
Multiple Agents Moving Target Search 

Mark Goldenberg, Alexander Kovarsky, Xiaomeng Wu, Jonathan Schaeffer 
Department of Computing Science, University of Alberta, 

Edmonton, Alberta, Canada T6G 2E8 
{goldenbe,kovarsky,xiaomeng,jonathan}@cs.ualberta.ca 

Abstract 

Traditional single-agent search algorithms usually 
make simplifying assumptions (single search agent, 
stationary target, complete knowledge of the state, 
and sufficient time). There are algorithms for re­
laxing one or two of these constraints; in this pa­
per we want to relax all four. The application do­
main is to have multiple search agents cooperate 
to pursue and capture a moving target. Agents are 
allowed to communicate with each other. For solv­
ing Multiple Agents Moving Target (MAMT) ap­
plications, we present a framework for specifying a 
family of suitable search algorithms. This paper in­
vestigates several effective approaches for solving 
problem instances in this domain. 

1 Introduction 
In the 2002 Steven Spielberg movie Minority Report, John 
Anderton (played by Tom Cruise) is on the run. In one se­
quence, Anderton is hiding in a building, and his pursuers 
unleash a team of mini-robots to flush him out. The robot 
team separates, each covering a different part of the building. 
Anderton, realizing the danger, stops fleeing and comes up 
with a unique solution - he submerges himself in a bathtub 
of water so as to avoid the robotic detectors. Sadly, he can 
only hold his breath for so long, before he has to emerge and 
is found by the robots. 

The classic algorithms (such as A*) are effective for solv­
ing search problems that satisfy the properties: one search 
agent, the agent has perfect information about the environ­
ment, the environment and goal state do not change, and 
enough time is given to make an optimal decision. Relax­
ing even one of the assumptions gives rise to new algorithms 
(e.g., moving target search [Ishida and Korf, 1995]), real-time 
search [Korf, 1990], and D* [Stentz, 1995]). Many real-
world problems do not satisfy all of these properties. In this 
paper we use an application domain that breaks all of them. 

Consider the task of multiple agents having to pursue and 
capture a moving target; for example a squad of policemen 
chasing a villain. We want to design a test environment that 
is as realistic as possible. We assume a grid with obstacles. 
Agents can only "see" what is directly visible to them. Agents 

are allowed to communicate with any agent that they can see. 
As the target flees, it may become obscured from sight. 

The agent's knowledge of the locations of the target and 
other agents may be fuzzy (since some of them may be hid­
den from sight). Given whatever knowledge of the target and 
other agents is available, an agent must decide how to pursue 
the target. The target's possible locations provide informa­
tion of where to search; the other agents' possible locations 
provide information that can be used to coordinate the search 
effort. The challenge is to have the agents act autonomously 
to catch the target as quickly as possible. 

This paper makes the following contributions: MAMT -
a challenging application domain for exploring issues related 
to Multiple Agents pursuing a Moving Target, a framework 
for expressing real-time search algorithms for the MAMT 
domain, and several solutions that allow an agent to act au­
tonomously (using information about the possible positions 
of the target and other agents in the decision-making process). 

More details are available at www. cs . u a l b e r t a . c a / 
~ j o n a t h a n / P a p e r s / a i . 2 0 0 3 . h t m l . 

2 Literature 
There are a family of A* algorithms that relax solution opti­
mally by requiring the agent to make the best decision pos­
sible given limited search resources (e.g., time) [Korf, 1990]. 
The Minimin Lookahead Search algorithm uses a fixed-depth 
search (d moves), keeping track of the moves that lead to the 
(heuristically) best d-move outcome. Real-Time A* (RTA*) 
is an A* variant that uses the results produced by the min­
imin lookahead search as heuristic values in order to guide the 
search towards achieving the goal [Korf, 1990]. Moving Tar­
get Search (MTS) is an LRTA* variant that allows a moving 
target [Ishida and Korf, 1995]. An assumption in most MTS 
papers is that the target moves slower than the agent. With­
out this requirement, the target can stay ahead of the agent 
and possibly elude capture. There are many real-time search 
variants (e.g., LPA* [Koenig and Likhachev, 2003]). For the 
most part, these are orthogonal to our work. The difficult part 
for an agent is deciding on the search goal; once achieved, 
then any of several different search algorithms can be used. 

Having multiple agents participating in a search is a topic 
of recent interest. RoboCup is an example, but that work 
has more limited scope, and agents (players) generally have 
global knowledge. 

1536 POSTER PAPERS 



Figure 1: Framework for MAMT solutions 

3 Problem Description 
The MAMT domain has the following properties. Agents 
and target: multiple agents pursuing a single moving target. 
Gr id: m x n in size, with randomly-placed obstacles. Al l 
agents and the target have complete knowledge of the grid 
topology. Moving: all moves are horizontal or vertical and 
arc made simultaneously. Starting position: The target al­
ways starts in the middle of the grid. The agents are all placed 
in the lower left corner of the grid. The target is visible to 
at least one agent. Vision: can "see" anything that is in an 
unobstructed direct line. Communication: between moves, 
agents communicate with any agent that is visible to them. 
The agents exchange information as to where they believe 
the target and other agents are located. Objective: catch the 
target in the fewest number of moves. 

4 Multiple Agent Moving Target Search 
The intent of this work is not to build a new search algorithm. 
Rather, we want to plug standard search algorithms into a 
framework that, given a goal selection, will find the "best" 
way to reach the objective. 

When an agent does not know the exact position of the tar­
get (from vision or communication), it must maintain a belief 
set of where the target might be. The belief set can take into 
account the topology of the grid, knowledge of the opponent, 
and the time since the last known target location. As the time 
increases since the last sighting, the knowledge of where the 
target is gets fuzzier. An agent should choose its search area 
based on its beliefs about the target and other agents. 

Figure 1 shows the four-step method that is the frame-
work used for specifying our solution algorithms. There is 
no "right" way of solving any of these steps. In the following 
we detail several algorithm alternatives. 

4.1 Belief Set 
Whenever an agent knows the exact location of the target, 
that agent's belief set contains only one location, otherwise 
it can grow. Since this is a real-time search application, and 
real agents have limited memory, the belief set size is limited. 
Before a move, each agent sends its belief set information 
about the target and other agents to any agent it can see (who 
may, in turn forward it to agents that they see). 

We implemented three strategies for maintaining the belief 
set. All-scenarios. Expand the current belief set to include 
all possible locations that can be reached in one more move. 

Region belief set. This set has the same update as the all-
scenarios belief set. After the search goal is chosen, the agent 
commits to only consider beliefs that arc connected to the goal 
location. Single-location: The agent maintains a single be­
lief (one grid square). The belief is updated by choosing a 
random direction and moving the belief in that direction until 
an obstacle is encountered or new target information is avail­
able. 

We use a simple greedy algorithm to approximate the four 
"corners" of the variable shaped belief set. This subset of the 
belief set is called the filtered belief set. 

4.2 Goal Selection 
Each agent selects a goal from their filtered belief set. Ran­
domly selecting a location from this set is an obvious control 
strategy to implement. However, a more intelligent strategy is 
needed one that considers information about other agents. 

The difference metric is used to identify a goal that ideally 
is (a) closest to the agent and yet (b) farthest from the clos­
est other agent. For each location in the filtered belief set, 
we compute two metrics: the distance from the agent to the 
belief, and the minimum distance from the belief to the last 
known agent positions. These values can be determined by 
search (expensive) or by heuristics (inaccurate). 

For each location in the filtered belief set, the agent com­
putes the difference of the above two values, and chooses the 
one with the minimum difference. The idea is that the agent 
should assist the other agents by covering the possible es­
capes of the target that are hard for the other agents to reach. 

4.3 Search 
Given a goal, each agent performs a search to find a "best" 
move that progresses towards that goal. Since this has to be a 
real-time algorithm, the search algorithm is allocated a fixed 
number of search nodes (approximating a fixed amount of 
time per decision). The manhattan distance is used as the 
search evaluation function. 

We experimented with two search algorithms. Single-
agent minimin search [Korf, 1990]: Here the agent uses 
single-agent search to find the shortest path to the goal lo­
cation. The search has the effect of selecting the move that 
tries to chase the target. Adversarial search: The search can 
alternate between moves for the agent (move towards the tar­
get) and target (move away from the agent). This becomes 
an alpha-beta search, where the agent tries to minimize the 
minimax value of the search (the distance from the target). 

4.4 Comments 
For non-trivial belief sets, as long as information is known 
about other agent's positions the agents will separate to avoid 
redundancy in the search. Each agent wanders about the grid 
trying to maximize their coverage, as a function of what they 
know (about the target and other agents). In many cases (es­
pecially for large mazes) an agent may go a long time without 
getting an update on the target's position, effectively negating 
the effectiveness of the belief set. 

5 Experiments 
There are a variety of target strategies that can be investi­
gated. The strategy used is a weighted combination of four 

POSTER PAPERS 1537 



Figure 2: Comparing solutions Figure 3: Varying size and # of agents Figure 4: Varying the obstacle density 

sub-strategies: distance, mobility, visibility, and random. The 
maximum scoring move is selected. The weights were hand-
tuned based on the perceived realism of the target's behavior. 

Solutions to MAMT instances were tested using grids of 
sizes from 10 x 10 to 70 x 70. Grids had obstacles randomly 
placed, occupying 10% to 30%, in increments of 5%, of the 
space. The experiments used 1 to 10 agents. Each pursuer 
was allocated 50,000 search nodes to make its decision. If 
search was used to compute the difference metric, then half 
the search nodes were allocated to this task, and the other half 
to move selection. Agents were allowed a maximum belief set 
size of 100. An experiment ended when one of the pursuers 
caught the target, or when a maximum number of moves was 
reached. For an n x n grid, the maximum was set to 15 x n. 
With few exceptions, the target was caught in less than 8 x n 
moves, or not at all. 

Figure 2 compares several different solutions. The belief 
set was maintained using one of: all-scenarios (ALL), region, 
and single-location (Single). Except for a single-location be­
lief set, the choice of goal was done using the difference met­
ric based on either manhattan distance (no search) - D(MD), 
single-agent search - D(SAS), or alpha-beta - D(AB). Hav­
ing chosen a goal, single-agent search (SAS) or alpha-beta 
(AB) was used to select the best move. The graph shows the 
percentage of problems where the target was caught (100 tri­
als with different random seeds per data point) as a function 
of the maze size. 

The control experiment is randomly selecting a goal 
(single-location), and using single-agent search (SAS) to de­
cide on the move choice. Not surprisingly, this gets poor per­
formance. Region was expected to perform quite well, but 
instead its results were mixed (not shown). 

A11-D(MD)-SAS and A11_D(SAS)_SAS performed best in 
all our experiments, with a preference for the manhattan dif­
ference metric. That the difference heuristic gets the best per­
formance is gratifying, since it is better informed by using be­
liefs about the other agents. Using a simple heuristic appears 
to be as good as or better than using search for determining 
the "best" search goal. The simplest way of computing the 
difference metric - using static manhattan distance instead of 
more accurate search - also leads to shorter solution lengths 
(up to 10% on average). This shows that it is more beneficial 
to invest search effort in move selection than in goal selection. 

Alpha-beta is out-performed by single-agent search. Since 
alpha-beta takes into account the target's moves, it cannot 
reach the search depths that single-agent search can and, 

hence, usually yields a lesser-quality solution. 
In cases where the target eluded capture, a familiar pattern 

emerged. The target would stay hidden in a small area, and 
the agent's knowledge of where the target was became obso­
lete and effectively useless. The agents would independently 
wander about, hoping to find the target. In the real world, 
if such a scenario arises, the agents should wait until more 
help arrives and then begin the search anew, going through 
the entire grid systematically. 

Figure 3 shows that more agents are better than fewer (us­
ing All_D(MD)_SAS). Note that as the number of agents in­
creases, the number of nodes per agent per search in the goal 
selection gets smaller (recall the total search size is limited). 
Even so, adding more agents is beneficial despite less re­
sources available. 

Figure 4 shows that as the mazes become more congested 
with obstacles, it gets harder for the agents to find the tar­
get. Essentially, a higher percent of obstacles gives the target 
more opportunities to hide. However, at 30% of obstacles, 
our target starts having problems with avoiding the dead ends 
and is sometimes caught more easily. 

Several control experiments were also done, and they gave 
predictable results. Simplistic targets (e.g., random, or avoid) 
were much easier to catch. 

6 Future Work and Conclusions 
This problem domain is rich in possibilities, and can be ex­
tended to increase the "realism" of the simulations. Some ex­
amples include: multiple moving targets, more realistic com­
munication, creating "human-like" target behavior, and op­
ponent modeling. The framework used of this research has 
many opportunities for interesting extensions. 

7 Acknowledgments 
This research was supported by NSERC, iCORE, and IRIS. 
References 
[Ishida and Korf, 1995] T. Ishida and R. Korf. Moving tar­

get search: A real-time search for changing goals. IEEE 
PAMI, 17(6):609-619, 1995. 

[Koenig and Likhachev, 2003] S. Koenig and M. Likhachev. 
D* lite. AAAl, pages 476-483, 2003. 

[Korf, 1990] R. Korf. Real-time heuristic search. Artificial 
Intelligence, 42(2-3):189-211, 1990. 

[Stentz, 1995] A. Stentz. The focussed D* algorithm for 
real-time replanning. In IJCAI, pages 1652-1659, 1995. 

1538 POSTER PAPERS 


