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Abst rac t 

In this paper, wo develop a computational 
learning framework to build a hierarchy of 
11 consumer photo categories for semantic re­
trieval. Two levels of visual semantics are 
learned for image content and image category 
statistically. We evaluate the average precisions 
at top retrieved photos on 2400 heterogeneous 
consumer photos with very good result. 

1 In t roduc t i on 
Research on image categorization has received more at­
tention lately. In particular, the efforts to classify photos 
based on contents have been devoted to: indoor ver­
sus outdoor [Bradshaw, 2000], natural versus man-made 
[Bradshaw, 2000; Vailaya et al., 2001], and categories of 
natural scenes [Vailaya et al., 2001]. In general, the clas­
sifications were made based on low-level features such as 
color, edge directions etc and [Vailaya et al., 2001] pre­
sented the most comprehensive coverage of the problem 
with a hierarchy of 8 categories. 

In this paper, we deal with a more comprehensive hier­
archy of 11 categories (Fig. 1) for 2400 consumer photos. 
These photos (Fig. 2), including photos of bad quality, 
present a real spectrum of complexities when compared 
to the photos used in previous works [Bradshaw, 2000; 
Vailaya et al., 2001], which are mainly professional pho­
tos from the Corel stock photo library. Furthermore, 
only 20% of our test collection is used for training and 
we evaluate our approach in terms of average precisions 
(over 10 runs) of semantic retrieval at top retrieved pho­
tos which is important for practical usage. Our approach 
is unique that we compute uniform semantic features at 
both image content and image category levels using a 
computational learning framework instead of low-level 
features crafted for different categories. 

At the image content level, salient image regions that 
exhibit semantic meanings are adopted as training exam­
ples to construct semantic support regions (SSR) that 
span a new indexing space. Local image regions of a 
photo is projected into this space as linear combinations 
of the SSR and further aggregated spatially to form im­
age content signature for similarity matching. At the 

Figure 1: A hierarchy of consumer photo categories 

image category level, we learn image category models 
with small number of labeled photos to compute the rel­
evance measure of photos in a winner-take-all approach. 

1.1 Learn ing Semantic Suppor t Regions 
SSR are salient image patches that exhibit semantic 
meanings to us. A cropped face region, a typical grass 
patch, and a patch of swimming pool water etc can all 
be treated as their instances. To compute the SSR from 
training instances, we adopt support vector machines. 
We extract suitable features such as color and textures 
for a local image patch and denote this feature vector 
as x. A support vector classifier Si devoted to a class i 
of SSR is treated as a function on x, Sl(x). Then the 
posterior probability of class i can be computed as 

(1) 

For the experiments described in this paper, since we are 
dealing with heterogeneous consumer photos, we adopt 
color (means and standard deviations of each color chan­
nel) and texture features (means and standard devia­
tions of Gabor coefficients) to characterize SSR. 

To detect SSR with translation and scale invariance in 
an image, the image is scanned with windows of different 
scales. To reconcile the detection maps across different 
resolutions onto a common basis, we adopt the following 
principle: If the probability of the most probable class 
of a region j at resolution k is less than that of a larger 

POSTER PAPERS 1413 



region (at resolution k+ 1) that subsumes region j, then 
the classification probabilities of region j should be re­
placed by those of the larger region at resolution k -f 1. 
To aggregate the classification probabilities of the recon­
ciled detection map for a spatial area X that comprises of 
x small equal regions with feature vectors 
we compute the expected value of over x3 as 

since P(XJ) are equal for all small regions 
j. The similarity between two corresponding blocks X3 

in image X and Yj in image Y is computed as cosine 
between the probability vectors and  
The overall similarity between X and Y is the average 
of the cosine values over all blocks. 

1.2 L e a r n i n g S e m a n t i c I m a g e C a t e g o r i e s 

A photo category Mi is also learned using support vector 
machines. The input patterns to Mi are the indexes of 
the images The support vector learning 
computes the support images for the categories from a 
set of labeled photos. Given an unlabeled photo of index 
Z, the output of a category Mi is S{Mj,Z). Wi th the 
winner-take-all approach, we compute the winner k as 
A: = argmaxiS(Mi, Z). Then the relevance measure of 
Z to category M, is defined as 

(2) 

2 Empi r ica l Evaluat ion 
From the 2400 photos, we define ground truth lists for 
the 11 categories. Their sizes are listed in Table 1 as 
breadth-first order of Fig. 1 and examples are shown in 
Fig. 2. We designed 2G classes of SSR: people (face, fig­
ure, crowd, skin), sky (clear, cloudy, blue), ground (floor, 
sand, grass), water (pool, pond, river), foliage (green, flo­
ral, branch), mountain (far, rocky), building (old, city, far), 
interior (wall, wooden, china, fabric, light). We cropped 
554 image regions from 138 images and used 375 of them 
as training data for support vector machines to compute 
the SSR and the remaining 179 as test data to gauge gen­
eralization performance. Among all the kernels tried, a 
polynomial kernel with degree 2 and constant 1 gave the 
best result on precision and recall. 

Figure 2: Two sample photos for each category (top-
down, left-to-right): indr, outd, misc, inpp, inob, city, natr, 
pool, strt, wtsd, park, mtrk 

We used 20% of the 2400 photos for training. We gen­
erated 10 different sets of positive training samples from 
the ground truth list for each category based on uniforrr 
random distribution. The negative training samples ofa 
given category are positive training samples from other 
categories that do not overlap with the category. The 
evaluation of retrieval precision is carried out hierarchi­
cally with respect to the category tree in Fig. 1. The 
test data for the category of a child node of a run is the 
ground truth list of its parent node minus the training 
samples used for learning the category of the child node-
in the run. For example, to evaluate the retrieval perfor­
mance of nature (natr) photos, the ground truth list of 
outdoor less the training sample for building the nature 
category is taken as the test data. The learning and re­
trieval of each category were performed 10 times and the 
average precisions (over 10 runs) of te>p retrieved images 
are given in Table 1. 

Table 1: Average precisions at te)p numbers of photos 

[ Avg.Prec. Size Top 20 Top 30 Top 50 
indr 994" 0.94 0.96 0.96 
outd 1218 1.00 1.00 1.00 
inpp 860 0.99 0.99 0.99 
inob 134 0.84 0.75 0.56 
natr 521 0.96 0.96 0.95 
city 697 0.95 0.94 0.93 
park 304 1.00 0.99 0.98 
mtrk 67 0.41 0.27 0.16 
wtsd 150 0.92 0.89 0.66 
pool 52 0.47 0.32 0.21 
strt 645 0.99 0.99 0.99 | 

From Table 1, we observe that up to first 50 images, a 
user (on average) gets almost all relevant photos of the 
respective categories except less so for categories inte-
rior/object (inob) and waterside (wtsd), and even less sc 
for categories mountain/rocks (mtrk) and swimming poo! 
(pool). The reasons for poorer performance are 2-fold 
First these categories have much fewer positive train­
ing samples (i.e. 27,30,13,10). Next, they comprise 
images of varied contents (c.f.Fig. 2: objects plus inte­
rior, mountain and rocks, lakeside plus beach, pool wi t ! 
and without water as focus). We believe that with more 
training samples, their performance would be raised. 
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