
Non-Standard Reasoning Services for the
Debugging of Description Logic Terminologies

Stefan Schlobach
Language and Inference Technology, ILLC
Universiteit van Amsterdam, Netherlands

schlobac@science.uva.nl

Abstract

Current Description Logic reasoning systems pro­
vide only limited support for debugging logically
erroneous knowledge bases. In this paper we pro­
pose new non-standard reasoning services which
we designed and implemented to pinpoint logical
contradictions when developing the medical ter­
minology DICE. We provide complete algorithms
for unfoldable ACC-TBoxes based on minimisa­
tion of axioms using Boolean methods for min­
imal unsatisfiability-presening sub-TBoxes, and
an incomplete bottom-up method for generalised
incoherence-preserving terminologies.

1 Introduction
Our work was motivated by the development of the DICE1

terminology. DICE implements frame-based definitions of
diagnostic information for the unambiguous and unified clas­
sification of patients in Intensive Care medicine. The repre­
sentation of DICE is currently being migrated to an expres­
sive Description Logic (henceforth DL) to facilitate logical
inferences. Figure 1 shows an extract of the DICE terminol­
ogy. In [Cornet and Abu-Hanna, 2002] the authors describe
the migration process in more detail. The resulting DL ter­
minology (usually called a "TBox") contains axioms such as
the following, where classes (like BODYPART) are translated
as concepts, and slots (like REGION) as roles:

Developing a coherent terminology is a time-consuming
and error-prone process. DICE defines more than 2400 con­
cepts and uses 45 relations. To illustrate some of the prob­
lems, take the definition of a "brain" which is incorrectly
specified, among others, as a "central nervous-system" and
"body-part" located in the head. This definition is contradic­
tory as nervous-systems and body-parts are declared disjoint
in DICE. Fortunately, current Description Logic reasoners,

'DICE stands for "Diagnoses for Intensive Care Evaluation".
The development of the DICE terminology has been supported by
the NICE foundation.

Ronald Cornet
Academic Medical Center

Universiteit van Amsterdam, Netherlands
R.Cornet@amc.uva.nl

such as RACER [Haarslev and Moller, 2001] or FaCT [Ilor-
rocks, 1998], can detect this type of inconsistency and the
knowledge engineer can identify the cause of the problem.
Unfortunately, many other concepts are defined based on the
erroneous definition of "brain" forcing each of them to be
erroneous as well. In practice, DL reasoners provide lists of
hundreds of unsatisfiable concepts for the DICE TBox and the
debugging remains a jigsaw to be solved by human experts,
with little additional explanation to support this process.

By debugging we understand the identification and elimi­
nation of modelling errors when detecting logical contradic­
tions in a knowledge base. Debugging requires an explana­
tion for the logical incorrectness and, as a second step, its
correction. In this paper we will focus on the former as the
latter requires an understanding of the meaning of represented
concepts. We define a number of new non-standard reasoning
services to explain incoherences through pinpointing.

Our experience with debugging DICE provides some
hands-on examples for the problem at hand: take the con­
tradictory definition of brains in the DICE anatomy specifica­
tion. What information is useful for correcting the knowledge
base? First, we have to identify the precise position of errors
within a TBox; that is, we need a procedure to single out the
axioms causing the contradiction. The axioms for Brain and
CentralNenvusSystem form such a minimal incoherent sub­
set of the DICE terminology. Formally, we introduce minimal
unsatisfiability-presening sub-TBoxes (abbreviated MUPS)
and minimal incoherence-presening sub-TBoxes (MIPS) as
the smallest subsets of axioms of an incoherent terminology
preserving unsatisfiability of a particular, respectively of at
least one unsatisfiable concept. Secondly, we highlight the el­
ements of these definitions containing the faulty specification.
An axiom, e.g., NervousSystem points to
the core of the erroneously modelled knowledge. For this
purpose we define generalised incoherence-preserving termi­
nologies (GIT) as sets of incoherent axioms, which are syn-
tacticly related to the original axioms, more general and have
minimal structural complexity.

The remainder of this paper is organised as follows: Sec­
tion 2 introduces the relevant DL concepts to make the paper
self-contained. In Section 3 we introduce the new reasoning
services and provide algorithms in Section 4. The paper fin­
ishes with a discussion of the results we obtained with our
new methods on the terminology DICE.

DESCRIPTION LOGICS 355

Figure 1: An extract from the DICE terminology (frame-based).

2 Description Logics
We shall not give a formal introduction into Description Log­
ics here, but point to the new handbook [Baader et at., 2003].
Briefly, DLs are set description languages with concepts (usu­
ally denoted by capital letters), interpreted as subsets of a do­
main, and roles which are binary relations, which we denote
by small letters. In a terminological component T (called
TBox) the interpretations of concepts can be restricted to the
models of T by defining axioms of the form _ Based
on this formal model-theoretic semantics, a TBox can be
checked for incoherence, i.e., whether there are unsatisfiable
concepts: concepts which are necessarily interpreted as the
empty set in all models of the TBox. Other standard reason­
ing services include subsumption of two concepts C and D
(a subset relation w.r.t. all models of T) . Subsumption with­
out reference to a TBox is called concept subsumption and
we write . Recently, a number of non-standard rea­
soning services have been defined, such as the least common
subsumer of concepts or the minimal rewriting of concepts
(see [Kiisters, 2001] for an overview).

ACC is a simple yet relatively expressive DL with conjunc­
t i o n d i s j u n c t i o n n e g a t i o n and uni­
versal and existential quantification . A TBox
is called unfoldable if the left-hand sides of the axioms (the
defined concepts) are atomic, and if the right-hand sides (the
definitions) contain no direct or indirect reference to the de­
fined concept [Nebel, 1990].

3 Explaining Logical Incoherences
In this section we study ways of explaining incoherences in
DL terminologies. We propose to simplify a terminology T
in order to reduce the available information to the root of the
incoherence. More concretely we first exclude axioms which
are irrelevant to the incoherence and then provide simplified
definitions highlighting the exact position of a contradiction
within the axioms of this reduced TBox. We wil l call the
former axiom pinpointing, the latter concept pinpointing.

In this section we wil l formally introduce axiom and con­
cept pinpointing for a general TBox without restrictions on
the underlying representation language. In Section 4 we wil l
give algorithms for the case of unfoldable ACC-TBoxes.

3.1 Ax iom Pinpoint ing

Axiom pinpointing means identifying debugging-relevant ax­
ioms, where an axiom is relevant if a contradictory TBox be­
comes coherent once the axiom is removed or if, at least, a
particular, previously unsatisfiable concept turns satisfiable.

We will not consider assertional components in this paper.

Consider the following (incoherent) TBox 71, where A,B
and C are primitive and A\,..., A7 defined concept names:

The set of unsatisfiable concept names as returned by a DL
reasoner is {A1,A3,A6,A7}. Although this is still of man­
ageable size, it hides crucial information, e.g., that unsatisfia-
bility of A1 depends on unsatisfiability of A3 , which is inco­
herent because of the contradictions between A4 and A5. We
will use this example to explain our debugging methods.

Minimal unsatisfiability-preserv ing sub-TBoxes (MUPS)
Unsatisfiability-prcserving sub-TBoxes of a TBox T and an
unsatisfiable concept A are subsets of T in which A is unsat­
isfiable. In general there are several of these sub-TBoxes and
we select the minimal ones, i.e., those containing only axioms
that are necessary to preserve unsatisfiability.
Definition 3.1 Let A be a concept which is unsatisfiable in
a TBox T. A set T' T is a minimal unsatisfiability-
preserving sub-TBox (MUPS) of T if A is unsatisfiable in
7~\ and A is satisfiable in every sub-TBox T" V•
We will abbreviate the set of MUPS of T and A by
mups(T, A). MUPS for our example TBox T1 and its un­
satisfiable concepts are:

MUPS arc useful for relating unsatisfiability to sets of axioms
but we wil l also use them in Section 4 to calculate MIPS.
Minimal incoherence-preserving sub-TBoxes (MIPS)
MIPS are the smallest subsets of an original TBox preserving
unsatisfiability of at least one atomic concept.
Definition 3.2 Let T be an incoherent TBox.
T is a minimal incoherence-preserving sub-TBox (MIPS) of
T if T' is incoherent, and every sub-TBox is co­
herent.
We will abbreviate the set of MIPS of T by mips{T). For 71
we get three MIPS:

It can easily be checked that each of the three incoherent
TBoxes in mips(Ti) is indeed a MIPS as taking away a sin­
gle axiom renders each of the three coherent. The first one
signifies, for example, that the first two axioms are already
contradictory without reference to any other axiom, which
suggests a modelling error already in these two axioms.

356 DESCRIPTION LOGICS

Cores
Minimal incoherence-preserving sub-TBoxes identify small­
est sets of TBox axioms causing the original TBox to be
incoherent. In terminologies such as DICE, which are cre­
ated through migration from other representation formalisms,
there are several such sub-TBoxes, each corresponding to a
particular contradictory terminology. Cores are now sets of
axioms occurring in several of these incoherent TBoxes. The
more MIPS such a core belongs to, the more likely its axioms
wil l be the cause of contradictions.

Definition 3.3 Let T be a TBox. A non-empty intersection
of n different MIPS in rnips(T) (with n 1) is called a
MlPS-core ofarity n (or simply n-ary core) for T.

livery set containing precisely one MIPS is, at least, a 1-ary
core. The most interesting cores of a TBox, T, are those with
axioms that are present in as many MIPS of T as possible,
i.e., having maximal arity. On the other hand, the size of a
core is also significant, as a bigger size points to clusters of
axioms causing contradictions in combination only.

In our running example, axiom ax4 occurs both in
, which makes a core

of arity 2 for T1, which is the core of maximal arity in this
example.

3.2 Concept Pinpointing
The next step in the debugging process is to simplify the def­
initions in order to obtain more concise descriptions of errors
within an incoherent TBox.

Generalised Terminologies
Incoherence of a TBox can be regarded as an over-
specification of one or more concepts in the relevant defi­
nitions. Generalised terminologies are terminologies where
some of the definitions have been generalised.3 Furthermore,
we require generalised definitions to be syntactically related
to the original axioms. For different representation languages
and types of knowledge bases we wil l have to formally spec­
ify what we consider to be syntactically related concepts. For
the time being let us keep the definition abstract and assume
that there is such a relation rel (C, C') denoting that two con­
cepts C and C' are related. Formally, a concept C" is then
a syntactic generalisation of a concept C if rel{C, C) and

(independent of T) . Note that we have to take care
of the case when C is unsatisfiable w.r.t. T. Then C is equiv­
alent to and everything is more general. Therefore we
generalise C without referencing to the original terminology
T, i.e., we check for simple concept subsumption, only.

Now, generalised incoherence-preserving terminologies
(GITs) are TBoxes where the defining concepts of the axioms
are maximally generalised without losing incoherence.

Definition 3.4 L e t b e a n in­
coherent TBox. An incoherent TBox

is a generalised incoherence-preserving terminol-
o f T if, and only if,

• each D1 is a syntactic generalisation of

3To simplify matters we generalise the right-hand side of axioms
only as we are currently working with unfoldable TBoxes anyway.

• every TBox T" = with a syn­
tactic generalisation D" of Dt where Di Di and

is coherent.

We abbreviate the set of generalised incoherence-preserving
terminologies of a TBox T by git(T). Note that the set of
GITs of a TBox T is equivalent to the union of GITs for the
MIPS of T. Take a simple syntactic relation relating a con­
cept with the syntactic sub-concepts of its unfolded version
with the same polarity and quantifier depth.4 As this particu­
lar definition of a syntactic relation depends on unfolding the
related concepts, all but one axiom per GIT can be trivially
generalised to . Of all possible GITs we conjecture
that the simplest ones, e.g., those with syntactically minimal
generalisations, are most likely to be useful for the identifica­
tion of errors. In our experiments we use two alternative for-
malisations, the first with respect to minimal size of axioms,
the second with respect to the number of concept names oc­
curring in the GIT. Three minimal sized GITs exist for our
example TBox 71, where we only show the non-trivial ax­
ioms:

4 Debugging Unfoldable ALC-TBoxes
Practical experience has shown that applying our methods on
a simplified version of DICE can already provide valuable
debugging information. We wil l therefore only provide al­
gorithms for unfoldable ,ALC-TBoxes [Nebel, 1990] as this
significantly improves both the computational properties and
the readability of the algorithm.

4.1 Algorithms for Axiom Pointing
The calculation of MIPS depends on the MUPS only, and
we wil l provide an algorithm to calculate these minimal
unsatisfiability-preserving sub-TBoxes based on Boolean
minimisation of terminological axioms needed to close a
standard tableau ([Baader et al., 2003] Chapter 2).

Usually, unsatisfiability of a concept is detected with a
fully saturated tableau (expanded with rules similar to those
in Figure 2) where all branches contain a contradiction (or
close, as we say). The information which axioms are rele­
vant for the closure is contained in a simple label which is
added to each formula in a branch. A labelled formula has
the form (a : C)x where a is an individual name, C a con­
cept and x a set of axioms, which we wil l refer to as label. A
labelled branch is a set of labelled formulas and a tableau is a
set of labelled branches. A formula can occur with different
labels on the same branch. A branch is closed if it contains
a clash, i.e. if there is at least one pair of formulas with con­
tradictory atoms on the same individual. The notions of open
branch and closed and open tableau are defined as usual and
do not depend on the labels. We wil l always assume that any

4Thc polarity of a concept name A specifies whether A occurs
within odd or even numbers of negations, the quantifier depth is
the sequence of roles over which the concept is quantified. Such
a relation will formally be defined for unfoldable ACC-TBoxes in
Definition 4.3.

DESCRIPTION LOGICS 357

formula is in negation normal form (nnf) and newly created
formulas are immediately transformed. We usually omit the
prefix "labelled".

To calculate a minimal unsatisfiability-preserving TBox for
a concept name A w.r.t. an unfoldable TBox T we construct
a tableau from a branch B initially containing only
(for a new individual name a) by applying the rules in Figure
2 as long as possible. The rules are standard ALC-tableau
rules with lazy unfolding, and have to be read as follows:
assume that there is a tableau T = { B , B 1 , . . . , Bn) with
n+1 branches. Application of one of the rules on B yields the
t a b l e a u f o r the and {Ax)-
rule, in case of t h e - r u l e .

Once no more rules can be applied, we know which atoms
are needed to close a saturated branch and can construct a
minimisation function for A and T according to the rules in
Figure 3. A propositional formula is called a minimisa­
tion function for A and T if A is unsatisfiable in every subset
of T containing the axioms which are true in an assignment
making true. In our case axioms are used as propositional
variables in . As we can identify unsatisfiability of A w.r.t. a
set S of axioms with a closed tableau using only the axioms in
S for unfolding, branching on a disjunctive rule implies that
we need to join the functions of the appropriate sub-branches
conjunctively. If an existential rule has been applied, the new
branch B' might not necessarily be closed on formulas for
both individuals. Assume that B' closes on the individual a
but not on b. In this case min-function(a, B,T) = which
means that the related disjunct does not influence the calcula­
tion of the minimal incoherent TBox.

Based on the minimisation function minfunction(a, {(a :
(let us call it which we calculated using the rules

in Figure 3 we can now calculate the MUPS for A w.r.t. T.
The idea is to use prime implicants of A prime impli-
cant is the smallest conjunction of literals5

implying [Quine, 1952]. As is a minimisation function
every implicant of must be a minimisation function as well
and therefore also the prime implicant. But this implies that
the concept A must be unsatisfiable w.r.t. the set of axioms

is the smallest implicant
we also know that must be minimal, i.e. a
MUPS. Theorem 4.1 captures this result formally.

5Note that in our case all literals are non-negated axioms.

Theorem 4.1 Let A be a concept name, which is unsatisfi­
able w.r.t. an unfoldable ACC-TBox T. The set of prime im­
plicants of the minimisation function minJunction(a,{(a :

, T) is the set mups(T, A) of minimal unsatisfiability-
preserving sub-TBoxes of A and T.

Proof: We first prove the claim that the propositional formula
:= min function T) is indeed a minimisa­

tion function for the MUPS problem w.r.t. an unsatisfiablc
concept A and a TBox T. We show that a tableau starting on
a single branch closes on all branches by
unfolding axioms only, that are evaluated as true in an assign­
ment making true. This saturated tableau Tab* is a particu­
lar sub-tableau of the original saturated tableau Tab which we
used to calculate min-function , T) , and it is
this connection that we make use of to prove our first claim.
Every branch in the new tableau is a subset of a branch oc­
curring in the original one and we define visible formulas as
those labelled formulas occurring in both tableaux. By induc­
tion over the rules applied to saturate Tab we can then show
that each branch in the original tableau closes on at least one
pair of visible formulas. If A is unsatisfiable w.r.t. T, the
tableau starting with the branch closes w.r.t. T.
As we have shown that this tableau closes w.r.t. T on visi­
ble formulas, it follows that Tab* is closed on all branches,
which proves the first claim. By another induction over the
application of the rules in Figure 3 we can prove that is a
maximal minimisation function, which means that for
every minimisation function This proves the first part of
the proof; the first claim (and the argument from above) im­
plies that every implicant of a minimisation function identi­
fies an unsatisfiability-preserving TBox, and maximality im­
plies that prime implicants identify the minimal ones.
To show that the conjunction of every MUPS
is a prime implicant of is
trivial as is a minimisation function by defini­
tion. But as we know that minjunction(a, is
maximal we know that

which implies that must be prime
as otherwise would not be minimal. ■

Satisfiability in ACC is PSPACE-complete, and calculating
MUPS does not increase the complexity as we can construct
the minimisation function in a depth-first way, allowing us to
keep only one single branch in memory at a time. However,

358 DESCRIPTION LOGICS

we calculate prime implicants of a minimisation function the
size of which can be exponential in the number of axioms
in the TBox. Therefore, approximation methods have to be
considered in practice avoiding the construction of ful ly satu­
rated tableaux in order to reduce the size of the minimisation
functions.

From MUPS we can easily calculate MIPS, but we need
an additional operation on sets of TBoxes, called subset-
reduction. Let M = { T 1 , . . . , Tm) be a set of TBoxes. The
subset-reduction of M is the smallest subset sr(M) M
such that for all T M there is a set V sr(M) such that
'V T. A simple algorithm for the calculation of MIPS for
T now simply follows from Theorem 4.2, which is a direct
consequence of the definitions of MIPS and MUPS.

Theorem 4.2 Let T be an incoherent TBox with unsatisfiable
concepts

Checking elements of mips(T) for cores of maximal arity
requires exponentially many checks in the size of mips(T).
In practice, we therefore apply a bottom-up method searching
for maximal cores of increasing size stopping once the arity
of the cores is smaller than 2.

4.2 A l g o r i t h m s f o r C o n c e p t P i n p o i n t i n g

Calculating GITs depends on the definition of r e l (C , C). In
our case we w i l l define this syntactic relation described in
Footnote 4 including quantifier depth and polarity.

Def ini t ion 4.3 Let T be an unfoldable „AlC-T13ox. A con­
cept C" is syntactically related to a concept C (notation:
rcl(C, C')) if C" ' -(C), where the set of qualified sub-
concepts, qsr{C), is defined inductively:

Moreover, also c o n t a i n s a n d for all concepts C.

Note that we include terminological information f rom un­
folded TBox axioms in the definition of syntactic relatedness.
This choice allows us to create smaller and more concise
GITs but is non-essential. As the TBox is finite and cycle-
free, and as the concept size decreases in every recursion step,

is finite. Therefore there is only a finite set of con­
cepts related to any axiom . A simple algorithm to cal­
culate GITs for an incoherent unfoldable ALC-TBox T is
therefore:

For all MIPS M mips{T) (wi th | r m p * (T) | = m)

1. Let T' be the TBox where all axioms in T
have been replaced by

2. Calculate different TBoxes T" where an arbitrary num­
ber of axioms , ,_ have been replaced in T' by
generalised axioms , i.e., where
and for some

3. Return those incoherent TBoxes T" with minimal syn­
tactic generalisations according to the subsumption rela­
t ion, and the size or number of concept names.

The algorithm described above is a naive algorithm which
might not terminate in reasonable time on large terminolo­
gies with complex definitions as the number of syntactically
related concepts for a given concept C is exponential in the
size of C. A more efficient algorithm to calculate GITs is
based on the fact that the syntactically related concepts can
be created ordered by size starting with atomic concepts. To
find GITs of minimal size we therefore apply a bottom-up
strategy checking more and more complex terminologies for
coherence in Step 2 stopping once we find an incoherent one.

5 Evaluation
The algorithms for axiom pinpointing have been imple­
mented in JAVA using RACER, which provides the set of un­
satisfiable concepts. We evaluated the methods on both the
anatomy fragment of D ICE and the ful l D ICE terminology.
The fragment defines 529 concept names, 76 of which were
unsatisfiable at first.*' There arc 5 MIPS containing 2 axioms
each, but no axiom occurs in all MIPS. However, there is a
core of arity 3 and size 1: the axiom defining "central ner­
vous system" as a "nervous system". Note that the defini­
tion of "nervous system" is not contradictory but that its use
is erroneous, e.g., the concept brain should be defined as a
"part o f " and not as a subconcept of the concept nervous sys­
tem. For each of the 5 MIPS minimal size GITs have been
calculated, and they point to the exact position of the logi­
cal incorrectness. For the MIPS related to the error described

6Thc high number of unsatisfiable concepts is due to the fact that
the DL terminology for DICE has been created by migration from a
frame-based terminological system. In order to make the semantics
as explicit as possible a very restrictive translation has been chosen
to highlight as many ambiguities as possible. Moreover, many con­
cepts were defined as sub-concepts of unsatisfiable concepts. See
[Cornet and Abu-Hanna, 2002] for details.

DESCRIPTION LOGICS 359

in the introduction the minimal size GIT is simply Brain
NervousSystem BodyPart which, with the information that
BodyPart and NervousSystem are disjoint concepts, identifies
the erroneous specification.

The full DICE terminology defines more than 2400 con­
cepts, of which more than 750 were unsatisfiablc given
the chosen migration method. Our implemented algorithms
found the MUPS for all but 7 unsatisfiable concepts. In
these seven cases the algorithm failed on the calculation of
the prime implicants as we use a naive method in our current
implementation. Based on the correctly calculated MUPS we
approximated the set of MIPS which contained more than 350
TBoxes. We implemented an iterative approach, calculating
the core Max of size 1 with maximal arity for mips(Tdicv),
then the same for the remaining TBoxes in mips(Tdice)\Max
and so on. This way we identified 10 cores of size 1 with an
arity of 25 to 10, covering almost half of the errors. For some
of these cores we calculated GITs (by hand) which lead to the
identification of a number of modelling errors. Even though
the developed reasoning services are not yet fully integrated
into the knowledge modelling environment, they are useful to
pinpoint to the core of the logical contradiction, which is then
investigated and eliminated by a domain expert.

Although the theoretical complexity of the MUPS problem
is exponential in the size of the TBox the calculation of most
MUPS for DICE was not problematic due to the relatively
simple structure of the tableaux for the unsatisfiability proofs.
Runtime analysis suggests that most CPU-time is spent by
RACER identifying the unsatisfiable concepts, whereas com­
puting MUPS usually takes less than 10 percent of the overall
runtime7.

6 Conclusion & Further Work
Explanation has been a research topic right from the first
days of research in Artificial Intelligence (e.g., introducing
TMS [Doyle, 1979] or Diagnosis [Reiter, 1987]) and The­
orem Proving (recently [Fiedler, 2001]). Despite a signifi­
cant interest in explanation of DL reasoning recently shown
in the DL community (as [DIG, 2002] suggests) relatively lit­
tle work has been published on the subject. One exception is
[McGuinness, 1996] where the author provides explanation
for subsumption and non-subsumption. Her approach, based
on explanation as proof fragments, uses structural subsump­
tion for CLASSIC and has been extended to AlC-tableau
reasoning in [Borgida et al, 1999]. In contrast to this ap­
proach, our non-standard reasoning services for axiom and
concept pinpointing focus on the reduction of information,
and are independent of particular calculi or implementations.

We have introduced non-standard reasoning services facil­
itating the debugging of logically incoherent DL terminolo­
gies and algorithms to calculate them. Whereas the ideas
for axiom pinpointing are more evolved and efficiently im­
plemented, only a relatively naive algorithm for concept pin­
pointing has been developed as yet. We are currently working
on more efficient methods and alternative debugging services,
and tests are under way on the DICE terminology.

7For the full DICE terminology the overall runtime to calculate
MIPS is currently about 40 minutes on a PC with a 1 GHz Pentium.

As our methods are developed for the particular applica­
tion of the DICE terminology some restrictions apply, most
importantly to use ACC and to consider unfoldable TBoxes,
only. Neither is essential, and we conjecture that it is not too
hard to extend our algorithms to find MIPS and GITs both for
more expressive languages and for general TBoxes. Both is­
sues will be addressed in future investigations. Further work
must also extend the application domain to other terminolo­
gies as we believe that the success we have with debugging
DICE is not tied to the structure of this particular represen­
tation. Of particular interest should be applications related
to the Semantic Web effort as our methods are particularly
geared to support the debugging of existing terminologies and
logical contradictions caused by migration or merging of ter­
minologies.

References
[Baader et a/.,2003] F. Baader, D. Calvanese, D. McGuin­

ness, D. Nardi, and P. Patel-Schneider, editors. The De­
scription Logic Handbook. Cambridge University Press,
2003.

[Borgida et al, 1999] A. Borgida, E. Franconi, I. Horrocks,
D. McGuinness, and P. Patel-Schneider. Explaining ACC
subsumption. In DL-99, pages 37-40, 1999.

[Cornet and Abu-Hanna, 2002] R. Cornet and A. Abu-
Hanna. Evaluation of a frame-based ontology. A
formalization-oriented approach. In Proceedings of
MIE2002, Studies in Health Technology & Information,
volume 90, pages 488-93, 2002.

[DIG, 2002] Minutes of the DL Implementation Group-
Workshop, 2002. http://dl.kr.org/dig/minutes-
012002 . h tm l , visited on January 9, 2003.

[Doyle, 1979] J. Doyle. A truth maintenance system. Artifi-
cial Intelligence, 12(3):231-272,1979.

[Fiedler, 2001] A. Fiedler. Prex: An interactive proof ex­
plainer. In R. Gore, A. Leitsch, and T. Nipkow, editors,
IJCAR 2001, number 2083 in LNAI, pages 416-420,2001.

[Haarslev and Moller, 2001] V. Haarslev and R. Moller.
RACER system description. In R. Gore, A. Leitsch, and
T. Nipkow, editors, IJCAR 2001, number 2083 in LNAI,
2001.

[Horrocks, 1998] I. Horrocks. The FaCT system. In
H. de Swart, editor, Tableaux'98, number 1397 in LNAI,
pages 307-312, 1998.

[Kusters, 2001] R. Kiisters. Non-Standard Inferences in De­
scription Logics, volume 2100 of LNAI. 2001.

[McGuinness, 1996] Deborah McGuinness. Explaining Rea­
soning in Description Logics. PhD thesis, Department of
Computer Science, Rutgers University, 1996.

[Nebel, 1990] B. Nebel. Terminological reasoning is inher­
ently intractable. AI, 43:235-249, 1990.

[Quine, 1952] W.V. Quine. The problem of simplifying truth
functions. American Math. Monthly, 59:521-531,1952.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32:57-95, 1987.

360 DESCRIPTION LOGICS

