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Abstract 
This paper addresses agents' intentions as building 
blocks of imitation learning that abstract local sit­
uations of the agent, and proposes a hierarchical 
hidden Markov model (HMM) to represent coop­
erative behaviors of teamworks. The key of the 
proposed model is introduction of gate probabilities 
that restrict transition among agents' intentions ac­
cording to others' intentions. Using these probabil­
ities, the framework can control transitions flexibly 
among basic behaviors in a cooperative behavior. 

1 Introduction 
Imitation learning is considered to be a method to acquire 
complex human and agent behaviors and as a way to pro­
vide seeds for further learning [KI93; Sch99; MK98]. While 
those studies have focused on imitating behaviors of single 
agents, few works address imitation for teamwork among 
multiple agents because the complexity of the world state 
increases drastically in multi-agent systems. On the other 
hand, stochastic models like hidden Markov models (HMM) 
have been studied as tools to model and to represent multi-
agent/human interactions [ORP00; IB99]. It is, however, hard 
to apply these stochastic models to imitate teamworks by ob­
servation because of the complexity of the model of multiple 
agents. This study focuses upon intentions of agents as build­
ing blocks of an abstract state of the local world for the agent 
in order to overcome the problem. Using intention, I for­
malize teamwork and propose a hierarchical hidden Markov 
model for imitation learning of teamwork. 

2 Teamwork and Imitation 
2.1 Intention and Play 
We suppose that an intention is a short-term idea to achieve 
a certain condition from another condition. For example, in 
soccer, the intention 'to guide a ball in a certain direction' 
is an idea to move to a certain direction with the ball. We 
assume that an intention is an individual idea; therefore, an 
agent does not pay attention to others' efforts to achieve their 
intention. 

A play is postulated as a sequence of atomic actions to 
achieve a single intention. The play is a basic building block 

of overall behavior of agents. For example, in soccer, a 'drib­
ble' is a play to achieve the intention 'guide a ball in a cer­
tain direction', which consists of atomic actions like 'turn', 
'dash', 'kick', and so on. A play for the intention is also an in­
dividual behavior without collaboration with other agents be­
cause an intention is an individual idea. As shown below, an 
intention and the corresponding play are used as a main trig­
ger to synchronize team-plays among multiple agents. This 
means that the intention is treated as a kind of partial condi­
tion of the world. 

2.2 Team-play 
We suppose that team-play is a collection of plays performed 
by multiple agents to achieve a certain purpose. As men­
tioned in the previous section, an intention is an individual 
idea. This means that multiple agents who do not change their 
intentions can not perform a team-play because they have no 
way to synchronize their plays. Instead, we assume that they 
can synchronize their plays by changing their intentions ac­
cording to situations of environments and intentions of other 
agents. For example, in soccer, when two players (passer and 
receiver) guide a ball by dribble and pass, players will change 
their intentions as follows: 

In this example, the passer and the receiver initially have 
intentions 'dribbling' and 'supporting', respectively. Then, 
the passer changes the intention to 'seek-receiver', followed 
by the receiver's change to 'free-run', the passer's change to 
'pass', and so on. Play synchronization is represented as con­
ditions when agents can change the intention. In the example, 
the passer changes its intention from 'seek-receiver' to 'pass' 
when the teammate's intention is 'free-run'. 

2.3 Imitation Learning of Team-play 
The imitation learning of a teamplay is formalized as follows: 
(1) Observation: to observe behaviors of mentor agents and 
estimate what intention each agent has at each time step. (2) 
Extraction: to extract conditions prevailing when each agent 
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changes intentions. A condition is represented as a conjunc­
tion of others' intentions. (3) Generation: to generate a se­
quence of intentions according to changes of environment and 
others' intentions. In the second step of this process, the in-
tention plays an important role: that is, conditions of changes 
of intentions. As described in Section 2.1, we consider that 
intention can represent world conditions. In addition to it, 
we use only intentions to construct rules for agents to change 
their intentions. 

3 Hierarchical Hidden Markov Model for 
Agents 

3.1 Single Behavior Model 
We formalize behaviors of a basic play m performed by a 
single agent as a Moore-type HMM as follows: 

3.2 Cooperative Behavior Mode l 
As discussed in the previous section, we consider that team-
play consists of a sequence of intentions of multiple agents. 
This means that cooperative behavior of a single agent in a 
team of agents is considered as transitions among several ba­
sic plays (HMMS). Therefore, we formalize cooperative be­
havior as the following modified Mealy-type HMM, 

HMMC = {M,U,E,F,G,H), 

3.3 Joint-Behavior Mode l 
Finally, we coupled multiple HMM cs, each of which repre­
sents the behavior of an agent. Coupling is represented by 
gate probabilities H. For example, when agent X and agent Y 
are collaborating with each other, the gate probability 
in HMM C for agent X indicates the probability that agent Y 
is performing play u at time t when agent X changes the play 
from m to n during time Using the gate probability, 

the agent calculate a likelihood of the state snj at a certain 
time t + 1 according to the following equation: 

(1) 

, where is a partially observed output value in v at time 
t + L 

4 Experiments 
I applied the framework to collaborative play of soccer. The 
demonstration by mentors is dribble and pass play as shown 
in Fig. 1: A player starts to dribble from the center of the 
left half field and brings the ball to the right half. At the 
same time, another player runs parallel along the upper (or 
lower) side of the field supporting the dribbling player. Then, 
the first player slows to look-up the second player; it then 
passes the ball to that player. Simultaneously, the second 
player starts to dash to the ball and dribbles after receiving 
the ball. After the pass, the first player exchanges roles with 
the teammate so that it becomes a supporting player for the 
second player. 

To imitate this demonstration, 1 trained six HMM ss to 
model'dribble', 'slow-down and look-up', 'pass', 'free-run', 
'chase-ball', and 'support'. Each of HJMMss has 5 states. The 
output of these HMM's consists of local situations (the rela­
tive position and the velocity to the ball) and agent's actions 
('turn', 'dash', 'small-kick', 'long-kick\ 'trap', and 'look'). 
Note that there is no information about others' situations for 
output of HMMss. As described in Section 2.2, others' situ­
ations are taken into account during the Extraction phase in 
learning. 

Two HMM cs for agent X (the first player) and Y (the sec­
ond player) are constructed after the training of the HMJVTs. 
Then, the learner observes behaviors of the mentor and ad­
justs probabilities of the HMM cs. 

Figure 2 shows result of observation and estimation. This 
figure shows the relative likelihood of each play state for each 
agent at each timestep estimated by Observation phase. In 
this figure, there are 12 rows of small squares: upper 6 rows 
correspond 6 plays of the first player (agent X), and the rest 
6 are plays for the second player (agent Y). Each row corre­
sponds to a play D, K, P, F, C, and S, each of which means 
'dribble (D) ' , 'slow-down and look-up ( K ) \ 'pass (P)', 'free-
run (F)', 'chase-ball (C)', and 'support (S)\ respectively. In 
each row, a column consists of 5 small squares each of which 
corresponds a state of HMM s for one of the 6 plays at a certain 
timestep. The ratio of black area in the square indicates the 
relative likelihood with which the state of the HMMs is active 
at the timestep. Columns are aligned along with time. So, a 
horizontal line of squares means changes of likelihood of a 
state of HMM S . From this figure, we can see that the learner 
estimates that the agent X starts the play with the intention 
of'dribble', followed by 'slow-down', 'pass' and 'support', 
while the player Y starts 'support' play, followd by 'chase-
ball' and 'dribble' plays. 

After the training by the Observation, the learner can gen­
erate behaviors similar to the demonstration by using the ac­
quired probabilities of the HMlVTas shown in Fig. 3. This 
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Figure 1: Exp. 3: Dribble and 
Pass Play by Mentor 

Figure 2: Exp. 
tor's Behaviors 

3: Result of Recognition of Men- Figure 3: Exp.3: State Transitions Gener­
ated by Learned HMM 

figure is constructed in the same way as Fig. 2, but only one 
square is filled in a timestep because the learner decides one 
of the possible states according to the likelihood shown in 
Eq. 1. In this example, although the learner sometimes gener­
ates wrong state transitions, for example a transition to states 
to the 'free-run' play in agent Y during agent X is doing 
'slow-down', it recovers to the suitable transitions and con­
tinues to imitate the demonstrator. This shows robustness 
of the model against accidents. Because the model is cou­
pled loosely with world and other's states by output probabil­
ities of HMM, it can permit variation and misunderstanding 
of world and others' states. 

5 Discussion 
There are several works on coupling HMMs that can repre­
sent combinational probabilistic phenomena like multi-agent 
collaboration [JGS97; GJ97; JGJS99]. In these works, prob­
abilistic relation among several HMMs (agents) are repre­
sented as state-transition probabilities, such that the amount 
of memory complexity increases exponentially. This is a se­
rious problem for imitation learning because we assume that 
the number of examples for imitation is small. In our model, 
the relation among agents is represented by gate probabilities 
H, in which others' states are treated as outputs instead of 
as conditions of state transition. Using them, the likelihoods 
of state-transitions are simplified as products of several prob­
abilities (Eq. 1). In addition, detailed states of other agents 
are abstracted by play (intention). As a result, the number 
of parameters is reduced drastically, so that learning requires 
very small number of examples as shown in above examples. 
Although such simplification may decrease flexibility of rep­
resentation as a probabilistic model, experiments show that 
the proposed model has enough power to represent team-play 
among agents. 

Intention in the model brings another aspect to communi­
cation among agents. We assume that there are no mutual 
communication in the proposed model. However, we can in­
troduce communication as a bypass of observation and esti­
mation of other's intention (play). The proposed model will 
be able to provide criteria for when an agent should inform 
their intention to others by comparing agents' actual inten­
tions and estimated intention of the agent itself by simulating 
its own HMM 1 . 

One important issue is the design of the intention. In the 
proposed model, intentions play various important roles like 
chanking of the actions and conditions of world state. There­
fore, we must design intentions carefully so that team-plays 
can be represented flexibly. 
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