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Abstract 
In this paper we describe a case study in which we 
applied an approach to qualitative machine learning 
to induce, from system's behaviour data, a qual­
itative model of a complex, industrially relevant 
mechanical system (a car wheel suspension sys­
tem). The induced qualitative model enables nice 
causal interpretation of the relations in the mod­
elled system. Moreover, we also show that the 
qualitative model can be used to guide the quantita­
tive modelling process leading to numerical predic­
tions that may be considerably more accurate than 
those obtained by state-of-the-art numerical mod­
elling methods. This idea of combining qualitative 
and quantitative machine learning for system iden­
tification is in this paper carried out in two stages: 
(1) induction of qualitative constraints from sys­
tem's behaviour data, and (2) induction of a numer­
ical regression function that both respects the qual­
itative constraints and fits the training data numer­
ically. We call this approach Q2 learning, which 
stands for Qualitatively faithful Quantitative learn­
ing. 

1 Introduction 
It is generally accepted that qualitative models are easier to 
understand and reason about than quantitative models. Qual­
itative models thus provide a better basis for the explanation 
of phenomena in a modelled system than numerical models. 
In this paper we describe a case study in which we applied 
an approach to qualitative machine learning to induce, from 
system's behaviour data, a qualitative model of a complex, in­
dustrially relevant mechanical system (a car wheel suspension 
system). The induced qualitative model enables nice causal 
interpretation of the relations among the variables in the sys­
tem. This is precisely as one would expect from a qualitative 
model. More surprisingly, however, we also show in this case 
study that the qualitative model can be used to guide the quan­
titative modelling process that may lead to numerical predic­
tions that are considerably more accurate than those provided 
by state-of-the-art numerical modelling methods. 

Thus the main message of this paper is that a combination 
of methods for qualitative and quantitative system identifica­

tion has good chances to attain significant improvements over 
numerical system identification techniques, including tech­
niques of numerical machine learning methods, such as re­
gression trees [Breiman et ai, 1984] and model trees [Quin-
lan, 1992]. The potential improvements are in two respects: 
first, the predictions are qualitatively consistent with the prop­
erties of the modelled system, and in addition they are also 
numerically more accurate. 

This idea of combining qualitative and quantitative ma­
chine learning for system identification is in this paper carried 
out in two stages. First, induce qualitative constraints from 
system's behaviour data (training data) with program QUIN 
(overviewed in Section 3). Second, induce a numerical re­
gression function that both respects the qualitative constraints 
and fits well the training data numerically (called Qualitative 
to Quantitative transformation or Q2Q for short, described in 
Section 4). We call this approach Q2 learning, which stands 
for Qualitatively faithful Quantitative learning. To underline 
the importance of qualitative fidelity, we illustrate in Section 
2 some problems that numerical learners typically have in re­
spect of qualitative consistency. In Section 5 we present the 
case study in applying Q2 to the chosen problem of modelling 
car suspension. 

There are several approaches to learning qualitative models 
from numerical data that may support alternative approaches 
to Q2 learning. These include the program QMN [Dzeroski 
and Todorovski, 1995], QSI [Say and Kuru, 1996], SQUID 
[Kay et al, 2000], and QOPH [Coghill et al, 2002]. 

2 Qualitative difficulties of numerical learning 
Consider a simple container of cylindrical shape and a drain 
at the bottom. If we fill the container with water, the wa­
ter drains out. Water level monotonically decreases, until it 
reaches zero. Suppose we fill the container with water, and 
measure initial outflow and the time behaviour 
of water level . Since this is a rather simple behaviour, 
one would naturally expect that machine learning techniques 
should be able to fairly well predict time behaviour of water 
level if enough learning examples are given. Quite surpris­
ingly, even in such simple cases, the usual numerical pre­
dictors can give strange and qualitatively unacceptable pre­
dictions. We illustrate the problems with a simple experi­
ment, using well-known techniques for numerical prediction: 
model trees and locally weighted regression. 
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Figure 1: M5 predictions of water outflow: empty circles are 
M5 predictions of level on a test set with = 7.5. 
Other dots are the the learning examples. Note that M5 pre­
dicts that water level increases at time 

In our experiment we used container outflow simulation 
data to evaluate how different numerical predictors learn the 
time behaviour of water level. The outflow from a container 
is where c is a parameter depending on the 
area ot the drain. For the simulation we used Euler integra­
tion where seconds and 

We used six example sets, generated with different 
initial water levels and initial outflows 6. 
An example set has 20 examples corresponding 
to 19 seconds of simulation. 

We used the Weka [Witten and Frank, 2000J implemen­
tations of locally weighted regression lAtkeson et al, 1997] 
(LWR, for short), and M5 regression and model trees [Quin-
lan, 1992] to learn the time behaviour of level given the initial 
outflow, i.e. One example set was used as a 
test set and other five sets (100 examples) for learning. When 
the test set was the set with M5 with the default pa­
rameters induced a model tree with 9 leaves. Figure 1 shows 
the learning examples and the M5 prediction of level on 
a test set. Note that M5 predicts that water level increases at 
time The same happens if we change the pruning pa­
rameter. This is of course qualitatively unacceptable as water 
level can never increase. Also, there are no learning examples 
where water level increases. 

One might think that this is an isolated weird case or M5 
bug. But it is not. LWR makes a similar qualitative error 
on the test set with = 11.25, when it predicts that water 
level increases at Of course, LWR predictions depend on 
its parameter i.e. the number of neighbors used, but often 
the appropriate that doesn't give qualitative errors on one 
container, gives qualitative errors when learning from similar 
data but with different area of the drain. Often, the errors 
are even more obvious if we make predictions at the edges of 
the space covered by learning examples, i.e. using as test set 

= 6.25 or = 12.5. As one would expect, regression 
trees make similar qualitative errors. 

We believe that other numerical predictors make similar 
qualitative errors, at least in more complex domains. This 
might be quite acceptable in applications where we just want 
to minimize numerical prediction errors. But often it is also 
important to respect qualitative relations that are either given 

Figure 2: A qualitative tree induced from a set of examples 
for the function Z = X2 - Y2. The rightmost leaf, applying 
when attributes A' and Y are positive, says that Z is strictly 
increasing in its dependence on A' and strictly decreasing in 
its dependence on} ' . 

in advance or hidden in the data. Ignoring them results in 
clearly unrealistic predictions that a domain expert would not 
approve. The idea of this paper is to use such qualitative re­
lations, either given or induced from data, not only to avoid 
qualitatively incorrect predictions, but also to improve the ac­
curacy of numerical prediction. 

3 Qualitative data mining with QUIN 
QU1N (Qualitative Induction) is a learning program that 
looks for qualitative patterns in numerical data [Sue, 2001; 
Sue and Bratko, 2001; 2002]. Induction of the so-called qual­
itative trees is similar to induction of decision trees. The dif­
ference is that in decision trees the leaves are labelled with 
class values, whereas in qualitative trees the leaves are la­
belled with what we call qualitatively constrained functions. 

Qualitatively constrained functions (QCFs for short) are a 
kind of monotonicity constraints that are widely used in the 
field of qualitative reasoning. A simple example of QCF is: 
Y = A / + (A"). This says that Y is a monotonically increasing 
function of A. In general, QCFs can have more than one ar­
gument. For example, Z = M + , - ( A , Y) says that Z mono­
tonically increases in A and decreases in Y. We say that 
Z is positively related to X and negatively related to Y If 
both A and Y increase, then according to this constraint, Z 
may increase, decrease or stay unchanged. In such a case, a 
QCF cannot make an unambiguous prediction of the qualita­
tive change in Z. 

QUIN takes as input a set of numerical examples and looks 
for qualitative patterns in the data. More precisely, QUIN 
looks for regions in the data space where monotonicity con­
straints hold. Such a set of qualitative patterns are represented 
in terms of a qualitative tree. As in decision trees, the inter­
nal nodes in a qualitative tree specify conditions that split the 
attribute space into subspaces. In a qualitative tree, however, 
each leaf specifies a QCF that holds among the input data that 
fall into that leaf. For example, consider a set of data points 
(Xy,Z) where Z = X2 - Y2 possibly with some noise 
added. When QUIN is asked to find in these data qualitative 
constraints on Z as a function of X and Y, QUIN generates 
the qualitative tree shown in Figure 2. This tree partitions the 
data space into four regions that correspond to the four leaves 
of the tree. A different QCF applies in each of the leaves. The 
tree describes how Z qualitatively depends on A and Y. 

QUIN constructs a tree in the top-down greedy fashion, 
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similarly to decision tree induction algorithms. A more elab­
orate description of the QUIN algorithm and its evaluation 
on a set of artificial domains is given elsewhere [Sue, 2001; 
Sue and Bratko, 2001 ]. QUIN has been applied to qualitative 
reconstruction of human control strategies [Sue, 2001], and 
to reverse engineer a complex industrial controller for gantry 
cranes [Sue and Bratko, 2002]. 

4 Q2Q transformation 

In this section we describe the qualitative-to-quantitative 
transformation (Q2Q for short). Given a set of numerical data 
and a qualitative tree, Q2Q attempts to find a regression func­
tion that fits the data well numerically, and also respects the 
qualitative constraints in the tree. We say that such a regres­
sion function is qualitatively consistent. In fact, Q2Q finds a 
qualitatively consistent regression function with good fit for 
each leaf in the tree separately. The overall regression func­
tion is then obtained by gluing together the regression func­
tions for the leaves. 

The Q2Q procedure is as follows. First, we partition the 
learning examples according to the leaves of the qualitative 
tree. These subsets are then used for learning qualitatively 
consistent functions of the corresponding leaves. Let us focus 
on learning a qualitatively consistent function for some par­
ticular leaf. Suppose we have a leaf with the qualitative con­
straint We then have to find some monotonically 
increasing function that fits the data well. One straightfor­
ward solution, used in Q2Q, is to divide the range of variable 

with a number of equidistant points (i.e. 
in which we learn from the given data the function values y. 
The result is a set of pairs that defines 
a piece-wise linear function which can be easily checked for 
compliance with the given qualitative constraint. This proce­
dure can be generalized to qualitative constraints of any di­
mension. 

In our implementation the function values yi were deter­
mined with a standard version of locally weighted regression 
(LWR) [Atkeson et ai, 1997], which used Gaussian weight­
ing function. Therefore, the two parameters of the transfor­
mation were the number of equidistant points per dimension 

and the kernel size of the Gaussian weight­
ing function A l l possible combina­
tions of these two parameters (4*6=24) define the space of 
all candidate piece-wise linear functions for each leaf. These 
sets of candidate functions are exhaustively searched by Q2Q 
to find functions that satisfy given qualitative constraints. For 
each leaf, Q2Q selects among these qualitatively consistent 
piece-wise linear functions one that has best fit with the data 
that fall into this leaf. Quality of the fit is measured with root 
mean squared error, RMSE for short. It is theoretically pos­
sible that none of the candidate functions is qualitatively con­
sistent with the QCF in the leaf. In such a case the Q2Q pro­
cedure would fail to find a qualitatively consistent regression 
function. Although in our experiments this never happened, 
we are working on an improved version of Q2Q that is guar­
anteed to find a qualitatively consistent regression function. 

Figure 3: Intec wheel model: wheel position is given by 
and coordinates of the wheel center, and rotation angles 

about axes and called enforced wheel-spin angle 
camber and toe angle a, respectively. These are affected 
by horizontal forces and elevation of the road R and 
rotational moment that act upon the tyre. 

5 Intec case study 
5.1 Intec wheel model 
In this section we present an application of Q2 learning to the 
modelling of car wheel suspension system. This is a com­
plex mechanical system of industrial relevance. The model 
and simulation software used in this experiment were pro­
vided by a German car simulation company Intec. The main 
role of the application in this paper is to provide a controlled 
experiment to assess the potentials of Q2 learning on a mod­
elling problem of industrial complexity. However, although 
the target model was already known and developing such a 
model was not an issue of practical relevance, initially this 
case study was nevertheless motivated by a practical objec­
tive. Namely, the complexity of Intec's model is so high that 
it cannot be simulated on the present simulation platform in 
real time. Therefore the practical objective of the application 
of Q2 learning was to speed up the wheel simulation. The 
goal thus was to obtain a simplified wheel model that would 
still be sufficiently accurate and at the same time significantly 
simpler than the original model to allow real-time simulation. 
Indeed, the simplified model obtained with Q2 is computa­
tionally trivial compared with the original model. 

The Intec wheel model (shown in Figure 3) is a multi-body 
model of a front wheel suspension built in compliance with 
the physical model assuming no car-body movement and no 
wheel-spin. In fact, the suspension system is modelled as if 
the car-body is fixed. Wheel position is given by and 
coordinates of the wheel center. Because the flexible joints in 
multi-body suspension system that links the wheel to the car-
body allow several levels of displacements, rotation angles 
about axes and are also measured. These are called 
enforced wheel-spin angle camber and toe angle re­
spectively. 

The multi-body simulation software Simpack [Intec, 2002] 
was used to set up the model and to generate simulation 
traces. During simulation, a number of elements are act­
ing upon the tyre: two horizontal forces and vertical 
movement (measured as elevation of the road R) and rota-
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Figure 4: A typical simulation trace of the Intec wheel model: 
the input variables are on the upper graph, the output variables 
(except that changes the same as road R) are on the lower 
graph, axis is time in steps dt=0.7 seconds. Note the com­
plex behaviour of the output variables resulting from changes 
in Fx and road R. 

tional moment . For example, is acting upon the tyre 
when braking, when driving through corners (centripetal 
force) and rotational moment when parking the car. 

During the simulation, input and output variables are 
logged to a file called simulation trace. We used traces of 
wheel simulation with different trajectories of input vari­
ables. Each trace lasted for 70 seconds, and was sampled 
with seconds. In this way a trace gives 100 examples, 
each example contains 10 values, corresponding to the values 
of four input and six output variables at a given time. Figure 
4 shows a typical simulation trace. It should be noted that all 
these traces correspond to very slow changes of input vari­
ables, and as a result the traces are illustrative mainly of the 
kinematics of the mechanism, but not also of its dynamics. 

5.2 Details of experiments 
The experiments reported in this paper were done using a 
black-box approach. We did not use any knowledge of the 
model. The simulation traces were provided by our part­
ners from Czech Technical University in the European project 
Clockwork. 

In all the experiments we used 7 traces for learning with the 
same road profile as in the trace of Figure 4. In the first learn­
ing trace all other three input variables were zero. In the next 
three traces two of the other three input variables were zero 
and one other variable was changing. Figure 
4 shows one such trace. The remaining three traces were sim­
ilar, but the trajectory of the changing variable was different, 
i.e. it first increased, stayed unchanged for 20 seconds, and 
than slowly decreased to zero. Each trace gives 100 examples, 
giving altogether 700 learning examples with 10 variables. 

The task was to learn each of the six output variables as a 
function of input variables. In this way we have six learning 
problems, where an output variable is the class and the input 
variables are the attributes. For example, angle a was learned 

The prediction accuracy was tested on 7 test traces. Al l the 

Figure 5: Induced qualitative tree for wheel center position. 

test traces have the same road profile as the traces used for 
learning, but different profiles of other three input variables, 
i.e. In the first trace all of the three input 
variables change similar as in the trace in Figure 4. This 
trace was recommended as the most critical test trace by the 
domain expert, who considered it far more difficult (all 4 in­
put variables change) than other 6 test traces where one or 
two input variables were always zero. 

5.3 Induc ing a qual i tat ive wheel model w i t h Q U I N 
As described above, QUIN was used to induce a qualita­
tive tree for each of the six output variables, where the input 
variables were the attributes. Al l of the induced qualitative 
trees had over 99 % consistency on the learning set of ex­
amples. We say that a QCF is consistent with an example 
if the QCF's qualitative prediction of the dependent variable 
does not contradict the direction of change in the example. 
The level of consistency of a qualitative tree with the exam­
ples is the percentage of the examples with which the tree 
is consistent. Consistency of 99% indicates that the induced 
qualitative model fits the data nearly perfectly. 

The simplest qualitative tree was induced for translation in 
the axis. This tree only has one leaf with QCF 
This tree has a simple and obvious explanation. It says that 
changes in the direction of the road change. If road increases 
then z increases, i.e. the wheel center moves upwards. 

Qualitative trees for translations in and axes are a bit 
more complicated. Since they have similar explanations we 
will present just the qualitative tree for translations, given 
in Figure 5. Note that is measured in the opposite direction 
as usual, i.e. positive means wheel center moving in the di­
rection of car driving backwards. Both leaves of the tree have 
the same qualitative dependence on and but differ in 
qualitative dependence on road R. The qualitative tree says 
that x is positively related to force that acts in the direc­
tion of Obviously, wheel center position changes (wheel 
moves backward or forward) in the direction of force in 
direction. Second, is negatively related to force This 
means that if we push the wheels together (we apply force in 
the direction), the wheels wil l move forward position de­
creasing). This is not so obvious, but can be understood if we 
consider the usual mechanics of wheel suspension. The qual­
itative dependence on road R is a bit more complicated. The 
qualitative tree of Figure 5 says that is negatively related to 
R when . O the rw ise is positively related to R, 
When R increases from its minimum to its maximum, wil l 
first decrease and than increase, i.e. the wheel center will first 
move forward and than backward. 

Rotations about axes and are measured by enforced 
wheel-spin camber , and toe angle respectively. For 
enforced wheel-spin QUIN induced a simple one-leaf tree 
that says Note that changes in the 
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Figure 6: Induced qualitative tree for toe angle 

direction of the tyre rotation when driving forward. Consider 
for example the dependence of on force that is positive 
during braking. Since is negatively related to increasing 

causes to decrease, i.e. during braking enforced wheel 
spin angle changes in the direction of the tyre rotation. For 
camber angle QU1N induced a qualitative tree that is similar 
to qualitative trees for and translations. 

The toe angle i.e. the rotation about -axis is effected by 
all input variables and is the most complicated. The induced 
tree is given in Figure 6. We wil l omit explanation of this 
qualitative tree, since it requires understanding of the flexi­
ble nature of the multi-body suspension system that links the 
wheel to the car-body. 

These qualitative trees give a good explanation of wheel 
suspension system behaviour. Moreover, they provide a qual­
itative model of wheel suspension system that enables quali­
tative simulation. In this way, they enable to predict all pos­
sible qualitative changes of output variables over an arbitrary 
time interval given qualitative changes of all or some input 
variables. This qualitative model also enables to improve nu­
merical predictions. 

5.4 Quali tat ive correctness of numerical predictors 
In this section we illustrate why Q2 learning may have an ad­
vantage over the usual numerical predictors. Figure 7 shows 

predicted with M5 model tree, LWR and LWR with opti­
mized parameters, on the most critical test trace, where all 
the input variables are changing simultaneously. The figure 
shows that both M5 and LWR sometimes make large errors. 
Moreover these errors are not only numerical, but also qual­
itative. Consider for example the LWR predictions at the be­
ginning of the trace. Here the predicted is decreasing, but 
the correct is increasing. This error could be avoided by 
considering the induced qualitative tree for given in Fig­
ure 6. Since at the beginning of the test trace road R is near 
zero and increasing, and all other input variables are zero, the 
second leftmost leaf of the qualitative tree applies. Its QCF 

requires increasing a since road R is 
increasing. 

As can be observed in Figure 7, M5 and LWR often make 
qualitative errors. Q2 predictions are qualitatively correct. 
The use of (induced) qualitative model enables Q2 to better 
generalize in the areas sparsely covered by the training exam­
ples, resulting in better numerical accuracy. 

5.5 Numerical accuracy of the induced models 
Here we compare the numerical accuracy of the Weka imple­
mentations of LWR, M5 model trees and Q2 learning. Al l the 

Figure 7: LWR, LWR with optimized parameters, M5 and 
Q2 predictions of on the most critical test trace. With each 
method, a at time step (on x-axis) was predicted according 
to the values of input variables at time in the test trace. 

Figure 8: Comparing accuracy (measured with RMSE) of 
Q2 and LWR with optimized parameters: the left graph com­
pares RMSE on the most difficult test trace and the right 
graph shows RMSE on the remaining test traces. 

methods learned from 7 learning traces (also used for learn­
ing of qualitative trees) and were tested against 7 test traces 
described in Section 5.2. The test results are divided in two 
groups. The first group consists of results on a single test 
trace. This trace was recommended as the most critical test 
trace by the domain expert, who considered it far more diffi­
cult (all 4 input variables are changing simultaneously) than 
the 6 test traces in the second group. 

Learning of qualitatively consistent functions in the leaves 
was performed as described in Section 4. The best fitting re­
gression functions were then taken and glued together into 
the overall induced numerical model. We compared the ac­
curacy of our Q2 method with LWR and M5. The parame­
ters of LWR were optimized for each output variable 
...) according to the RMSE criterion, through internal cross-
validation on the training set. When experimenting with M5, 
we noticed that it was grossly inferior both in terms of qual­
itative acceptability as well as numerical error. Attempts at 
optimizing M5's parameters did not help noticeably. 

Figure 8 gives the prediction accuracy for variables 
and , The predictions of the remaining variables and 

were not much affected by qualitative constraints. The results 
on the most difficult test trace (left graph in Figure 8) show 
that even our simple Q2Q method improves the numerical 
prediction on all the variables (compared to LWR). Results 
on the second test trace group are given on the right graph in 
Figure 8. As these traces were more similar to the learning 
traces, the improvement of Q2 over LWR is smaller. 
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6 Discussion 
In this paper we introduced a new approach to machine learn­
ing in numerical domains, which we call Q2 learning (quali­
tatively faithful quantitative learning). This combines the in­
duction of qualitative properties from numerical data and nu­
merical regression that respects the induced qualitative prop­
erties. We showed by an experimental case study that Q2 

learning may lead to the following advantages compared to 
the usual numerical learning: 

(1) Induced models tend to be qualitatively consistent with 
the data and therefore have better chances to correspond to 
the qualitative mechanisms in the domain of modeling. For 
example, if the amount of water in a container is decreasing, 
the level of water cannot be increasing. This is important with 
respect to the interpretation of induced models and explana­
tion of phenomena in the domain based on these models. 

(2) Qualitative consistency of induced models with learn­
ing data also affects the accuracy of the model's numerical 
predictions: numerical accuracy may be considerably im­
proved. This is illustrated by the experimental results. 

In respect of numerical prediction accuracy, in our case 
study Q2 overall outperformed all competing numerical 
learners. Among these, locally weighted regression (LWR) 
with optimized parameters (through internal cross validation 
on the training set) performed best in terms of mean squared 
error. However its performance may sharply degrade un­
der more difficult circumstances. Consider LWR-optimized 
performance on the the most difficult test set (Figure 7). 
It achieves excellent accuracy on the first part of this trace 
which is similar to data in the training sets. LWR-optimized 
accuracy there is actually better than that of Q2. However, 
problems begin for LWR in the second part of this trace where 
the input variables start to deviate considerably from the train­
ing data, and LWR's predictive error increases sharply. In this 
part of the trace, Q2 manages to largely preserve qualitative 
consistency with the true results, and maintains the numerical 
accuracy at a comparable level as in the area densely popu­
lated by training examples. 

LWR-optimized was the best among standard numerical 
learners, and therefore our presentation of experimental re­
sults largely concentrated on comparison between Q2 and 
LWR. The performance of M5 was grossly inferior both in 
terms of qualitative acceptability as well as numerical error. 
Optimizing M5's parameters did not help noticeably. 

It should be noted that qualitatively faithful regression as 
carried out by the Q2Q program is actually inferior to LWR 
as a regression method. Struggling to satisfy qualitative con­
sistency, Q2Q is limited to piece-wise linear regression with 
a small number of linear segments. This numerical inferior­
ity of Q2Q usually turns out to be more than compensated by 
preserving qualitative consistency. 

In this paper, qualitative constraints for Q2Q were induced 
from training data with QUIN. Alternatively, such constraints 
can be defined directly by a domain expert. In such a case, the 
Q'2 learning can be viewed as an approach that enables the use 
of expert's qualitative knowledge in system identification. 

Among the limitations of our realization of Q2, the prim­
itive numerical regression method in Q2Q should be noted. 

This method allows sharp changes in variable values (discon­
tinuities in the variables' derivatives) at the borders between 
leaves of a qualitative tree. Future work should include a 
method for smoothing such discontinuities. 
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