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Abstract 

A promising technique used in some planning sys­
tems to improve their performance is the use of 
domain dependent search control knowledge. We 
present a procedure for compiling search control 
knowledge, expressed declaratively in a logic, into 
the preconditions of the plan actions (operators). 
We do this within the framework of the situation 
calculus by introducing a transformation of non-
Markovian action theories into classical Markovian 
situation calculus theories. 

1 Introduction 
One of the strategies used in planning to mitigate the com­
plexity of the general problem is to employ some form of 
domain specific knowledge to assist the search for a plan. 
For instance, Hierarchical Task Network (HTN) planning 
systems [Sacerdoti, 1974; Wilkins, 1988; Erol et al, 1996] 
use domain specific procedural knowledge in the form of 
task decomposition methods. The forward-chaining planners 
TLPlan [Bacchus and Kabanza, 2000], TALPlanner [Kvarn-
strom and Doherty, 2000] and the SAT based planner SAT-
Plan [Kautz and Selman, 1998] use domain knowledge in 
the form of declarative constraints expressed in a logical lan­
guage. This strategy has been shown experimentally to yield 
remarkable improvements in performance. Both TLPlan and 
TALPlanner use control constraints expressed in the form of 
temporal logic formulas. These formulas are used to elim­
inate plan prefixes which wil l lead to a suboptimal plan or 
cannot be extended into a complete plan at all. 

Most practical planning systems use STRIPS, ADL or ex­
tensions of these to describe actions and their effects. How­
ever, the first formal specification of the classical planning 
problem, due to [Green, 1969], was postulated in the lan­
guage of the situation calculus [McCarthy, 1963]. The sit­
uation calculus has proven to be a very powerful formalism 
and has been employed in the formalization of many differ­
ent aspects of dynamical systems (see e.g. [Reiter, 2001]). 
In this paper, we use the situation calculus as our formal 
framework and consider how to incorporate search control 
into action theories. Specifically, we show that control for­
mulas with a certain syntactic form can be incorporated into 

nonMarkovian action theories in the situation calculus, as re­
cently introduced in [Gabaldon, 2002], in a similar way as 
[Lin and Reiter, 1994] treat qualification state constraints. In 
these nonMarkovian action theories, the effects and precon­
ditions of actions are not assumed to depend solely on the 
current situation, but on any past situation. This nonMarko­
vian property of the theories allows an easier incorporation of 
dynamic constraints into database specifications, a more nat­
ural and concise axiomatization of nonMarkovian operations 
like rollback in transaction systems and other domains with 
nonMarkovian properties. In this paper, we are concerned 
with another problem where these theories are useful: incor­
porating search control knowledge by treating it as dynamic, 
qualification state constraints. Dynamic in the sense that they 
may refer to the current and any past situation, as opposed 
to static state constraints which refer only to the current state. 
Moreover, they are understood as qualification constraints be­
cause they pose further restrictions on the "executability" of 
actions. (We do not consider the use of these constraints for 
expressing ramifications, i.e. indirect effects of actions.) 

Furthermore, we present a transformation from nonMarko­
vian action theories into Markovian ones. This transforma­
tion takes an action theory with nonMarkovian axioms and 
by applying regression steps and introducing additional flu­
ents and their corresponding successor state axioms, produces 
a classical Markovian theory as introduced by [Reiter, 1991 J. 
We then show how this transformation can be used for com­
piling search control knowledge into normal action precondi­
tions. This nonMarkovian to Markovian transformation pro­
cedure is of independent interest. Toward the end we extend 
this approach for theories with explicit time and close with a 
discussion. 

2 Formal Preliminaries 
In this section we give an overview of the situation calculus 
and the main definitions necessary for action theories without 
the Markov assumption. 

2.1 The Situat ion Calculus 
The situation calculus is a first order logic language with 
three basic components: actions, situations, and fluents. Ac­
tions are responsible for all the changes in the world. Situa­
tions are sequences of actions which represent possible his­
tories of the world. Fluents are properties of the world that 
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change from situation to situation as a result of the execu­
tion of actions. Formally, the language has three sorts: ac-
tiony situation and fluent. In addition to variables of these 
sorts, the language includes functions such as move 
to represent actions, a constant So and a function do\ 
for situations such as and predicates for 
representing fluents such as atLoccition\ . The 
initial situation, or empty history, is denoted by the constant 
So- Non-empty histories are built by means of the function 
do. For a complete description see [Pirri and Reiter, 1999; 
Reiter,2001]. 

A situation calculus axiomatization of a domain, includes 
the following set of axioms: 

4. Axioms describing the initial situation of the world: a 
finite set of sentences whose only situation term is the 
constant So. 

A set of these axioms, together with a set of domain inde­
pendent foundational axioms is called a (Markovian) basic 
action theory. 

2.2 A nonMarkov ian Situation Calculus 
For a basic action theory without the Markov assumption, we 
need some definitions. These are based on those in [Gabal-
don, 2002]. 

Wc will use the following abbreviations in the definitions 
to follow: 

where stands for either and variable .s appears in 
then we may write W and 
instead. 

Definition 1 (Bounded Formulas) For let be 
a term rooted at The formulas of 

bounded by o are the smallest set of formulas such 
that: 

1. If W is an atom whose situation terms are all rooted at 
then W is bounded by 

2. If W, W" are formulas bounded by situation terms 
rooted at s and , respectively, then 

W and W are formulas bounded 
by where is rooted at s and W 

3. If Wi ,W2 are formulas bounded by situation terms 
rooted at then and where 

is of sort action or object, are formulas bounded by 

The set of formulas strictly bounded by is similarly de­
fined by requiring in item (1) above that all situation terms of 
W be subterms of in item (2) that W be strictly bounded 
by a subterm of and W" by a subterm of rr; and in item (3) 
that W\, W2 be strictly bounded by subterms of 
Example 1 Past temporal logic connectives can be expressed 
in the situation calculus with strictly bounded formulas as fol­
lows: 

NonMarkovian basic action theories differ from those which 
include the Markov assumption in that preconditions and ef­
fects of actions may depend on any past situation, not only on 
the current one. 

Hence the rhs, of action precondition 
axioms in a nonMarkovian basic action theory are formulas 
bounded by situation term s which do not mention predicate 
Poss and may refer to past situations. Similarly, the rhs, 

of successor state axioms are formulas 
strictly bounded by .s. 

2.3 Regression 
For basic action theories with the Markov assumption, [Pirri 
and Reiter, 1999] define a provenly correct regression mech­
anism that takes a situation calculus sentence and, under cer­
tain restrictions on the form of this sentence, transforms it 
into an equivalent sentence whose only situation term is 5(>. 
This allows proving sentences without appealing to the foun­
dational axioms which include a second order axiom. This 
regression operator was generalized for nonMarkovian theo­
ries in [Gabaldon, 2002]. 

In a nutshell, the regression operator, denoted by 
takes a sentence and recursively replaces each flu­

ent atom by its definition according to its 
successor state axiom, i.e. by Atoms 
Poss are similarly replaced by their defini­
tions given by the action precondition axioms. Regression 
recursively replaces these atoms until all the situation terms 
are reduced to So- For lack of space we refer the reader to 
[Pirri and Reiter, 1999; Reiter, 2001; Gabaldon, 2002] for the 
formal details. 

In the transformation operator we introduce later, we 
will use a one-step version of the regression operator: 
TV stands for the regression of a sentence 
W bounded by that results in a sentence 
bounded by o. 

3 Control Knowledge and the Qualification 
Problem 

As mentioned earlier, the use of search control knowledge 
has proven to be a promising recourse for improving the per­
formance of planning systems. Both TLPlan [Bacchus and 
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Kabanza, 2000] and TALPlanner [Kvarnstrom and Doherty, 
2000] use declarative control knowledge in the form of tem­
poral logic and have shown substantial computational im­
provement. 

Since our goal is to compile search control into precon­
ditions, we express control knowledge in terms of the past, 
not the future as it is done in TLPlan and TALPlanner (this 
is further discussed in the last section). However, declarative 
search control knowledge is typically expressed in a future 
temporal logic and we believe that obtaining preconditions 
from knowledge in that form is an important problem. In the 
last section we comment on how we are approaching this. 

From the point of view of logical theories of action, such as 
the situation calculus axiomatizations we discuss in this pa­
per, taking control knowledge into account is closely related 
to the classical qualification problem [McCarthy, 1977]. This 
is the problem of determining all the conditions that need to 
be satisfied for an action to be executable and control knowl­
edge is effectively a set of additional constraints on the cxe-
cutability of actions, i.e. on what actions can be considered 
part of an executable plan. 

Lin & Reiter [1994] have considered the qualification prob­
lem for situation calculus basic action theories with state con­
straints, which are formulas of the form uniform in 
cS. Their solution is to add the qualifications to the precondi­
tion axiom of each action type: 

where R1 [Q(do(A After adding the qualifi­
cations to the precondition axioms, one can discard the con­
straints if two conditions are satisfied: all the state constraints 
hold initially, i.e. Q(So) holds for each Q\ and the domain 
closure assumption on actions is included in the theory. 

Control formulas are similar to state constraints in that they 
pose additional qualifications on actions, but they are more 
general since they may quantify over past situations. 

In the nonMarkovian situation calculus, successor state ax­
ioms and action precondition axioms can refer to past situa­
tions in addition to the current situation. This permits con­
trol knowledge to be incorporated into action precondition 
axioms in the same way Lin & Reiter do. Formally, if C(s) 
is a formula bounded by .s representing some piece of con­
trol knowledge, we take this into account by adding it as an 
additional precondition for actions: 

(1) 

Precondition axioms in nonMarkovian action theories allow 
situation terms rooted at s such as do to appear 
in their rhs, so we can add C(do(A directly without 
modification. By including the domain closure assumption on 
actions, we are then guaranteed that a situation is executable 
only if it satisfies the constraints. 

Example 2 (Logistics domain constraint) Consider a con­
straint from a logistics domain, which involves vehicles de­
livering packages to locations, saying that a truck must re­
main in a location if there is a package at that location and 
it's never been in the truck (so it hasn't just been delivered 
and needs to be moved): 

Suppose that the action precondition axiom for 
driving a truck to a location loc 

is: 

We can add the control formula as a new con­
junct in the rhs after simply replacing $ with 

In the next section, we introduce an operator which takes a ba­
sic action theory with such nonMarkovian axioms, and trans­
forms it into one with Markovian ones. 

4 Transforming a nonMarkovian Theory into 
Markovian 

In order simplify the presentation, let us first make some sim­
plifying assumptions on the form and the nesting of formulas 
on which we define the transformation. 

Formally, in reference to item (2) of Definition 1, we will 
assume that formulas are of the forms: 

(2) 

(3) 

where all ( i f any) free variables of W2 are among the free 
variables of the full formula. Other combinations of quanti­
fiers and logical connectives reduce to these two cases. The 
restriction on the free variables of W2 does make the transfor­
mation simpler. We treat the general case in the full version 
of this paper. Next, we restrict the nesting of formulas in the 
following way. By definition, W2 must itself be of the form 

where W' is bounded by s" and \Y" by s. 
We will restrict W-i by requiring it to be of the form W', 
i.e. without the conjunct W". 

Notice however that, even with this restrictions, arbitrary 
nesting of the past temporal logic abbreviations (Example 1) 
is still expressible. 

The transformation performs a combination of regression 
and of replacement of formulas by new fluents: 

ingforms: 
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Now, we can apply the transformation to a nonMarkovian 
action theory whose action precondition axioms have as an 
additional condition a constraint C(s), and obtain a Marko-
vian theory that enforces the constraint. This produces a 
theory with precondition axioms of the form: 

Theorem 2 Let C(s) be a control knowledge formula 
bounded by s and let be a nonMarkovian basic action 
theory whose precondition axioms have the form (1) and in­
cludes domain closure axioms for actions. Then, 

Example 3 Consider again the logistics domain control for­
mula from Example 2. Let and stand for premise and 
consequence, respectively. Both formulas are of form (2). 
The premise stands for: 

P1 
f< 

The result of is similar. Then the constraint be­
comes: 

Finally, we add the constraint to action precondition axioms: 

Example 4 (Closed form solution for a fluent) Consider a 
fluent F(x, s) and its closed form solution [Reiter, 2001]: 

Clearly, the rhs of the above sentence is formed by 
F and two formulas which are almost of the form (2). 
The difference is in the immediately after the existen­
tial quantifiers on situations s1,s2, which would need to be 
strict to fit form (2), and the subformulas of the form 

The latter will be simplified away. 
Further, it is easy to modify the transformation on (2) to 
handle the In general, all we need to do is replace 

with However, in this ex­
ample the one step regression won't be necessary. 

Applying the transformation to the subformula 

results in a predicate with successor state ax­
iom (after simplifying) 

The transformation of subformula 

results in a predicate . with successor state ax­
iom (after simplifying) 

Noticeably, this successor state axiom for is al­
most identical to the canonical form successor state axiom for 

which is 

Finally, after applying the transformation to subformulas 
of the closed form formula (4), we obtain the follow­

ing equivalent sentence: 

The transformation comes close to producing a canoni­
cal Markovian successor state axiom. It does not because 
the closed form solution formula uses information about the 
value of F in the initial situation. 
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5 Constraints with explicit time 
In this section, we extend our approach to search con­
trol knowledge with explicit time. In the temporal sit­
uation calculus [Reiter, 2001], actions have an additional 
temporal argument denoting the time of occurrence, e.g. 
drive(truck,loc,3.2) for driving a truck to a location 
loc at time 3.2. There are also some additional axioms: 

For a formula of the form (5), , yields a predicate 
with a successor state axiom: 

(7) 

and, The initial 
database would include 

For a formula of the form (6), the successor state axiom for 

(8) 

with . The 
initial database would include 

The statement of the following theorem, which establishes 
the correctness of the transformation, requires adding the con­
junct to formulas (5) and (6): 

Similarly for formula (6). 

6 Discussion and conclusion 
We have shown that incorporating control knowledge as addi­
tional preconditions in nonMarkovian action theories is triv­
ial when this knowledge is in the form of bounded formu­
las (which include encodings of Past temporal logic modali­
ties). We then introduced an operator for transforming non­
Markovian basic action theories into Markovian ones. This 

1Thc variable t is a fresh new variable so there is no effect on the 
meaning of the formulas. 

operator introduces into a theory the additional fluents and 
axioms needed for keeping track of the relevant past infor­
mation. We then showed how this operator can be used for 
compiling TLPlan style search control knowledge into action 
preconditions in the situation calculus. 

In the TLPlan system, control knowledge is expressed 
in terms of linear (future) temporal logic, that is, temporal 
modalities next, always in the future, until, and sometime in 
the future are used. Every time a new operator is added to 
the plan prefix being considered, a control formula is pro­
gressed through it. If the formula is progressed into false, 
the plan prefix is pruned since a plan with this prefix will 
violate the constraint. Although it is easy to write situation 
calculus formulas corresponding to future temporal logic, re­
gression cannot be used on them. However, we argue that if 
instead of progression, as in TLPlan, we evaluate the control 
formulas against plan prefixes, it is reasonable to use a logic 
that refers to past situations instead of future situations. In­
deed, all the reasoning used by a planning system to decide if 
a partial plan should be discarded or not must be done relative 
to the properties of the partial plan itself. Furthermore, some 
future temporal formulas are satisfied by all plan prefixes (e.g. 
"sometime in the future where is not unsatisfiable) and 
are not useful for search control. Thus it seems to us that 
restricting control formulas to refer exclusively to the past is 
appropriate. 

Moreover, using past temporal logic is semantically 
cleaner for the following reason. The semantics of future tem­
poral logic is defined in terms of infinite sequences of states. 
However, plans are finite sequences of actions and thus pro­
duce a finite sequence of states. In order to deal with this tech­
nical difficulty, TLPlan makes the assumption that the world 
never changes after the plan is completely executed and there­
fore the last state infinitely repeats. This assumption is rea­
sonable under another assumption typically made in classical 
planning: that the agent executing the plan is the only agent 
that changes the world, so when this agent terminates execut­
ing its plan, the world remains unchanged. This assumption is 
unnecessary if using past temporal logic or bounded situation 
calculus formulas. 

Nevertheless, it would be convenient to be able to handle 
control knowledge expressed in future temporal logic. We 
are currently working on developing a procedure that would 
allow us to take a future temporal logic control formula, such 
as this Briefcase domain one: 

and produce a bounded situation calculus formula: 

that a plan prefix must satisfy. In turn, we can then apply the 
procedure introduced in this paper to compile these formulas 
into the preconditions of actions. 

Bacchus & Kabanza [1998] have also extended their sys­
tem for planning with temporally extended goals, which are 
conditions on sequences of states and not only on the final 
state as in classical planning. They use a first-order exten­
sion of the Metric Interval Temporal Logic (MITL) [Alur et 
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ai, 1991] to specify the temporally extended goals. Defin­
ing plan correctness with respect to M1TL formulas as goals 
again requires one to make the assumption that the world re­
mains unchanged after the plan is executed. In the case of 
temporally extended goals this is a further complication since 
testing if the current state satisfies the goal means checking 
whether is true if the world were to indefinitely remain as 
it currently is. (Past) MITL formulas can be encoded as for­
mulas of the situation calculus with explicit time as discussed 
in the previous section. Hence our approach also shows a 
way to reduce planning with temporally extended goals into 
planning with classical goals. 

Some preliminary experiments by Bacchus & Ady [1999] 
have shown that compiling search control knowledge into ac­
tion preconditions can result in better performance compared 
to systems such as TLPlan which keep control knowledge as 
a separate set of formulas. A general method for compiling 
temporal formulas into preconditions in their framework has 
not yet been developed. 

The work of [Rintanen, 2000] is also concerned with the 
use of control knowledge as additional preconditions of plan 
operators. He uses "auxiliary facts" which is a similar to our 
introduction of new fluents in the transformation. Like Bac­
chus & Kabanza, Rintanen uses future linear temporal logic 
for representing control knowledge for planers with ADL-like 
operators. With the help of these auxiliary facts, he then com­
piles the control knowledge into the operators. The main dif­
ference between his work and ours is that his framework is 
propositional, while ours is in the more expressive first order 
situation calculus. Furthermore, he does not allow nesting of 
temporal operators-in our framework this would correspond 
to disallowing nesting of quantifiers on situations-which we 
do allow. Also related but with a different approach, is the 
work of Sierra [1998]. There, domain knowledge in the form 
of action selection rules is used for controlling a STRIPS 
planner. Analyzing the relationship of Sierra's work with ours 
is among our future work. 
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