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Abstract the ontology can be assessed using the tools of lattice theory;

moreover, there are also automatic methods for building lat-
tices from a set of terms. Therefore, the problem of going
from elements of a domain to the formal structure of this do-
main is solved by formal concept analysis. On the other hand,
FCA does not handle changes in the interpretation of terms in
the ontology due to intrinsic vagueness in the meaning of the
corresponding concept. Supervaluation semantics provides
rigorous methods for handling such changes of ‘standpoint’
while providing the machinery to makeliable inferences
involving vague concepts. This ability to derive the reliable
consequences of vague knowledge is the main advantage of
supervaluation semantics over fuzzy loffidkan, 1993.

This paper describes an ontology for inland water
features built using formal concept analysis and su-
pervaluation semantics. The first is used to gener-
ate a complete lattice of the water domain, whereas
supervaluation semantics is used to model the vari-
ability of the concepts in terms of threshold param-
eters. We also present an algorithm for a mech-
anism of individuation and classification of water
features, from snapshots of river networks, accord-
ing to the proposed ontology.

1 Introduction

There are at least three main aspects of an ontology for Ge-
ographical Information Systems (GIS): the ontology at the &z
data leve] whereby features of how raw data (either from sen-
sor images or geographic surveys) are expressed in terms of
numeric an symbolic information; the ontology at pert , _ ,
level that incorporates scientific knowledge about geographif'gure 1: Va})gueness in water featurgfgee lakes or a mean-
cal objects; and the ontology at theer levelwhich should in ~ dering river-
some way specify the meanings of the vague and ambiguous _. .
geographic terminology which is used to describe the world Figure 1 shows an example of the kind of vagueness we
in natural language. The present work is an investigation of"® 90ing to be dealing with in this work. This figure may de-
an ontology of the latter kind for inland hydrographic fea- pict either three Iakes'cpnnected py channels or a meandering
tures. river stretch. The decision of one interpretation from another
The ontology of inland water features proposed in thisdePends on thetandpoinof the observer, i.e., on how the set
work is based on th&Vaters'lexical field' presented as an of parameters distinguishing rivers from lakes are determined
example in[Ganter and Wille, 1999 However, we shall DY the observerss judgement. Therefore, not only is vague-
analyse the domain in greater detail. In particular we shal['€SS pervasive to the feature definitions but also on how the
explicitly model the intrinsic vagueness and ambiguity in wa- eatures are individuated. It is worth pointing out also 'that
ter feature terms (such @asnd and lakgby means of a vari- this Wo_rk concentrates cgoritesvagueness, which is an in-
ant of supervaluation semanti@s proposed ifiFine, 1975 determmaqy in Fhe boundaries of appllqabl_l|ty of aterm. This
Bennett, 2001a; 2001bThe methods developed in this work, c&n be distinguished from conceptaatbiguitywhere a term
however, are not restricted to the water feature domain, bdtas several qualitatively different interpretations. .
can be applied to any ontology for GIS or, indeed, any com- Thg ontology of water features and _the superval_uanon se-
plex domain containing vague concepts. mantics are encoded into a prototype implementation whose
We argue in this work thaformal concept analysigfCA) ~ Purpose is precisely to individuate qualitatively distinct fea-
and supervaluation semanticeomplement each other for tures from a snapshot of a river network. Each individual
building ontologies of riae geography. On the one hand feature is, thus, classified according to the definitions in the
FCA provides constructive tools for extracting complete lat-0nt0l0gy, taking into account parameters handled by the su-

tices for any particular domain. Therefore, formal aspects oP€rvaluation semantics. . .
This paper is organised as follows: Section 2 overviews

*Currently at Centro Universitio da FEI, &0 Paulo, Brazil. some basic definitions of formal concept analysis and intro-




duces the conceptual domain of inland water features (Sedvany-valued contexts and scaling
tion 2.2). Supervaluation semantics is discussed in Section &Jntil now we have been describing the basic machinery of
Section 4 describes our prototype implementation and Sedormal concept analysis without taking into account values

tion 6 concludes this work. of attributes with respect to objects. In fact, the definition of
context described above only deals with cases of one-valued
2 Formal Concept Analysis attributes where objects either have a particular attribute or

: . not. However, in order to deal with the many-valued at-
Formal concept analysis (FCAGanter and Wille, 1999s a tributes found in the water feature domain (such as “flow”

powerful tool for formalising conceptual domains by means ‘, o ) : i
of algebraic structures such that the set of concepts can bggmdepth ), many-valued contexts should be taken into ac

represented as complete lattices. A many-valued context is a quadrugl@, M, W, I) where

21 Overview G is a set of objects)M is a set of many-valued attributes,
o : . W are the attributes values atids a ternary relation ofy x
The basic ideas underlying formal concept analysis are thosg, W
of f(\)/;lmal context” and *formal concept” that are introduced In order to represent many-valued contexts as complete lat-
tbhel? h Infct)rmally, acontex';refle(rjs to t.he f%rmal s{\}\:}:ﬁ'ture tices, they have to be reduced to one-valued contexts. This is
a Ctar?(? erises a Cc:jnc?ihua (t)rr|1a|n atm reep dl thm' (done by means of partitioning each many-value attribute into
a context IS composed of tne ontology terms and their aty finite number of one-value attributes that are distinguished
tributes. Termsin an c')ntology. are.calledbjectsm formal from one another by a set of thresholds. This partitioning
concept analysis terminology, in this work we use these Wordf)rocess is namescalingand the set of partitions of an at-
interchangeably. tribute is called theonceptual scalef that attribute in FCA
Formal contexts and concepts t_erminology. A scaling can be understood as an interpreta-
A contextK is a triple K = (G, M, I) in which G is the  tion of each of the attributes of a many-valued context by
set of terms in the contexk, M is the set of attributes of Means of aontext of attributesA scale for a many-valued

the context and is anincidence relatiorbetween’ and)/.  attributem is a one-valued conteX{m = (G'm, Mm, Im)

Let's assume € G andm € M, thengIm is read as “ the  With m(G) C Gm. In practise, every many-valued attribute

termg has attributen”. m of a context is replaced by the one-valued scale attributes
In order to obtain the set of all attributes(m € M) com-  elative tom(g), for any objecy € G.

mon to a particular subset of objects,aderivation operator

is defined as follows: 2.2 The context of inland water features

, In this section we propose a context for inland water recall-

A'={me M| gIm forall g € A}. ing thelexical field watersntroduced in[Ganter and Wille,
999. The present context is constituted of a set of objects
or water features): G #river, stream, canal, reservoir, lake,

marsh, pondl whose set of attributes is M#inearity, size,
origin, flow, depth}.
B ={geG| gImforal me B}. The scale assumed for the linearity attribute partitions its
values intdinear andnon linearaccording to a threshold on

Given a contextG, M, I), a conceptis identified with a  a linearity coefficient The linearity coefficient assumed in
pair (A, B), whereA C G, B C M, such thatA” = B this work is defined as the ratio between the diameters of the
andB’ = A. The setsd and B are called, respectively, the minimal bounding circle and the maximal internal circle w.r.t.
extent and theintent of the concept A, B). the feature’s border.

Given two conceptg; = (Ay,By) andey = (Ag, Bs), In an ideal world, where lakes have the shape of discs and
we say thatc; is a subconcept of, (equivalently,c, is a  rivers the shape of lines, rivers and lakes could be identified as
superconcept af; ), or simply (A, By) < (A2, B2),if Ay € features whose linearity ratio are, respectively, different from
A,. The set of all concepts of a particular context, orderedand equal to one. However, this idealistic distinction does not
in this way, forms a complete lattice in which infimum and hold for lakes that are elongated or for wide river stretches,

This operator is overloaded to refer to the set of all object
g € G that have all of their attributes in a particular subset of
M. Formally:

supremum are, respectively for instance. In order to cope with this issue, we assume a
threshold on the linearity ratio (called theearity threshold
/\ (As, By) = (ﬂ At, (U By)"), whereby if the ratio of a water feature is greater or equal than
teT teT teT this threshold, this feature is linear. It will be considered non-
and Iir?earho'igerwize_. Trr]lis_is ir|1 fact a s_implification gf thSe ac_'[ual4
_ " threshold used in the implementation presented in Section 4.
\/ (4s, Be) = ((U A" n By)- The actual definition, however, needs concepts that will be

teT teT teT . .
€ € € introduced later on this paper.

LFor simplicity we are going to drop the word formal in “formal _ Size is partitioned into four categoridsrge linear, smalll
context” and “formal concept” throughout this paper. linear, large non-linearand small non-linear The linear

2As proved by thebasic theorem of concept lattifGanter and ~ Sizes are determined according to a threshold on the maxi-
Wille, 1999. mum length of linear featuresnaximum linear length thresh-



old), whereas the non-linear sizes take into account threstand appropriate thresholds, it is now possible to define the

olds on both: thenaximum non-linear lengthnd themaxi-  attributes of a inland water featurg’), as presented in Defi-

mum non-linear width The distinct size thresholds for lin- nition 1%.

ear and non-linear features is due to the intrinsic dissimilarityhefinition 1 (Relations of the domain water feature)

between judgement of sizes regarding objects in these two Non.li ) =

classes (for instance, small lakedoes not necessarily have  ® Yon-linear( )= . o

the same dimensions asmall rives. linearity_ratio(F) < linearity_thresh
Flow is scaled aflowingor stagnantgiven a threshold on e Linear(F) =

the average flow of the feature. Likewise, depth is partitioned linearity_ratio(F) = linearity_thresh
into deepandshallowaccording to a threshold on depth. Fi- e Large_linear(F) = linear(F) A
nally, origin is partitioned intaatural andartificial. mazx_length(F) > linear_length_thresh

All of the scales used in this work partition the many valued | Small linear(F) = linear(F) A
attributes into mutually exclusive partitions, so callemmi-
nal scalegGanter and Wille, 1999 Other possibilities for ‘ o
scales could also be considered in this context depending on ® Large-non linear (F) = linear(F) N

max_length(F) < linear_length_thresh

the level of granularity required for the attributes in the appli- maz length(F) > nonlinear length_thresh A
cation domain. In this work, however, we are not going to get mazx_width(F) = nonlinear width_thresh
into details about the diverse possibilities of scales. e Small_non_linear(F) = non_linear(F) A

maximum_length(F) < nonlinear_length_thresh
A mazimum_width(F') < nonlinear_width_thresh

o Flowing(F) = average_flow(F) > flow_thresh
o Stagnant(F) = average_flow(F) < flow_thresh
a_liinea, e Deep(F) = average_depth(F) > depth_thresh
o e Shallow(F) = average_depth(F) < depth_thresh

e Natural(F) = — Artificial(F)

In this paper we do not stipulate the actual thresholds for
Definition 1. Future research may use machine or user sur-
veying to determine appropriate default values corresponding
to an intuitive classification.

We now can define the inland water features, as presented
in Definition 2.

Definition 2 (Inland Water Features)Let each of the objects
of the inland water feature context be a predicate symbol. The
terms of the ontology are defined as follows.

{River} = {Linear, Large_linear,
Figure 2: Concept lattice of inland water features. Flowing, Natural}
{Stream} = {Linear,Small linear,
The context of_inland water f_eatures can, thus, be repre- Flowing, Natural}
sented as the lattice shown in Figure 2. (Canal)’ = {Linear, Small_linear,
Extracting definitions from the water feature formal Flowing, Artificial}
ConteXt_ o . ) . {Reservoir} = {Stagnant, Artificial,
The lattice in Figure 2 can be easily translated into defini- D
tions that could be handled by the supervaluation semantics, ) eep}
as discussed in Section 3 below. {Marsh}' = {Stagnant, Natural, Shallow}
In order to present the definitions of water features we first {Lake} = {Non_linear, Large_non linear,

introduce the following functions on features. L&tbe a

water feature, thelinearity_ratio(X), average_flow(X), ,
average_depth(X), maz_length(X) and max_width(X) {Pond}
are mappings from the featu?é to real values representing, Stagnant, Natural }

respectively, its linearity ratio, average flow, average depth, The next section introduces the supervaluation semantics
maximum length and maximum width. With these functions,ang discusses how it can handle variations in the meaning of
B the definitions above.

Stagnant, Natural }

{Non.inear, Small_non_linear,

3It is worth pointing out that, for clarity, we maintaindih- - T
ear andnon-linearalong withlarge (small) linear/non-linegreven “In this paper predicate symbols start with an uppercase letter
though the related attributes are never used separately in this workwhereas functions are written with lower case letters.



3 Supervaluation Semantics 4.1 Individuation and classification of features

By individuation in the context of water features we mean the
Rrocess of identifying qualitative distinct stretches of river
networks. In this work, this distinction is accomplished in

The formalisation of the inland water feature domain pre-
sented above used thresholds to define partitions on the valu
of attributes. However the implications of varying the values X . : .
of these thresholds is not accounted for by the formal conzhrgs Frjli]?sesbt IT::SB tge T}ed?tﬁx'séo{f sirI:]eleton)rof a “i\r/1er
cept analysis. In fact, distinct sets of values for the thresholg§EMWork 1S obtained by an oft-the-she age processing

may result in distinct (sometimes incompatible) definitions omethOd' Second, the axis thus_ ol_)ta|ne_d.|s processed into a
the context objects. It is desirable to view such variations a§ata structure from which qualitative distinct features from
e network can be identified by observing changes in the

standpointson the vague definitions of features. We assum width along the axis. Finally, the distinct stretches are classi-

the supervaluation semantid@ne, 197%to provide a formal . . A . ;
framework for standpoints on feature definition. g?jbz\c/ce:ordmg to the definitions proposed in Sections 2.2 and

Supervaluation semantics views a vague language as a se
of distinct precise versions of itself. Each of these versionsSkeletonisation and data structure
is called aprecisification Formally, each precisificationis ~ The medial axis (oskeletof [Blum, 1973 is commonly de-
identified with a particular interpretatiah, of the language. fined as the locus of the diameters of all maximal discs en-
A supervaluation modes$ defined as a set of precisifications. closed in a Jordan cur¥¢hat touch at least two points of the
Therefore, given a supervaluation modelve can talk about  curve’s boundary. The best known application of skeletonisa-
propositions that are unequivocally true (i.e. are trueviery  tionis in the field of image processing, where the skeletons of
interpretatiory,, € T) and propositions that aie some sense object's images are used as an abstraction of the two dimen-
true (i.e. are true isomeinterpretation/,, € ). sional shape of the objects depicted, as surveyfdincaric,

In this work the scales applied to attributes of the inland1999. In fact, a linear algorithm has been proposed that com-
water feature domain compose one particular precisificatiorputes the medial axis of simple polygdris linear time[Chin
Therefore, the definitions of the inland water feature domairet al., 1994.
may vary according to the multiple meanings that the vague The idea of representing river networks by their medial axis
concepts might assume, or multiple values that the thresholds not new. To the best of our knowledge the first work that
can assume. For instance, the two possible interpretatiori$tempts such endeavour McAllister and Snoeyink, 2040
for the scenario in Figure 1 correspond to two distinct pre-where the skeletons of river networks are used to identity op-
cisifications whereby the particular linearity thresholds dic-posite points in river banks, to connect the centreline of the
tate whether the scenario depicts three lakes or a meanderifngtworks with original river bank data, to calculate the areas
river. In fact, the apparatus of supervaluation semantics alof rivers and, finally, to automatically obtain the ordering of
lows for logical relationships between vague concepts to b&ibutaries along the network. The problem of using the skele-
represented by quantifying over the (possibly infinite) spacdons for the individuation and classification of water features
of precisificationgBennett, 2001 (such as the identification of rivers and lakes in a single river

Moreover, attributes in formal concepts can be used ag§etwork as proposed in the present paper), however, was only
predicates in the bodies of Horn clauses and the context ottinted in that work. We believe that the tasks of segmentation
jects as arguments in the clause heads of logic-based axion®}d classification of such features cannot be accomplished
A set of such clauses can be fed in a system allowing logidvithout a precise and consistent body of definitions such as
reasoning about elements of the ontology. In other words, ththose presented in sections 2.2 and 3. o
methods of generating concept lattices provided by the formal In this work, we use a divergence-based memmltrov
concept analysis can be adapted to generate logical axion® al. 2004 as an off-the-shelf method for extracting the me-
that could be used within a logic-based reasoning system efflial axis of river network snapshots. This method is based on

coding supervaluation semantics. considering a 2D region, representing the image of a shape
The next section presents a prototype implementation opoundary, as gradient fields of the region's distance trans-
these ideas. form. The skeletal points are, thus, identified as singularities

in the net outward fluxof the vector field relative to the re-

gion where each pair of points in opposite borders shrinks to

4 Implementation a point.
. . . : : Skeletons produced by the divergence-based method are
In this section we discuss a prototype implementation of th‘?ransformed into an 8-connected list whereby each cell is sub-

inland water feature ontology with supervaluation semantics,;. . . . .

The purpose of this protot%e is 1o gutomatically individu-d'v.'de.d into 9 registers. These registers encode_ each skgletal
ate and classify different geographical features within th)_po!nt inits mldc_ile reglster_and pointers to any of_lts 8 cardinal
dimensional images of river networks (e.g. river stretchesne'ghbours' It is worth painting out that, along with the skele-

ke and poncs). I a general way the rocess of nchias PO, 1 niddle eqter e encodes e ditance fom
uation and classification of water features involves the con- P P p y

struction of the medial axis (or skeleton) of the river networklorovIdlng a measurement of the width of the water feature).
and further translate it into a data structure. This data struc- °A Jordan curve is any closed curve that does not intersect itself.
ture provides the basis for feature segmentation/classification. ®A simple polygon is a single closed polygonal chain that do not
The elements involved in this process are described below. intersect itselfde Berget al, 1997.



The task now is to sweep the 8-connected list, segmenting
the river-network skeleton into stretches. These stretches are,
thus, classified according to appropriate thresholds based on
the water-feature ontology.

Integrated Classification and Individuation

Points where the skeleton branches and points where there are
abrupt changes in the width of a river network (according to

a threshold) are used to provide a means of obtainjg-
segmentatiomf the data intccandidate water featuresThe

initial set of segments may further be concatenated or split
according to the definitions in the ontology. This provides,
as a result, the segmentation of the river network into water
features, according to formal definitions.

In order to summarise these ideas in an algorithm we first
need to introduce the ideaslmfanching pointsample stretch
andnexus point

A branching point is a discontinuity in the orientation of
the boundary of a shape In a skeleton encoded as a 8-
connected list, branching points are identified as a cell with
more than two neighbours.

A sample stretclof a skeleton at a given poiptis an or-
dered set of skeletal points withas the mid-point and which
extends a certain number of points either side.ofhesam-
ple stretch ratids the ratio of the length of the sample stretch
to the width of the water body at the sample point (i.e. the
width at the mid-point of the stretch). We have found that a
reasonable segmentation can be obtained by taking the sam-
ple stretch ratio as 1, so that the stretch has the same length

Prolog predicates are defined that test whether
a point is an end point, a nexus point or a mid
point of a chain. This is simply done by count-
ing the number of points of the surrounding 8
pixes that are also skeleton points;

For each chain of mid points the algorithm
checks that the point is on a chain that extends
for a distance in each direction that is at least
equal to the width at that point;

a list of points corresponding to the sample
stretch is collected,;

Maximum and minimum widths along the
sample stretch are computed;

The ratio of the maximum and minimum
widths to the width of the mid point are com-
puted;

If the ratio’s lie within the givenstretch lin-
earity ratio threshold(according to statement
1) the point is marked as a point on a linear
stretch; otherwise, it is marked as belonging
to a non-linear segment.

In the case of a linear segment, the linear-
length/width thresholds are taken into account
to decide whether the given segment is a river
or a stream; in the case of a non-linear seg-
ment, the non-linear size thresholds are used
to decide between a lakes or a pond.

as the with of the river.

We call anexus pointa point where two or more linear
chains in the medial skeleton meet.

We can then define afapproximately) linear sample
stretchof water as one where the minimum and maximum
width along the stretch lie within a certain variation thresh-
old relative to the width at the mid-point. More specifically a
sample stretchis linear according to a givestretch linearity
ratio threshold(SLR thresh) just in case:

(mid_width(s)/min_width(s) < SLR_thresh) A (1)
(mazx_width(s)/mid_width(s) < SLR_thresh)

The lake-river segmentation and classification algorithm

can be summarised as follows:

ALGORITHM: Lake-river segmentation and clas-
sification

INPUT: A bitmap depicting a river network
OUTPUT: A set of segments of the river network
classified according to the water-feature ontology

o first, a matrix output by the divergence-based
skeletonisation is converted to a set of Pro-
log facts — one for each point in the skeleton.
These identify the coordinates of the skeleton
point and its distance from the nearest edge
point of the water body;

"Branching points are, in facfirst-order shocksas defined in
[Siddigi and Kimia, 1995

Changes in the stretch linearity ratio threshold (and on the
linear and non-linear size thresholds) allow for variations of
the feature segmentation and classification. This provides a
rigorous account of multiple standpoints in the classification
of river, lakes, stream and pond features in a river network.

4.2 Prolog Implementation

The algorithm outlined in the previous section has been par-
tially implemented in Prolog.

The following screen dump shows the output for an arti-
ficial example which was constructed to illustrate some key
problems of lake/river discrimination. Note that the example
contains a wide river and a much narrower river that could be
Interpreted either as a stream or as a river depending of an ob-
server’s standpoint. Moreover, the narrow river is broken by
a small lake (or pond) and in this case the small lake/pond has
a maximum diameter which is much smaller than the width
of the wide river.

Figure 3 presents an output of the prototype implemen-
tation whereby linear stretches are indicated by thick black
lines and non-linear parts of medial skeleton are shown as thin
gray lines. A new classification, according to a distinct stand-
point, is obtained by simply providing a new set of thresh-
olds. Junctions between distinct rivers, however, were mis-
classified by the prototype, as shown by the junction between
the thin and the wide rivers in Figure 3McAllister and
Snoeyink, 200D presents a possible solution for this prob-
lem, which shall be further exploited within the framework
proposed in the present paper.



The basic idea of this algorithm is to use the medial axis of a
river network (extracted via an off-the-shelf divergence-based
skeletonisation algorithm) to identify stretches of the network
where there is relatively small variation in width. I.e., the pro-
cess is to look at the variance along the axis checking that the
maximum and minimum width values lie within some per-
centage variation threshold. This threshold can be regarded a
supervaluation semantics parameter, and may vary according
to any particular interpretation of the feature. This interaction
between supervaluation semantics and the actual algorithmic
feature individuation is the main contribution of this paper.
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