
Bin-Completion Algorithms for Multicontainer Packing and Covering Problems

Alex S. Fukunaga, Richard E. Korf
Computer Science Department

University of California, Los Angeles
fukunaga@cs.ucla.edu, korf@cs.ucla.edu

Abstract

Bin-completion, a bin-oriented branch-and-bound
approach, was recently shown to be promising for
the bin packing problem. We propose several im-
provements to bin-completion that significantly im-
proves search efficiency. We also show the gen-
erality of bin-completion for packing and cover-
ing problems involving multiple containers, and
present bin-completion algorithms for the multiple
knapsack, bin covering, and min-cost covering (liq-
uid loading) problems that significantly outperform
the previous state of the art. However, we show that
for the bin packing problem, bin-completion is not
competitive with the state of the art solver.

1 Introduction
Many NP-hard problems involve packing some set of dis-
crete objects into multiple containers (“bins”). In one class
of problems, the objective is to pack some items into a set of
containers without exceeding the containers’ capacities. In a
related class of problems, the goal is to cover a set of con-
tainers by filling them up to at least some minimal level using
a set of items. When both the containers and the items are
modeled as one-dimensional objects (possibly with an associ-
ated cost/value function), we refer collectively to these prob-
lems as one-dimensional, multicontainer packing and cover-
ing problems, or multicontainer packing problems in short.
Multicontainer packing problems are ubiquitous, and model
many AI applications including the allocation and rationing
of resources or tasks among a group of agents, as well as op-
erations research problems such as cargo loading and trans-
port.

The most widely studied instance of a problem in this class
is the bin packing problem: Given a set of items (numbers),
and a fixed bin capacity, assign each item to a bin so that the
sum of the items assigned to each bin does not exceed the bin
capacity. For example, given the set of items 6, 12, 15, 40,
43, 82, and a bin capacity of 100, we can assign 6, 12, and
82 to one bin, and 15, 40, and 43, to another, for a total of
two bins. This is an optimal solution to this instance, since
the sum of all the items, 198, is greater than 100, and hence
at least two bins are required.

In this paper, we consider complete algorithms for finding
optimal solutions to multicontainer packing problems. Multi-
container packing problems are generally strongly NP-hard
[Garey and Johnson, 1979] (including all of the problems
covered in this paper). Therefore, state of the art, complete
algorithms for finding optimal solutions are based on branch-
and-bound. In contrast, note that single-container problems
such as the classical 0-1 knapsack problem are weakly NP-
hard, and pseudopolynomial time dynamic programming al-
gorithms exist (c.f. [Kellerer et al., 2004]).

Previous branch-and-bound algorithms for these problems
have tended to be “item-oriented”. For example, the classi-
cal algorithm for bin packing is the Martello and Toth algo-
rithm [Martello and Toth, 1990]. Items are considered one
at a time. Each node in the search corresponds to a decision
regarding the assignment of an item to some non-full con-
tainer. In contrast, bin-completion is a “bin-oriented” branch-
and-bound strategy, where a node represents an assignment
of a set of items to a single container. In addition to standard
branch-and-bound pruning methods, a combinatorial domi-
nance criterion is used to prune search.

This paper begins by reviewing the previous work on bin-
completion. We then propose several improvements, in-
cluding a generalization of the nogood pruning method pro-
posed in [Korf, 2003] that significantly improves search effi-
ciency. We demonstrate the generality of the bin-completion
approach by presenting new bin-completion algorithms for
the multiple knapsack, bin covering, and min-cost covering
problems that significantly outperform the state of the art al-
gorithms.

2 Bin-Completion
Bin-completion is a bin-oriented branch-and-bound strategy
that exploits dominance properties to reduce the search space.
For clarity, we describe the bin-completion algorithm and our
extensions in the context of the bin packing problem due to its
familiarity and simplicity, although the focus of our empirical
work is on other multicontainer problems.

A feasible set is a set of items whose sum satisfies the ca-
pacity constraint (i.e., does not exceed the bin capacity). We
say that a feasible set or bin assignment is maximal if no addi-
tional item can be added to the set without making the set in-
feasible. The items are sorted in decreasing order of size. We
then generate maximal, feasible sets that include the largest

item. If there is more than one such set, the search may branch
at that point. Each node of the search tree, except the root
node, represents a complete, feasible assignment of items to
a particular bin. The children of the root represent different
ways of completing the bin containing the largest item. The
nodes at the next level represent different complete, feasible
sets that include the largest remaining item, etc. The depth
of any branch of the tree is the number of bins in the cor-
responding solution. Bin-completion is a branch-and-bound
algorithm. It starts with an upper bound, such as the best-
fit decreasing solution, and applies a lower-bound heuristic
function to prune the search. Rather than assigning items one
at a time to bins, it branches on the different maximal, feasi-
ble sets that can be assigned to each bin.

The key to making bin-completion efficient is the use of a
dominance criterion on the maximal, feasible sets that allows
us to only consider a small subset of them.

Let
�

and � be two feasible sets. If the elements in � can
be partitioned into subsets, and these subsets can be matched
to the elements of

�
such that the sum of the elements in

each subset doesn’t exceed the corresponding element of
�

,
then set

�
dominates set � . In other words, if the elements

of � can be packed into bins whose capacities are the ele-
ments of

�
, then set

�
dominates set � . For example, let�������	��
����
������

and let � ������
�����
�����
�����
�����
������
. Parti-

tion � into the subsets
����
������

,
�������

, and
������
�����
������

. Since
5 + 10 � 20,

��� � ��� , and
���� !���� !��� � ��� , set

�
dominates

set � . Given all the feasible sets that contain a common ele-
ment " , only the undominated sets need to be considered for
assignment to the bin containing " . The reason is that if we
complete the bin containing " with a dominated set, then we
could swap each subset of items in the dominated set with the
corresponding element of the dominating set, and get another
solution without increasing the total number of bins.

This dominance criterion was proposed by Martello and
Toth [Martello and Toth, 1990], and was used in their branch-
and-bound algorithm for bin-completion. However, their
branch-and-bound algorithm was item-oriented, and they
only exploit this dominance property in a limited way. In
particular, they take each item # , starting with the largest ele-
ment, and check if there is a single assignment of one or two
more elements that dominates all feasible sets containing # .
If so, they place # with those elements in the same bin, and
apply the reduction to the remaining subproblem. They also
use dominance relations to prune some element placements
as well. Korf’s bin-completion algorithm [Korf, 2002] makes
much greater use of the Martello-Toth dominance criterion.
In particular, when branching on the completion of any bin, it
only considers undominated completions.

Historically, the first bin-completion algorithm we are
aware of was proposed by Christofides, Mingozzi, and Toth
in 1979 for the liquid loading problem, which we call the
min-cost covering problem (see Section 6) [Christofides et
al., 1979]. Although their algorithm performs a bin-oriented
branch-and-bound which considers only undominated com-
pletions, they use a much weaker dominance criterion (see
Section 6). However, subsequent research in branch-and-
bound algorithms for multicontainer problems focused on
item-oriented approaches, and the bin-completion approach

was apparently not investigated further until recently.
The BISON algorithm for bin packing by Scholl, Klein,

and Jurgens [Scholl et al., 1997] is a hybrid algorithm that in-
tegrates a suite of complex lower bounding procedures, upper
bounding heuristics, and a branch-and-bound algorithm. The
branch-and-bound component of BISON is a bin-completion
algorithm where each node corresponds to a maximal, feasi-
ble bin assignment. A very limited form of the Martello-Toth
dominance criterion is applied, as follows. If a maximal, fea-
sible bin assignment has a pair of items that can be replaced
by single unassigned item without decreasing the sum of the
assignment, then it is dominated, and this node can be pruned.

Korf implemented a bin-completion algorithm for bin
packing using the full Martello and Toth dominance cri-
terion, and showed that it significantly outperformed the
Martello-Toth item-oriented branch-and-bound algorithm
[Korf, 2002]. Further improvements were achieved by using
a more efficient algorithm for generating the undominated bin
assignments, and nogood pruning (see below) [Korf, 2003].

3 Extensions to Bin-Completion
3.1 Nogood Dominance Pruning
Suppose we have a bin packing instance with the numbers
10,9,8,7,7,3,3,2,2, and bin capacity c=20. Let �%$ represent
a bin assignment at depth & . �

10,8,2
�

and
�
10,7,3

�
are

two undominated feasible bin assignments, and thus �(' �������
*)�
*���
and � ' �+������
�,�
*��� are two possible assignments

of the bin (node) at depth 1.
Korf [Korf, 2003] proposed the following nogood pruning

technique. After exhausting the subproblem below the as-
signment � ' ��������
)�
����

, and while exploring the subprob-
lem below the assignment �-' �.������
�,�
��� , assume we find a
solution that assigns �0/ �1��2�
)�
*��� . We can swap the

��)�
����
from �3/ with the

��,�
���
from � ' , resulting in a solution with

�4' �5������
*)�
����
and and � / �6��2�
�,�
���

. However, we have
already exhausted the subtree below �%' �7������
)�
����

, and
therefore, we can prune this branch because it is redundant.

In general, given a node with more than one child, when
searching the subtree of any child but the first, we don’t
need to consider bin assignments that assign to the same bin
all items used to complete the current bin in a previously-
explored child node, except for the largest element. More
precisely, let

��8 '
*8 /
�9:9;9;
8%<-� be a set of brother nodes in
the search tree, and let

��= '
*= /
�9;9;9:
�=><-� be the sets of items
used to complete the bin in each node, excluding the first item
assigned to the bin, which is common to all the brother nodes.
When searching the subtree below node

8@?
for ACB � : for all

#EDFA , we exclude any bin assignment � that (1) includes
all the items in

=HG
in the same bin, and (2)swapping

=IG
from

� with the items
=J?

in
8%?

results in two feasible bin assign-
ments. By rejecting these bin assignments as redundant, the
number of node generations is reduced.

We now propose an extension to this idea that allows prun-
ing even more nodes, which we call nogood dominance prun-
ing, or NDP. Suppose that after exhausting the subproblem
below the assignment �4' �K������
)�
����

, and while exploring
the subproblem below the assignment � ' �L������
�,�
���

, we
consider the assignment �0/ �M��2�
N,�
����

. We can swap the

��,�
*���
from �3/ with the

��,�
*���
from � ' and end up with

a solution with the � ' � ������
N,�
����
and �3/ � ��2�
N,�
*���

.
However, according to the Martello-Toth dominance crite-
rion, �4' ��������
�,�
*���

is dominated by �4' ��������
*)�
����
, and

we have already exhausted the search below the node with the
subtree under � ' � ������
)�
*���

, so we can prune the search
because it is not possible to improve upon the best solution
under �4' � ������
*)�
���� .

In general, given a node with more than one child, when
searching the subtree of any child but the first, we don’t need
to consider assignments that are dominated by a bin assign-
ment in a previously-explored child node. More precisely,
when searching the subtree below node

8 ?
for A B � , we ex-

clude any bin assignments that are dominated by the items
in
= G

, for # D�A . Note that an assignment dominates itself.
Thus, no bin completion below node

8@?
can be dominated by

the items in
= G

, for # D A .
Nogood dominance pruning is strictly more powerful than

Korf’s nogood pruning. Any node pruned by nogood prun-
ing will be pruned by NDP, but not vice versa. Of course,
since NDP must detect dominance relationships as opposed to
equivalence relationships, NDP will incur more overhead per
node compared to nogood pruning. Our current implemen-
tation propagates a list of nogood sets along the tree. While
generating the undominated completions for a given bin, we
check each one to see if it is dominated by any current no-
good. If so, we ignore that bin-completion.

Since the size of the nogood list increases with depth, and
we compare each bin-completion against each nogood, the
per-node overhead of NDP increases with depth. This means
that pruning at the bottom of the tree (where pruning has the
lowest utility) is more expensive than pruning at the top of the
tree (where pruning has the highest utility). A simple strategy
which address this issue is depth-limited NDP, where NDP
pruning is applied only at nodes down to the NDP depth limit�

. At nodes below the depth limit, Korf’s original nogood
pruning technique is applied.

In this section, we have described nogood pruning and
NDP in the context of the bin packing problem. Adaptations
of the technique for the multiple knapsack and bin cover-
ing problem are straightforward, given the dominance criteria
used for these other problems.

3.2 Further modifications to the search algorithm
In Korf’s algorithm for bin packing, at each node, the un-
dominated feasible bin assignments are generated, and sorted
according to decreasing sum. The algorithm branches on the
completions according to the sorted order. In other words, a
largest-sum-first value ordering heuristic is being applied at
each node.

An issue with enumerating all undominated completions
and applying value ordering is that computing the undom-
inated sets is itself NP-complete. Korf [Korf, 2003] gives
an algorithm that generates all and only undominated bin-
completions, without the need to generate dominated comple-
tions as intermediate results. Let & be the average number of
items that fit in a container. The time to generate all undom-
inated feasible assignments of a bin increases with & . This
is not an issue for bin packing, where problems with large &

tend to be easily solved using heuristics such as best-fit de-
creasing. The solution found by the heuristic often equals the
lower bound, and therefore no search is required, and hence
there is no need to compute undominated completions. How-
ever, for the other three problems we considered, we have ob-
served that it is much less likely that heuristics will match the
optimistic bound and allow termination without search, and
we have found that for instances with high & , the algorithm
would either take a very long time to complete, or not termi-
nate within a reasonable time limit because it was spending an
inordinate amount of time computing the set of undominated
completions at each node. Another significant drawback of
completely enumerating the undominated bin assignments at
each node is the memory required to store all of them.

An alternative approach is to start to go down the search
tree and explore the children of a node without first enumerat-
ing and sorting the children. In cases where a good optimistic
bound (i.e., lower bound for bin packing, and upper bound
for bin covering and multiple knapsack) is available, and it
takes relatively little search to find an optimal solution, this
approach can result in significant speedups compared to the
original scheme of generating all completions before going
further down the search tree.

On the other hand, we have observed that the value-
ordering strategy used to sort the undominated children of
a node has a significant impact, and if we simply traverse
the search tree depth-first without first enumerating and sort-
ing the children, we lose the benefits of ordering the search
tree according to the value-ordering heuristic. The negative
impact of this can be alleviated by a hybrid strategy that gen-
erates a small number of children, applies the value-ordering
heuristic to these, then recursively calls bin-completion on
the remaining subproblem. We call this the hybrid incremen-
tal branching strategy.

Note that even in the absence of an explicit value ordering
strategy, the algorithm used to generate the undominated chil-
dren (for each problem, we use an adaptation of the algorithm
given by Korf [Korf, 2003]) imposes an implicit ordering on
the undominated assignments. We are currently evaluating
various combinations of hybrid incremental branching and
various value ordering strategies, and the choices reported
in this paper for value ordering strategies and the number of
undominated assignments generated at once in hybrid incre-
mental branching are preliminary.

4 The Multiple Knapsack Problem
The Multiple Knapsack Problem (MKP) is a generalization of
the classical 0-1 Knapsack Problem. Consider � bins of ca-
pacities � '
 � /
�9;9:9;
 � < . and a set of � items that have a weight� '
�9:9;9;
 ��� and a profit � '
�9:9;9;
 � � . The goal of the MKP is
to assign some subset of the items to each bin such that: (1)
each item is assigned to no more than one bin, and (2) the
sum of the weights of the items assigned to a bin does not
exceed the bin’s capacity, and (3) the total profit of the items
that are assigned to a bin are maximized. For example, sup-
pose there are two bins with capacity 10 and 7, and 4 items
(9,3),(7,3),(6,7),(1,5), where the first element of each pair is
the weight of the item and the second element is the profit

of that item. The optimal solution to this MKP instance is
to assign (9,3) and (1,5) to the bin with capacity 10, and the
item (6,7) to the bin with capacity 7. The MKP has numerous
industrial applications. For example, the problem of loading
� vehicles with cargo selected from � items in order to max-
imize the value of the transported items is a MKP instance.

4.1 The Mulknap Algorithm
The state of the art algorithm for the MKP is Pisinger’s Mulk-
nap algorithm [Pisinger, 1999]. Mulknap is a branch-and-
bound algorithm, where each node represents a decision as
to which bin to place an item into, or to leave it out en-
tirely. There are several well-known upper bounds for the
MKP. Recent algorithms, including Mulknap, rely on the
solution of the Surrogate relaxed Multiple Knapsack Prob-
lem (SMKP) instance [Martello and Toth, 1990], which is
a single-container 0-1 Knapsack problem where the items
are the same as for the original MKP instance, but there is
a single container whose capacity is the sum of the capaci-
ties of the containers in the original MKP instance. Although
the 0-1 Knapsack problem is also NP-complete (weakly NP-
complete, since there is a pseudopolynomial algorithm), this
upper bound computation is very fast in practice. At each
node, Mulknap attempts to validate the upper bound for the
remaining subproblem by distributing the set of items chosen
as the solution for the SMKP into the bins. If such a distribu-
tion is possible without violating the bin capacities, then the
upper bound has been achieved, and we can backtrack with-
out further search down the current branch. The distribution
is done by solving a series of subset-sum problems. First,
the smallest knapsack is filled as much as possible with the
items from the SMKP solution. Then the second smallest is
filled with items from the remainder of the SMKP solution,
and so on. Again, while this entails the solution of � sub-
set sum instances, it is fast in practice (takes less time than
the upper bound computation using the SMKP). In addition,
Mulknap also incorporates techniques for reducing the prob-
lem instance at every node, as well as tightening the capacity
constraints. See [Pisinger, 1999] for details.

4.2 Bin-Completion for the MKP
We define a dominance criterion for the MKP as follows: In
a feasible bin assignment for a bin with capacity ��� , the sum
of the item weights is no more than ��� .

Let
�

and � be two feasible assignments.
�

dominates �
if � can be partitioned into A subsets �-'
�9;9;9:
 � ? such that each
subset ��� is mapped one-to-one (but not necessarily onto) to� � , an element of

�
, and for all

� � A , (1) the weight of
� � is

greater than or equal the sum of the item weights of the items
in ��� , and (2) the profit of item

� � is greater than or equal to
the sum of the profits of the items in ��� .

Our bin-completion algorithm for MKP uses the same up-
per bound and reduction techniques as Mulknap. Our current
implementation uses a hybrid incremental branching strategy
(see 3.2) that generates two undominated children at a time,
then uses a value ordering strategy that sorted them according
to descending order of profit sums.

We evaluated our MKP algorithm using the same 4 classes
of instances used by Pisinger [Pisinger, 1999]. We consid-

ered: (1) uncorrelated instances: �
G

and �
G

are uniformly
distributed in � , (2) weakly correlated instances: �

G
uni-

formly distributed in [10,1000] and �
G

randomly distributed
in [�

G
	 2�2�
 � G4 2�2] such that �
G��M�

, (3) strongly cor-
related instances: �

G
uniformly distributed in [10,1000] and

�
G � � G ��� , and (4) multiple subset sum instances: �

G
uni-

formly distributed in [10,1000] and �
G3� � G . The bin capac-

ities were set as follows: The first �
	 �

capacities �
?

were
uniformly distributed in ��9 ��� �G�� ' � G�� �
*��9 ���

�G�� ' � G�� ���
for A �+��
�9:9;9;
 � 	 �

. The last capacity �
<

is chosen as �
< �

��9 � � �G�� ' � G 	 �
<�� '? � ' � ? to ensure that the sum of the capaci-

ties is half of the total weight sum (if the first �
	 �

capacities
exceeded half the total weight, the instance was discarded).
For each problem class, 30 instances were generated for vari-
ous values of � and � . Trivial instances were discarded as in
[Pisinger, 1999]. The class of uniform, random instances that
require the most search for branch-and-bound solvers appear
to be generated when �

�
� is relatively low [Pisinger, 1999;

Martello and Toth, 1990]. Thus, the �
�
� ratio for the MKP

appears to be a critical parameter that determines search dif-
ficulty. Pisinger has shown that for problems with high �

�
�

ratio, Mulknap is highly effective, solving very large in-
stances almost instantaneously with little or no search (when
� ranged from 200 to 100,000, and � ranged 5 or 10). On the
other hand, small �

�
� ratios between 2-3 result in the hardest

problems. We therefore focus on these hard problems.
On each instance, we ran Mulknap, bin-completion,

and bin-completion with Nogood Dominance Pruning
(BC+NDP). For comparison, we used Pisinger’s Mulknap
code, available at his website, 1 compiled using the gcc com-
piler with -O3 optimization settings. Our bin-completion
code was implemented in Common Lisp.2 Table 1 shows
our results. All experiments were run on a 1.3GHz AMD
Athlon. Each algorithm was given a time limit of 300 sec-
onds to solve each instance. The fail column indicates the
number of instances (out of 30) which could not be solved
by the algorithm within the time limit. The time and nodes
column show the total time spent and nodes generated on the
successful runs, excluding the failed runs. Thus, the most
important indicator of performance is the number of failed
runs.

Both bin-completion and BC+NDP significantly outper-
form Mulknap, with the difference in performance becoming
more pronounced as problem size was increased. This in-
dicates that bin-completion is asymptotically more efficient
than Mulknap for this class of problems. BC + NDP con-
sistently outperforms bin-completion by a significant margin
with respect to the number of nodes searched, and significant
improvements in success rate and runtimes are observed for
the larger problems sets. Similar results were obtained when
the items had weights and profits in the range [10,100], as

1http://www.diku.dk/ pisinger/
2All of our bin-completion algorithms described in this paper

were compiled using CMUCL version 18e. To serve as a point of
reference, we ported Korf’s bin-completion algorithm for bin pack-
ing to Common Lisp, and found that CMUCL generated code that
ran at approximately half of the speed of Korf’s C code compiled
with gcc and -O3 optimization.

Mulknap Bin-Completion Bin-Completion + NDP
(m,n) fail time fail time nodes fail time nodes
Uncorrelated Instances
10,30 10 851 0 330 7994849 0 116 2059561
15,45 29 82 27 122 2818240 27 83 1389073
10,20 8 618 0 � 1 1866 0 � 1 1038
20,40 30 - 0 141 4703755 0 20 416409
25,50 30 - 3 1459 47252632 0 490 9229360
Weakly Correlated Instances
10,30 11 841 0 129 2168245 0 99 1544200
15,45 30 - 23 852 13632608 22 908 13181578
10,20 4 1334 0 � 1 1194 0 � 1 794
20,40 30 - 0 16 634072 0 4 84270
25,50 30 - 1 734 25605562 0 205 3339290
Strongly Correlated Instances
10,30 0 571 0 73 684006 0 62 585643
15,45 30 - 26 661 3697531 25 711 3816290
10,20 8 808 0 � 1 797 0 � 1 557
20,40 30 - 0 9 359645 0 3 58665
25,50 30 - 1 424 13008484 1 124 1757203
Subset Sum Instances
10,30 0 694 0 15 104240 0 14 93727
15,45 26 711 4 1788 9452862 3 2017 10200510
10,20 8 941 0 � 1 624 0 � 1 462
20,40 30 - 0 3 126931 0 1 28840
25,50 30 - 0 137 4613658 0 72 1261483

Table 1: Multiple Knapsack results. (Times are in seconds).

well as the range [10,10000].

5 The Bin Covering Problem
Suppose we have � items with weights � '
�9:9 � � , and an in-
finite supply of containers with quota � . The bin covering
problem, also known as the dual bin packing problem, is to
pack the items into containers such that the number of con-
tainers that contain sets of items whose sum is at least � is
maximized. That is, the goal is to distribute, or ration the
items among as many containers as possible, given that the
containers have a specified quota that must be satisfied. Note
that the total weight of the items placed in a container can be
greater than � .

Bin covering is a model for resource or task allocation
among multiple agents where the goal is to maximize the
number of agents who fulfill some quota. It is also a model
for industrial problems such as: (1) packing peach slices into
cans so that each can contains at least its advertised net weight
in peaches, and (2) breaking up monopolies into smaller com-
panies, each of which is large enough to be viable [Assman
et al., 1984].

5.1 The Labbé, Laporte, and Martello Algorithm
The state of the art complete algorithm for the bin covering
problem is by Labbé, Laporte, and Martello [Labbé et al.,
1995]. We shall refer to this as the LLM algorithm. LLM is
a branch-and-bound algorithm. The items are sorted in de-
creasing order of size. Each node represents a decision as to
which bin to put an item into, or to leave it out entirely. At
each node, lower bounds based on combinatorial arguments
are computed, and the remaining subproblem is reduced us-
ing two reduction criteria (see [Labbé et al., 1995]). At the
root node, a set of heuristics is applied in order to compute
a lower bound. As with the bin packing problem (c.f. [Korf,
2002]), many instances of the bin covering problem require

n Labb é Bin-Completion Bin-Completion + NDP
fail time fail time nodes fail time nodes

10,000 instances per row
10 0 2 0 2 215 0 2 215
20 0 4 0 4 595 0 4 548
40 0 78 0 10 5860 0 10 3888
60 2 458 0 154 3610644 0 127 2467708
80 17 823 2 110 3191035 1 88 1135615

100 28 1210 1 198 6045642 1 79 613463
50,000 instances per row

80 n/a n/a 6 332 7597514 4 362 5763523
90 n/a n/a 6 574 15079358 4 493 7320350

100 n/a n/a 8 803 20739466 6 585 11600379
120 n/a n/a 20 1941 65428014 16 1543 33040246

Table 2: Bin Covering results. (Times are in seconds).

no search, and can be immediately solved at the root node
when the heuristics described in [Labbé et al., 1995] compute
a lower bound that equals the upper bound.

5.2 Bin-Completion for Bin Covering

We define a dominance criterion for bin covering as follows.
Let

�
and � be two feasible assignments.

�
dominates � if

� can be partitioned into A subsets � '
�9;9:9;
 � ? such that each
item

� ��� � is mapped one-to-one (but not necessarily onto)
a subset � � , such that for all

� � A , the sum of the item
weights of subset ��� is greater than or equal to the corre-
sponding item

� � (i.e., ��� “covers”
� �).

To see that this dominance criterion gives a valid pruning
criterion, suppose a solution to a bin-completion instance as-
signs � to a bin. If we exchange the items in

�
for the corre-

sponding subsets of � , then this would result in a valid solu-
tion that satisfies at least as many bins.

As with LLM, we apply lower bounding heuristics at the
root node, and apply the same upper bounds used in LLM
[Labbé et al., 1995] at each node. We use a hybrid incremen-
tal branching strategy that generates two undominated chil-
dren at a time, then using smallest-sums-first value ordering
to order them.

We compared our implementation of bin-completion for
the bin covering problem with our implementation of the
LLM algorithm (both implementations were in Common Lisp
and run on a 600MHz Pentium 3). We generated 10,000
random instances for each set, where the items were chosen
uniformly in the range [1,9999], and the quota was 10,000.
We ran our implementations of LLM, bin-completion, and
bin-completion + NDP on each instance, with a time limit
of 180 seconds per instance. We also compared the two
bin-completion variants on larger instances of 80-120 items,
using sets of 50,000 random instances. Table 2 shows our
results. Again, we show the number of failed runs that
timed out before solving the instance, as well as the time
spent and nodes generated, excluding the failed runs. Bin-
completion significantly outperformed LLM. The increasing
gap in performance as problem size increases suggests that
bin-completion is asymptotically more efficient than LLM.
For the harder problems, bin completion + NDP significantly
outperforms bin-completion.

6 Min-Cost Covering
We define the Min-Cost Covering Problem (MCCP) as fol-
lows. Given a set of � bins with quotas

�
� '
�9:9;9:
 � <%� , and a set

of � items with weights � '
�9:9;9:
 ��� and costs � '
�9;9:9;
 � � , assign
some subset of the items to each bin such that (1) each item is
assigned to no more than one bin, (2) the sum of the weights
of the items assigned to a bin is at least the bin’s capacity
(i.e., the bin is covered, as in bin covering), and (3) the total
cost of the items that are assigned to the bin are minimized.
This problem has also been called the liquid loading prob-
lem [Christofides et al., 1979], because it was originally mo-
tivated by the following industrial application: Consider the
disposal or transportation of � different liquids (e.g., chemi-
cals) that cannot be mixed. If we are given � tanks of various
sizes, each with some associated cost, the problem is to load
the � liquids into some subset of the tanks so as to minimize
the total cost. Note that here, the “liquids” correspond to con-
tainers, and the “tanks” correspond to the items.

6.1 Christofides, Mingozzi, and Toth (CMT)
Algorithm

The previous state of the art algorithm for the min-cost
covering problem is an early version of bin-completion by
Christofides, Mingozzi, and Toth [Christofides et al., 1979].
The main difference between their algorithm and the bin-
completion algorithm described in Section 2 is their use of
a different dominance criterion. The Christofides et al. dom-
inance criterion (CMT criterion) is as follows. A set of items�

dominates another set � if is possible to map
�

one-to-
one to (but not necessarily into) � by a function � such that� G�� ����� G���� # � � , and �

G��
� ��� G��	� # � � .

Note that the CMT criterion only considers mappings be-
tween single elements of

�
and � , whereas the dominance

criteria we have described above for bin packing, MKP, and
bin covering considers mappings between elements of

�
and

subsets of � .
Christofides et al. empirically evaluated a number of lower

bounds for the MCCP. They found that the best bound was
computed by solving � single-container MCCP problems,
one for each of the bins, where all � items were available
for the single-bin MCCP problem. Each single-bin instance
was solved using a simple branch-and-bound algorithm. The
lower bound is the sum of the optimal values for the � single-
container MCCP problems. This is essentially a lower bound
derived by relaxing the MCCP constraint that each item can
be assigned to at most one bin.

6.2 Bin-Completion for the MCCP
Our new bin-completion algorithm for the MCCP is similar to
the Christofides et al. algorithm. The major difference is that
we use the following dominance criterion. A set of A items

�
dominates another set � if � can be partitioned into A subsets
�4'
�9;9;9:
 � ? such that each item

� ��� � is mapped one-to-one
(but not necessarily onto) to a subset ��� , and for all

� �+A ,
(1) the weight of

� � is less than or equal to the sum of the
item weights of the items in � � , and (2) the profit of item

� �
is less than or equal to the sum of the profits of the items in
��� . The CMT dominance criterion is a special case of this
criterion, where
 ����
 �.� for all

�
.

We evaluated our bin-completion algorithm and the CMT
algorithm using the same classes of problem instances that
we used for the MKP (Section 4). For each problem class,
30 nontrivial instances were generated for various values of
� and � . The purpose of this experiment was to evaluate the
relative impact of each component of bin-completion, that is:
(1) the type of dominance criterion used, (2) whether nogood
pruning was used, and (3) whether nogood dominance prun-
ing was used.

On each instance, we ran (1) CMT1: the CMT algorithm
as presented in [Christofides et al., 1979], (2) CMT2: the
CMT algorithm extended with nogood pruning, (3) BC1: bin-
completion using our dominance criterion but without nogood
pruning, (4) BC2: bin-completion using our dominance cri-
terion and with nogood pruning, (5) BC3: bin-completion
using our dominance criterion and NDP. For all algorithms,
a hybrid incremental branching strategy that generated 100
children at a time was used, and the children were ordered in
increasing order of profit sums.

Table 1 shows our results. All experiments were run on a
2.5GHz Pentium IV. Each algorithm was given a time limit
of 60 seconds to solve each instance. The fail column indi-
cates the number of instances (out of 30) which could not be
solved by the algorithm within the time limit. The time and
nodes column show the total time spent and nodes generated,
excluding the failed runs. As shown by the data, each com-
ponent of bin-completion has a significant impact. Although
our dominance criterion requires much more computation per
node to compute than the simpler CMT criterion, the perfor-
mance is significantly improved. The nogood pruning strat-
egy significantly improves performance for both the algo-
rithm based on the CMT dominance criterion, as well as our
dominance criterion. Finally, BC3, which uses NGD is re-
sults in the best performance. We also tested an item-oriented
branch-and-bound algorithm that uses the same lower bound-
ing procedure, but found that it performed even worse than
the CMT algorithm on all of the test instances.

7 Bin Packing
We implemented our extended bin-completion algorithm for
the bin packing problem, and summarize our results below.
For further details, see [Fukunaga, 2005].

Extending Korf’s algorithm [Korf, 2003] with NDP and a
value ordering based on minimum cardinality (with ties bro-
ken according to decreasing sum of item weights) resulted in
significant speedups over Korf’s algorithm on uniform ran-
dom problem instances, as well as the class of “uniform”
OR-LIB3 instances of 120-1000 items, for the same experi-
ments described in Korf’s paper [Korf, 2003]. In addition, ex-
tending the algorithm further by applying randomized restarts
[Gomes et al., 1998] resulted in significant speedups com-
pared to Korf’s algorithm on the “triplet” instances from OR-
LIB. For example, our extended algorithm (implemented in
Common Lisp and executed on a 1.3GHz Athlon) solves all
80 of the triplet instances from OR-LIB within 1500 seconds
combined, whereas Korf’s algorithm (implemented in C and
executed on a 440MHz Sun Ultrasparc) failed to solve any

3see http://www.brunel.ac.uk/depts/ma/research/jeb/info.html

CMT1 CMT2 BC1 BC2 BC3
(m,n) fail time fail time fail time fail time fail time
Uncorrelated Instances
5,15 0 3 0 2 0 � 1 0 � 1 0 � 1

10,30 30 - 30 - 30 - 8 605 6 567
5,10 0 � 1 0 � 1 0 � 1 0 � 1 0 � 1

10,20 7 324 0 5 0 168 0 1 0 1
15,30 30 - 27 49 30 - 6 360 1 511
Weakly Correlated Instances
5,15 0 6 0 2 0 � 1 0 � 1 0 � 1

10,30 30 - 30 - 30 - 28 78 27 77
5,10 0 � 1 0 � 1 0 � 1 0 � 1 0 � 1

10,20 0 88 0 1 0 4 0 � 1 0 � 1
15,30 30 - 6 325 25 167 0 115 0 20
20,40 30 - 30 - 30 - 28 72 13 410
Strongly Correlated Instances
5,15 0 2 0 1 0 � 1 0 � 1 0 � 1

10,30 30 - 30 - 4 361 1 207 0 93
5,10 0 5 0 � 1 0 � 1 0 � 1 0 � 1

15,30 17 286 0 95 0 64 0 3 0 1
20,40 30 - 19 330 23 330 6 180 0 58
Subset Sum Instances
5,15 0 2 0 1 0 � 1 0 � 1 0 � 1

10,30 30 - 30 - 4 362 1 224 0 100
5,10 0 � 1 0 � 1 0 � 1 0 � 1 0 � 1

10,20 0 5 0 � 1 0 � 1 0 � 1 0 � 1
15,30 17 289 0 100 0 65 0 3 0 � 1
20,40 30 - 19 258 23 172 6 181 0 63

Table 3: Min-cost covering problem. (Times are in seconds).

of the twenty 501-item instances, and failed to solve 8 of the
249-item instances given a 10 minute time limit per instance.
See [Fukunaga, 2005] for further results.

However, our bin-completion solver was not competitive
with the state of the art, which is currently a branch-and-
price integer linear programming solver by Belov and Schei-
thauer [Belov and Scheithauer, 2003]. Belov and Scheithauer
[Belov and Scheithauer, 2003] provide a new benchmark set
of 28 very hard bin packing instances; they solved most of
these within seconds, although some took hours. Our cur-
rent bin-completion code could not solve any of the 28 in-
stances, given 15 minutes per instance. They also report that
the largest triplet instances from OR-LIB (Triplet-501) were
solved in an average of 33 seconds per instance (660 seconds
total) on a 1GHz AMD Athlon XP.

Furthermore, Belov was kind enough to run a set of one
hundred, 80-item, uniform, random instances that we gen-
erated with items in the range [1,1,000,000] and a bin ca-
pacity of 1,000,000 for us. His solver solved all of these in-
stances in less than 1 second each at the root node (i.e., with-
out any search), using rounding heuristics based on the linear
programming LP solution, whereas our best bin-completion
solver required 534 seconds and searched 75,791,226 nodes.

Recent branch-and-price approaches for bin packing such
as the solver by Belov and Scheithauer (see [de Carvalho,
2002] for a survey of others) use a bin-oriented branching
strategy, where decisions correspond to the instantiation of
one or more complete bins. At each node, a column genera-
tion procedure is used to compute the LP lower bound. They
derive much of their power from a very accurate LP lower
bound based on a cutting stock formulation of bin packing
[Gilmore and Gomory, 1961], which has been observed to
almost always give the optimal value as the lower bound,
and has never been observed to give a value that is more

than one higher than the optimal value (c.f. [Wäscher and
Gau, 1996]). In addition, rounding heuristics applied to frac-
tional LP-solutions often yields the optimal, integral solution.
The combination of a very tight LP lower bound and good
upper bounding procedure result in very little search being
performed for almost all problem instances. This domain-
specific branch-and-price LP-based approach does not seem
to generalize straightforwardly to the MKP and MCCP, in
part due to the differences in the granularity of the objective
function. While it is possible that a similar branch-and-price
approach could be applied to the bin covering problem, we
are aware of no such approach in the literature.

For completeness, we have applied a straightforward,
integer-linear programming approach to the MKP, MCCP,
and bin covering problems. We applied the GNU GLPK inte-
ger linear programming solver to the mathematical program-
ming formulations of these problems, but not surprisingly,
these performed very poorly in comparison with the domain-
specific algorithms described in this paper.

8 Related Work
The multicontainer packing problems we studied in this pa-
per can be formulated as constraint programming problems.
In one possible formulation, the variables correspond to bins,
and the values of the bins correspond to unique, feasible bin
assignments (this is similar to the integer linear programming
formulation of the cutting-stock problem [Gilmore and Go-
mory, 1961]). For example, given items with weights

����
����
let � ' be the variable representing the first bin with capacity
4. The domain of � ' is the two singleton sets

�����
and

�����
.

Given this constraint programming formulation, it can
be seen that the pruning techniques based on nogoods de-
scribed in Section 3 are closely related to techniques pro-
posed for constraint programming. Nogood pruning identifies
and prunes nodes by detecting whether the bin assignment
for the current node contains a nogood. This is very similar
to nogood-based techniques for pruning symmetric solutions
proposed by Fahle, Schamberger and Sellmann [Fahle et al.,
2001] and Focacci and Milano [Focacci and Milano, 2001],

The NGD technique proposed in this paper is similar to
the nogood dominance pruning technique proposed by Fo-
cacci and Shaw [Focacci and Shaw, 2002] for constraint pro-
gramming, who applied their technique to the symmetric and
asymmetric traveling salesperson problem with time win-
dows. See [Focacci and Shaw, 2002] for a full description
of their technique.

Both methods attempt to prune the search by proving that
the current node at depth # , which represents a partial # -
variable solution � , is dominated by some previously ex-
plored A -variable partial solution (nogood), � .

The main difference between the two methods is the ap-
proach used to test for dominance. Focacci and Shaw’s
method extends � to a # -variable partial solution �

�
which

dominates � . They apply a local search procedure to find the
extension �

�
.

On the other hand, our NGD method starts with a partial,
-variable solution � and tries to transform it to a partial so-
lution �

�
such that

�
�

�?
, the subset of �

�
including the first A

variables, is dominated by � . We do this by swapping the val-
ues of the A th and # th variables in � to derive �

�
, and testing

whether
�

�
�?

is dominated by � .
For efficiency, the current implementations of both nogood

dominance pruning methods are weak, in the sense that if �
is dominated by � , the procedures will not necessarily detect
the dominance. Focacci and Shaw rely on an incomplete, lo-
cal search to find the extension �

�
. We only consider transfor-

mations involving two variables, but to fully exploit the dom-
inance criterion, we would need to consider transformations
involving all variables A
 A ��
�9;9 # .
9 Conclusions
This paper makes two main contributions: First, we pro-
posed extensions to bin-completion to improve its perfor-
mance, including nogood dominance pruning, which gener-
alizes Korf’s nogood pruning method. Second, we demon-
strated the utility and generality of bin-completion by apply-
ing it to three new problems: the bin covering problem, the
multiple knapsack problem, and the min-cost covering prob-
lem. We proposed new dominance criteria for these prob-
lems, and showed that our bin-completion solvers signifi-
cantly outperform , the previous state of the art on hard in-
stances (in some cases by orders of magnitude with respect to
runtime). For these three problems, our nogood dominance
pruning technique significantly reduced search effort and run-
times. The comparison of our bin-completion algorithm to
the early bin-completion algorithm by Christofides et al. for
the MCCP showed that our new dominance criteria resulted
in significant performance improvements.

Finally, we revisited the bin packing problem and showed
that our extensions significantly improved the performance of
bin-completion for some standard benchmarks. However, we
found that bin-completion is not competitive with state of the
art solvers for bin packing based on the cutting stock problem
formulation.

While we have focused on four particular multicontainer
problems in this paper, there are many similar problems
involving the assignment of objects to multiple containers
where similar dominance structures can be exploited. Exam-
ples include the generalized assignment problem, multipro-
cessor scheduling, and the segregated storage problem. Given
our results, maximally exploiting powerful dominance crite-
ria in a bin-completion framework appears to be a promising
future direction for such multicontainer problems.

10 Acknowledgments
Thanks to Gleb Belov for running his solver on some of our
bin packing test instances, and to the anonymous reviewers
for helpful comments. This research was supported by NSF
under grant No. EIA-0113313.

References
[Assman et al., 1984] S.F. Assman, D.S. Johnson, D.J. Kleitman,

and J.Y.T. Leung. On a dual version of the one-dimensional bin-
packing problem. J. Algorithms, 5:502–525, 1984.

[Belov and Scheithauer, 2003] G. Belov and G. Scheithauer. A
branch-and-cut-and-price algorithm for one-dimensional stock

cutting and two-dimensional two-stage cutting. Technical report,
Technical University Dresden, 2003. Preprint MATH-NM-03-
2003.

[Christofides et al., 1979] N. Christofides, A. Mingozzi, and
P. Toth. Loading problems. In N. Christofides, A. Mingozzi,
P. Toth, and C. Sandi, editors, Combinatorial Optimization. John
Wiley & Sons, 1979.

[de Carvalho, 2002] J.M. Val ério de Carvalho. LP models for bin
packing and cutting stock problems. European Journal of Oper-
ational Research, 141:253–273, 2002.

[Fahle et al., 2001] T. Fahle, S. Schamberger, and M. Sellmann.
Symmetry breaking. In Proc. Int. Conference on Constraint Pro-
gramming, pages 93–107, 2001.

[Focacci and Milano, 2001] F. Focacci and M. Milano. Global cut
framework for removing symmetries. In Proc. Int. Conference on
Constraint Programming, pages 77–92, 2001.

[Focacci and Shaw, 2002] F. Focacci and P. Shaw. Pruning sub-
optimal search branch brances using local search. In Proc. CP-
AI-OR, 2002.

[Fukunaga, 2005] A. Fukunaga. Bin-Completion Algorithms for
One Dimensional, Multicontainer Packing Problems. PhD the-
sis, UCLA, 2005. forthcoming.

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson. Com-
puters and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[Gilmore and Gomory, 1961] P.C. Gilmore and R.E. Gomory. A
linear programming approach to the cutting stock problem. Op-
erations Research, 9:849–859, 1961.

[Gomes et al., 1998] Carla P. Gomes, Bart Selman, and Henry
Kautz. Boosting combinatorial search through randomization.
In Proc. AAAI, pages 431–437, Madison, Wisconsin, 1998.

[Kellerer et al., 2004] H. Kellerer, U. Pferschy, and D. Pisinger.
Knapsack Problems. Springer-Verlag, 2004.

[Korf, 2002] R. Korf. A new algorithm for optimal bin packing. In
Proc. AAAI, pages 731–736, 2002.

[Korf, 2003] R. Korf. An improved algorithm for optimal bin pack-
ing. In Proc. IJCAI, pages 1252–1258, 2003.

[Labb é et al., 1995] M. Labb é, G. Laporte, and S. Martello. An
exact algorithm for the dual bin packing problem. Operations
Research Letters, 17:9–18, 1995.

[Martello and Toth, 1990] S. Martello and P. Toth. Knapsack prob-
lems: algorithms and computer implementations. John Wiley &
Sons, 1990.

[Pisinger, 1999] D. Pisinger. An exact algorithm for large multiple
knapsack problems. European Journal of Operational Research,
114:528–541, 1999.

[Scholl et al., 1997] A. Scholl, R. Klein, and C. Jürgens. BI-
SON: A fast hybrid procedure for exactly solving the one-
dimensional bin packing problem. Computers in Operations Re-
search, 24(7):627–645, 1997.

[Wäscher and Gau, 1996] G. Wäscher and T. Gau. Heuristics for
the integer one-dimensional cutting stock problem: A computa-
tional study. OR Spektrum, 18(3):131–144, 1996.

