TBox and GT the corresponding £L-
description graph. Since every gfp-model of T is a model 
of T, implies Consequently, 

implies that there is a simulation Z: GT ~ GT with 
(B , A) Z. In the following we will show what additional 
properties the simulation Z must satisfy for the implication 
in the other direction to hold. 

To get an intuition on the difference between gfp- and de­
scriptive semantics, let us consider Example 9. With respect 
to gfp-semantics, all the defined concepts of T are equivalent 
(i.e., subsume each other). With respect to descriptive seman­
tics, A, B, D are still equivalent, C is equivalent to A', but A' 
is not equivalent to B, and C and D are also not equivalent 
(in both cases, the concepts are not even comparable w.r.t. 
subsumption). 

To see that C and A' are equivalent w.r.t. descriptive se­
mantics, it is enough to note that the following identities hold 
in every model X of T: .A similar 
argument shows that B and D are equivalent. In addition, 
equivalence of C and A' also implies equivalence of A and 
B. The following model of T is a counterexample to the 
other subsumption relationships: 
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Figure 2: A (B , i4)-simulation chain. 

We will see below that the reason for A! and B not being 
equivalent is that in the infinite path in Gr starting with Af, 
one reaches D with an odd number of edges, whereas C is 
reached with an even number; for the path starting with B, 
it is just the opposite. In contrast, the infinite paths starting 
respectively with A and B "synchronize" after a finite number 
of steps. To formalize this intuition, we must introduce some 
notation. 

Consider the T Box T and the simulation Z introduced in 
Example 9. Then 

is a (B, A-simulation chain w.r.t. Z, and 

is a (B, A'-simulation chain w.r.t. Z. Note that the first chain 
synchronizes after a finite number of steps in the sense that 
there is a Z-link between the same defined concept. In con­
trast, the second chain does not synchronize in this sense. 

If (B , A) Z, then (S2) of Definition 4 implies that, for 
every infinite path p1 starting with B0 := B, there is an infi­
nite path p2 starting with A0 := A such thatpi is Z-simulated 
by p2. In the following we construct such a simulating path 
step by step. The main point is, however, that the decision 
which concept An to take in step n should depend only on 
the partial (B,,4)-simulation chain already constructed, and 
not on the parts of the path p1 not yet considered. 
Definition 13 A partial (B,A)-simulation chain is of the 
form depicted in Figure 3. A selection function S for A, B 
and Z assigns to each partial (B, A-simulation chain of this 
form a defined concept An such that is an 
edge in Gr and (Bn, An) Z. 

Given a p a t h _ • • • and a 
defined concept A such that one can use a selec­
tion function 5 for A, B and Z to construct a Z-simulating 
path. In this case we say that the resulting (B , A-simulation 
chain is S-selected. 

Figure 3: A partial (B , A)-simulation chain. 

Definition 14 The simulation is called (B, ,4)-
synchronized i ff there exists a selection function S for A, B 
and Z such that the following holds: for every infinite S-
selected (B, A)-simulation chain of the form depicted in Fig­
ure 2 there exists an i 0 such that 

We are now ready to state our characterization of subsump-
tion w.r.t. descriptive semantics (see [Baader, 2002] for the 
proof). 

Theorem 15 Let T be an and A, B defined con­
cepts in T. Then the following are equivalent: 

7. 

2. There is a (B,A)-synchronizedsimulation 
such that (B , A) Z. 

It remains to be shown that property (2) of the theorem can 
be decided in polynomial time. To this purpose, we construct 
a simulation Y such that (2) of Theorem 15 is equivalent to 
(B,A) € Y (see [Baader, 2002] for the proof that this is 
indeed the case): 
We define Y := (J 

Un>o Yn, where the relations Yn are defined 
by induction on n: Y0 is the identity on the nodes of GT- If 
Yn is already defined, then 

The relation Y can obviously be computed in time polyno­
mial in the size of GT- By using the techniques employed 
to decided Horn-SAT in linear time [Dowling and Gallier, 
1984], it is not hard to show that Y can actually be computed 
in time quadratic in the size of GT 

Corollary 16 Subsumption w.r.t. descriptive semantics in 
can be decided in polynomial time. 

An alternative way for showing the polynomiality result 
would be to reduce the existence of a (B , A)-synchronized 
simulation Z satisfying (B , A) Z to the strategy problem 
for a certain two-player game with a positional winning con­
dition. The existence of a winning strategy is in this case a 
polynomial time problem [Gradel, 2002]. 

7 Future and related work 
We have seen that subsumption in with cyclic terminolo­
gies is polynomial for the three types of semantics introduced 
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by Nebel [1991]. In some applications, it would be interest­
ing to have a mix of all three semantics, and it remains to 
be seen whether the polynomial i ty results also hold in such a 
setting (which would correspond to a restriction of the modal 

-calculus [Kozen, 1983]). 
Sub-Boolean DLs (l ike C) have attracted renewed at­

tention in the context of so-called non-standard inferences 
[Kiisters, 2001] l ike computing the least common subsumer 
and the most specific concept. In [Baader, 2003] we have 
shown that the characterization of subsumption in C w.r.t. 
gfp-semantics also yields an approach for computing the least 
common subsumer in w.r.t. gfp-semantics. In addit ion, 
we have extended the characterization of subsumption in £L 
w.r.t. gfp-semantics to the instance problem, and have shown 
how this can be used to compute the most specific concept. 

Simulations and bisimulations play an important role in 
modal logics (and thus also in description logics). How­
ever, unti l now they have mostly been considered for modal 
logics that are closed under all the Boolean operators, and 
they have usually not been employed for reasoning in the 
logic. A notable exception are [Kurtonina and de Ri jke, 1997; 
1999], where bisimulation characterizations are given for 
sub-Boolean Modal Logics and DLs. However, these charac­
terizations are used to give a formal account of the expressive 
power of these logics. They are not employed for reasoning 
purposes. 

In [Baader et al, 1999], subsumption between -concept 
descriptions was characterized through the existence of ho-
momorphisms between the description trees (basically the 
syntax trees) associated w i th the descriptions. If one looks 
at the polynomial t ime algorithm for deciding the existence 
of such a homomorphism, then it is easy to see that it actually 
computes the greatest simulation between the trees. For trees, 
the existence of a homomorphism mapping the root to the root 
coincides wi th the existence of a simulation containing the 
tuple of the roots. For graphs, a similar connection does not 
hold. In fact, for graphs the existence of a homomorphism 
is an NP-complete problem. For simple conceptual graphs 
(or equivalently, conjunctive queries) the implication (con­
tainment) problem can be characterized via the existence of 
certain homomorphisms between graphs [Chein et al., 1998], 
and is thus NP-complete. 
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