
Breaking symmetries in all different problems

Jean-François Puget
ILOG

9 Avenue de Verdun
94253 Gentilly Cedex, France

puget@ilog.fr

Abstract

Adding symmetry breaking constraints is one of the
oldest ways of breaking variable symmetries for
CSPs. For instance, it is well known that all the
symmetries for the pigeon hole problem can be re-
moved by ordering the variables. We have general-
ized this result to all CSPs where the variables are
subject to an all different constraint. In such case it
is possible to remove all variable symmetries with
a partial ordering of the variables. We show how
this partial ordering can be automatically computed
using computational group theory (CGT). We fur-
ther show that partial orders can be safely used to-
gether with the GE-tree method of[Roney-Dougal
et al., 2004]. Experiments show the efficiency of
our method.

1 Introduction
A symmetry for a Constraint Satisfaction Problem (CSP) is
a mapping of the CSP onto itself that preserves its structure
as well as its solutions. If a CSP has some symmetries, it
may be the case that all symmetrical variants of every dead
end encountered during the search must be explored before a
solution can be found. Even if the problem is easy to solve,
all symmetrical variants of a solution are also solutions, and
listing all of them may just be impossible in practice. Those
observations have triggered a lot of interest for the detection
and removal of symmetries in the constraint programming
community. Adding symmetry breaking constraints is one of
the oldest ways of breaking variable symmetries for (CSPs).
For instance, it is shown in[Crawfordet al., 1996] that all
variable symmetries could be broken by adding one lexico-
graphical ordering constraint per symmetry. Unfortunately,
this method is not tractable in general, as there may be an
exponential number of symmetries. It has been shown that
in general there is no way to break all symmetries of a prob-
lem with a polynomial number of constraints[Roy and Luks,
2004]. In [Fleneret al., 2002], a linear number of constraints
are used to break symmetries for matrix problems. As ex-
pected, since there are a polynomial number of constraints,
not all symmetries are broken. However, a polynomial num-
ber of constraints may be sufficient for breaking all symme-
tries in some special cases. For instance, in[Puget, 1993],

it is shown that a linear number of constraints can break all
symmetries for the pigeon hole problem: one simply needs
to order the variables. In this paper we consider a more gen-
eral class of problems:all different problems. These are CSPs
such that the variables are subject to an all different constraint
among other constraints. We show in section 4 that for such
CSPs, all variable symmetries can be broken with at most
n− 1 binary constraints, wheren is the number of variables.

In [Roney-Dougalet al., 2004] a general purpose method
for breaking all value symmetries is given: the GE-tree
method. We show in section 5 that this method can be safely
combined with symmetry breaking constraints, under some
conditions on the order in which the search tree is traversed.

In section 6, we apply our method to some complex CSPs.
We summarize our findings and discuss some possible gener-
alizations in section 7.

2 Symmetries, Graphs and CSPs
The symmetries we consider are permutations, i.e. one to one
mappings (bijections) from a finite set onto itself. Without
loss of generality, we can consider permutations ofIn, where
In is the set of integers ranging from0 to n − 1. For in-
stance, we can label the variables of a graph with integers,
such that any variable symmetry is completely described by a
permutation of the labels of its variables. This is formalized
as follows.

2.1 Computational Group Theory
Let Sn be the set of all permutations of the setIn. The image
of i by the permutationσ is denotediσ. A permutationσ ∈
Sn is fully described by the vector[0σ, 1σ, . . . , (n−1)σ]. The
product of two permutationsσ andθ is defined byi(σθ) =
(iσ)θ.

Given i ∈ In and a permutation groupG ⊆ Sn, theorbit
of i in G, denotediG, is the set of elements to whichi can be
mapped to by an element ofG:

iG = {iσ|σ ∈ G}
Given i ∈ In and a permutation groupG ⊆ Sn, thesta-

bilizer of i in G, denotediG, is the set of permutations ofG
that leavei unchanged:

iG = {σ ∈ G|iσ = i}

2.2 CSP and symmetries
A constraint satisfaction problemP (CSP) withn variables
is a tripleP = (V,D, C) whereV is a finite set of variables
(vi)i∈In ,D a finite set of finite sets(Di)i∈In , and every con-
straint inC is a subset of the cross product

⊗
i∈In Di. With-

out loss of generality, we can assume thatDi ⊆ Ik for some
k.

An assignmentis a member ofS, i.e. a vector of values
(ai)i∈In such thatai ∈ Di for all i ∈ In, and is denoted
(vi = ai)i∈In . A partial assignmentis sub vector of an as-
signment.

A solutionto (V,D, C) is an assignment that is consistent
with every member ofC.

Given a permutationσ of In, we define a variable permu-
tation on (partial) assignments as follows:

((vi = ai)i∈In)σ = ((viσ = ai)i∈In)

Such permutation is called avariable symmetryif it maps
solutions to solutions.

Given a permutationθ of Ik, we define a value permutation
on (partial) assignments as follow:

((vi = ai)i∈In)θ = ((vi = aθ−1

i)i∈In)

Such permutation is called avalue symmetryif it maps so-
lutions to solutions.

2.3 A graph coloring example
Let us introduce an example that will be used throughout the
paper. We say that a graph withm edges isgracefulif there
exists a labelingf of its vertices such that:

• 0 ≤ f(i) ≤ m for each vertexi,

• the set of valuesf(i) are all different,

• the set of valuesabs(f(i), f(j)) for every edge(i, j) are
all different.

A straightforward translation into a CSP exists where there is
a variablevi for each vertexvi, see[Lustig and Puget, 2001].
The variable symmetries of the problem are induced by the
automorphism of the graph. There is one value symmetry,
which mapsv to m − v. More information on symmetries
in graceful graphs is available in[Petrie and Smith, 2003],
[Petrie, 2004].

Let us consider the following graphK3 × P2:

¥
¥
¥
¥
¥
¥
¥¥©©©©©©@

@
@

@@ ¥
¥
¥
¥
¥
¥
¥¥©©©©©©@

@
@

@@
0

2

3

5

1 4
The group of variable symmetries of the corresponding

CSP is equivalent to the group of symmetries of the graph.
Such group can be computed by packages such as Nauty[Mc
Kay, 1981]. This groupG is:

{[0, 1, 2, 3, 4, 5], [0, 2, 1, 3, 5, 4], [1, 0, 2, 4, 3, 5],

[1, 2, 0, 4, 5, 3], [2, 0, 1, 5, 3, 4], [2, 1, 0, 5, 4, 3],

[3, 4, 5, 0, 1, 2], [3, 5, 4, 0, 2, 1], [4, 3, 5, 1, 0, 2],

[4, 5, 3, 1, 2, 0], [5, 3, 4, 2, 0, 1], [5, 4, 3, 2, 1, 0]}

3 Breaking variable symmetries
Without loss of generality, we can assume that domains are
subsets ofIk for somek, with the usual ordering on integers.

3.1 Lex leader constraints
Adding constraints is one of the oldest methods for reducing
the number of variable symmetries of a CSP[Puget, 1993].
In [Crawford et al., 1996], it is shown that all the variable
symmetries of any CSP can be broken by the following con-
straints.

∀σ ∈ G, V ¹ Vσ (1)

For a givenσ, the constraint(V ¹ Vσ) is semantically
equivalent to the disjunction of the constraints:

v0 < v0σ

v0 = v0σ ∧ v1 < v1σ

...
v0 = v0σ ∧ . . . ∧ vi−1 = v(i−1)σ ∧ vi < viσ

...
v0 = v0σ ∧ . . . ∧ vn−2 = v(n−2)σ ∧ vn−1 < v(n−1)σ

v0 = v0σ ∧ . . . ∧ vn−2 = v(n−2)σ ∧ vn−1 = v(n−1)σ

If the last constraint is omitted, the set of constraints is
denotedV ≺ Vσ.

In our example, the constraints given by[Crawfordet al.,
1996] are

(v0, v1, v2, v3, v4, v5) ¹ (v0, v1, v2, v3, v4, v5)
(v0, v1, v2, v3, v4, v5) ¹ (v0, v2, v1, v3, v5, v4)
(v0, v1, v2, v3, v4, v5) ¹ (v1, v0, v2, v4, v3, v5)
(v0, v1, v2, v3, v4, v5) ¹ (v1, v2, v0, v4, v5, v3)
(v0, v1, v2, v3, v4, v5) ¹ (v2, v0, v1, v5, v3, v4)
(v0, v1, v2, v3, v4, v5) ¹ (v2, v1, v0, v5, v4, v3)
(v0, v1, v2, v3, v4, v5) ¹ (v3, v4, v5, v0, v1, v2)
(v0, v1, v2, v3, v4, v5) ¹ (v3, v5, v4, v0, v2, v1)
(v0, v1, v2, v3, v4, v5) ¹ (v4, v3, v5, v1, v0, v2)
(v0, v1, v2, v3, v4, v5) ¹ (v4, v5, v3, v1, v2, v0)
(v0, v1, v2, v3, v4, v5) ¹ (v5, v3, v4, v2, v0, v1)
(v0, v1, v2, v3, v4, v5) ¹ (v5, v4, v3, v2, v1, v0)

3.2 A polynomial number of constraints
The number of constraints (1) can grow exponentially with
the number of variablesV. Using the fact that the variable
are subject to an all different constraint, we can significantly
reduce the number of symmetry breaking constraints. Let us
consider one of the symmetries of our example, namely:

σ = [0, 2, 1, 3, 5, 4]

The constraint breaking this symmetry is

(v0, v1, v2, v3, v4, v5) ¹ (v0, v2, v1, v3, v5, v4)

Sincev0 = v0 is trivially true, and sincev1 = v2 cannot be
true because of the all different constraint, this constraint can
be simplified into:

v1 < v2

This simplification is true in general and can be formalized
as follows. Given a permutationσ, let s(σ) be the smallesti
such thatiσ 6= i, and lett(σ) be equal to(s(σ))σ.

Lemma 1. Given a CSP where the variablesV are subject
to an all different constraint, and a variable symmetry group
G for this CSP, then all variable symmetries can be broken by
adding the following constraints:

∀σ ∈ G, vs(σ) < vt(σ) (2)

Proof. By definitionkσ = k for all k < s(σ), ands(σ)σ 6=
s(σ). Let us look at the constraintV ¹ Vσ. There is an
all different constraint on the variablesV, which means that
vi = viσ if and only if iσ = i. In particular,vk = vkσ for all
k < s(σ), andvs(σ) 6= v(s(σ))σ . Therefore, only one disjunct
for the constraint can be true, namely:

v0 = v0σ ∧ . . . ∧ vs(σ)−1 = v(s(σ)−1)σ ∧ vs(σ) < v(s(σ))σ

Sincekσ = k for k < s(σ) ands(σ)σ = t(σ), this can be
simplified intovs(σ) < vt(σ). 2

Note that if two permutationsσ andθ are such thats(σ) =
s(θ) and t(σ) = t(θ), then the corresponding symmetry
breaking constraints are identical. Therefore, it is sufficient
to state only one symmetry breaking constraints for each pair
i, j such that there exists a permutationσ with i = s(σ) and
j = t(σ).

The set of these pairs can be computed using what is known
as the Schreier Sims algorithm[Seress, 2003]. This algorithm
constructs a stabilizers chainG0, G1, . . . , Gn as follows:

G0 = G

∀i ∈ In, Gi = (i− 1)Gi−1

By definition,

Gi = {σ ∈ G : 0σ = 1 ∧ . . . ∧ (i− 1)σ = i− 1}
Gn ⊆ Gn−1 ⊆ . . . G1 ⊆ G0

The Schreier Sims algorithm also computes set of coset
representativesUi. Those are orbits ofi in Gi:

Ui = iGi

By definition, Ui is the set of values whichi is mapped
to by all symmetries inG that leave at least0, . . . , (i − 1)
unchanged.

From now on, we will assume that all the groups we use
are described by a stabilizers chain and coset representatives.

In our example, the stabilizer chain is :

G0 = G

G1 = 0G0 = {[0, 1, 2, 3, 4, 5], [0, 2, 1, 3, 5, 4]}
G2 = 1G1 = {[0, 1, 2, 3, 4, 5]}

All remaining stabilizersG3, G4, G5 are equal toG2.
Coset representatives are:

U0 = 0G0 = {0, 1, 2, 3, 4, 5}
U1 = 1G1 = {1, 2}
U2 = 2G2 = {2}
U3 = 3G3 = {3}
U4 = 4G4 = {4}

Theorem 2. Given a CSP withn variablesV such that
there exists an all different constraint on these variables, and
given coset representatives setsUi for the variable symme-
try group of the CSP, then all the variable symmetries can
be broken by at mostn(n − 1)/2 binary constraints. These
constraints are given by :

∀i ∈ In,∀j ∈ Ui, i 6= j → vi < vj (3)

Proof. By definition, for each elementj ∈ Ui, there exists
at least one permutationσ ∈ Gi such thatiσ = j andj =
t(σ). The converse is also true. If there exists a permutationσ
such thati = s(σ) and thatj = t(σ), thenj ∈ Ui. Therefore,
the constraints (2) can be rewritten into:

∀i ∈ In,∀j ∈ Ui, i 6= j ⇒ vi < vj

There are
∑n−1

i=0 (|Ui| − 1) such constraints. All the per-
mutations ofGi leave the numbers0, . . . , i − 1 unchanged.
ThereforeUi is a subset of{i, . . . , n − 1}. Then|Ui| − 1 ≤
n − i − 1. Therefore, the number of constraints is bounded
from above by

∑n−1
i=0 (n− i− 1) = n(n− 1)/2. 2

In our example, these constraints are :

v0 < v1, v0 < v2, v0 < v3, v0 < v4, v0 < v5, v1 < v2

Note that some of these constraints are redundant. For in-
stance, the constraintv0 < v2 is entailed by the first and the
last constraints. This remark can be used to reduce the num-
ber of constraints as explained in the following section.

3.3 A linear number of constraints
The previous result can be improved by taking into account
the transitivity of the< constraints. Givenj ∈ In, it may be
the case thatj belongs to several of the setsUi. In such case,
let us definer(j) as the largesti different fromj such thatj
belongs toUi. If j belongs to noUi other thanUj , then let
r(j) = j.

Before stating our main result, let us prove the following.

Lemma 3. With the above notations, ifj ∈ Ui and i 6= j
thenr(j) ∈ Ui andr(j) < j

Proof. Let us assume thatj ∈ Ui andi 6= j. By definition
of Ui there exists a permutationσ ∈ Gi such thatiσ = j. Let
k = r(j). By definition ofr(j), i ≤ k andj ∈ Uk. Therefore,
there exists a permutationθ ∈ Gk such thatkθ = j. Let
ν = σθ−1. Then, iν = iσθ−1

= jθ−1
= k. Moreover,

ν ∈ Gi becauseσ ∈ Gi and θ ∈ Gk ⊆ Gi. Therefore,

k ∈ Ui. The fact thatr(j) < j is an immediate consequence
of the definition ofr(j).2

We can now state our main result.

Theorem 4.With the above notations, given a CSP withn
variablesV, such that there exists an all different constraint
on these variables, then all variable symmetries can be bro-
ken by at mostn − 1 binary constraints. These constraints
are given by :

∀j ∈ In, r(j) 6= j → vr(j) < vj (4)

Proof. The number of constraints (4) is at mostn by def-
inition. Note thatr(0) = 0 by definition ofr, therefore, the
number of constraints is at mostn−1. Let us consider one of
the constraints of (3). We are giveni andj such thatj ∈ Ui

andi 6= j. We want to prove that the constraintc = (vi < vj)
is implied by the constraints (4). Let us consider the sequence
(j, r(j), r(r(j)), r(r(r(j))), . . .). Let us assume that the se-
quence never meetsi. We have thatj ∈ Ui andi 6= j. By
application of lemma 3, we getr(j) ∈ Ui and r(j) < j.
Sincer(j) 6= i by hypothesis, lemma 3 can be applied again.
By repeated applications of lemma 3 we construct an infinite
decreasing sequence of integers all included inUi. This is
not possible asUi is finite. Therefore, there existsk such
that i = rk(j). Moreover, we have establishedrk(j) 6=
rk−1(j), . . . , r(r(j)) 6= r(j), r(j) 6= j. Therefore, the con-
straintsvrk(j) < vrk−1(j), . . . vr(r(j)) < vr(j), vr(j) < vj are
constraints of (4). Together they implyvrk(j) < vj which is
the constraintc. We have proved that the constraints (3) are
implied by the constraints (4). Since the set of constraints (4)
is a subset of the constraints (3), both sets of constraints are
equivalent. Then, by theorem 2, the constraints (4) break all
variable symmetries.2

In our example, we get from coset representatives:

r(0) = 0, r(1) = 0, r(2) = 1, r(3) = 0, r(4) = 0, r(5) = 0

Therefore, the constraints (4) given by theorem 4 are:

v0 < v1, v0 < v3, v0 < v4, v0 < v5, v1 < v2

Note that the constraintv0 < v2 is no longer appearing.

4 Breaking both variable symmetries and
value symmetries

In [Roney-Dougalet al., 2004], a general method for break-
ing all value symmetries is described. This method uses the
group of value symmetries of the CSP. We will show that this
method can be combined with symmetry breaking constraints
when there are both variable symmetries and value symme-
tries.

4.1 GE-tree and symmetry breaking constraints
We are given a CSPP with n variablesvi subject to an all
different constraint among other constraints. Without loss of
generality, we can assume that the domains of the variables
are subsets ofIk for somek. It is shown in[Fleneret al.,

2002] how to transformP into a new CSPP ′ such that all
value symmetries ofP become variable symmetries ofP ′.
The idea is to addn× k additional binary variablesxij (vari-
ables with domains equal to{0, 1}). We also add the follow-
ing channeling constraints:

∀i ∈ In, j ∈ Ik, (xij = 1) ≡ (vi = j)

These constraints state that the variablexij equals 1 if and
only if the variablevj equals j. Adding these new variables
do not change the solutions of the CSP. Moreover, variable
symmetries ofP are equivalent to permutations of the rows of
thexij matrix, whereas value symmetries ofP are equivalent
to permutations of the columns of the same matrix.

Let us construct the vectorX by concatenating the rows
of the matrixxij . Therefore, the variablesxij are ranked in
increasing values ofi then increasing values ofj in the vector
X.

Let us consider a value symmetryθ for P. Thenθ is a
permutation of the matrix columns. This symmetry is broken
by the constraint:

X ¹ Xθ (5)

Let Xi be the variables in thei-th row of the matrix. The
value symmetryθ maps variables in a given row to variables
in the same row. This is formalized as follows.

Xi = (xi0, xi1, . . . , xi(k−1))

(Xθ)i = (xi0θ−1 , xi1θ−1 , . . . , xi(k−1)θ−1)

From the definition of¹, we have that (5) is equivalent to
the disjunction of the following constraints:

X0 ≺ (Xθ)0
X0 = (Xθ)0 ∧X1 ≺ (Xθ)1

...
X0 = (Xθ)0 ∧ . . . ∧Xi−1 = (Xθ)i−1 ∧Xi ≺ (Xθ)i

...
X0 = (Xθ)0 ∧ . . .∧Xn−2 = (Xθ)n−2 ∧Xn−1 ≺ (Xθ)n−1

X0 = (Xθ)0 ∧ . . .∧Xn−2 = (Xθ)n−2 ∧Xn−1 = (Xθ)n−1

Let us compare lexicographicallyXi with (Xθ)i. Let ai

be the value assigned tovi. Thenxi(ai) = 1 andxij = 0 for

j 6= ai. Similarly, xi(j)θ−1 = 1 if and only if jθ−1 = ai, i.e.

aθ
i = j. Therefore,Xi = (Xθ)i if and only if ai = (ai)θ,

andXi ≺ (Xθ)i if and only if ai < (ai)θ.
We then have that (5) is equivalent to the disjunction of the

constraints:

a0 < (a0)θ

a0 = (a0)θ ∧ a1 < (a1)θ

...
a0 = (a0)θ ∧ . . . ∧ ai−1 = (ai−1)θ ∧ ai < (ai)θ

...
a0 = (a0)θ ∧ . . . ∧ an−2 = (an−2)θ ∧ an−1 < (an−1)θ

a0 = (a0)θ ∧ . . . ∧ an−2 = (an−2)θ ∧ an−1 = (an−1)θ

Let us now consider one of the disjunct, namely:

a0 = (a0)θ ∧ . . . ∧ ai−1 = (ai−1)θ ∧ ai < (ai)θ

This means thatθ leaves invarianta0, a1, . . . , ai−1. In such
caseai must be minimal among the values that any suchθ can
map it to. We have therefore proved the following result.

Lemma 5. With the above notations,ai is the minimum of
its orbit in the group of symmetries that leavea0, a1, . . . ai−1

unchanged.
This is equivalent to the GE-tree method for breaking all

value symmetries[Roney-Dougalet al., 2004], when the vari-
ables and the values are tried in an increasing order during
search.

From[Crawfordet al., 1996], it is safe to add all possible
symmetry breaking constraints (1) onP ′. In particular, it is
safe to state all the constraints (1) for the variable symmetries
of P together with all the constraints (5). By lemma 5, the
set of constraints (5) is equivalent to the GE-tree method for
breaking value symmetries. We have just proved the follow-
ing result.

Theorem 6.Given a CSP, its group of variable symmetries
G1, and its group of value symmetriesG2, then the combi-
nation of the GE-tree method for breaking value symmetries
with the symmetry breaking constraints (1) computes a set of
solutionsS such that:

∀S ∈ sol(P),∃σ ∈ G1,∃θ ∈ G2, ∃S′ ∈ S, Sσθ = S′

Theorem 4 in section 3 says that the set of all those con-
straints (1) is equivalent to the constraints (4) when there is
an all different constraints on all the variablesV. This yields
the following result.

Corollary 7. Given a CSP where the variable are subject
to an all different constraint, its group of variable symmetries
G1, and its group of value symmetriesG2, then the combi-
nation of the GE-tree method for breaking value symmetries
with the symmetry breaking constraints (4) computes a set of
solutionsS such that:

∀S ∈ sol(P),∃σ ∈ G1,∃θ ∈ G2, ∃S′ ∈ S, Sσθ = S′

5 Experimental results

We have implemented an algorithm similar to Nauty[Mc
Kay, 1981] for computing graph automorphisms, as well as
a Schreier Sims algorithm[Seress, 2003]. These have been
used in the following examples. In our implementation, we
did not fully implement the GE-tree method, because it re-
quires more computational group algorithms than what we
have implemented so far. We simply compute the orbits for
the groupG of value symmetries. Then, only the minimum
element of each orbit is left in the domain of the variablev0.
We will refer to this method as SBC (for Symmetry Breaking
Constraints) in order to differentiate it from other methods.

5.1 Graceful graphs
We have tested our approach on the graceful graphs of[Petrie
and Smith, 2003]. Variable symmetries are broken by the
constraints (4). There is one non trivial value symmetry,
which mapsa to e − a; wheree is the number of edges of
the graph. Therefore, the orbits for this symmetry are the sets
{a, e − a}, for 0 ≤ a ≤ e/2. Therefore, one can restrict the
domain ofv0 by keeping one the smallest value in each of
these orbits.

For each graph we report the number of solutions of the
CSP (sol), the size of the search tree (node) and the time
(time) needed to compute all these solutions the running time
without symmetry breaking technique (no sym). We also re-
port these figures when the SBC method is used. In this case
the running time includes the time needed to perform all the
group computations. Running times are measured on a1.4
GHz Dell Latitude D800 laptop running Windows XP. The
implementation is done with ILOG Solver 6.0[ILOG, 2003].

graph no sym SBC
sol node time sol node time

K3 × P2 96 1518 0.12 8 83 0.01
K4 × P2 1440 216781 13.6 30 1863 0.27
K5 × P2 480 34931511 4454 2 53266 6.5
K6 × P2 0 1326585 305

Table 1. Computing all solutions for graceful graphs.

The running times are up to30 times smaller than the ones
reported in[Petrie, 2004] for the GAP-SBDD and the GAP-
SBDS methods, using a computer about half the speed of
ours. This shows that in this example our symmetry break-
ing constraints are much more efficient than modified search
methods. However, we find twice as many more solutions.
Let see why on the graphK5 × P2. This graph has 10
vertices and 25 edges. We list the values for the variables
v0, v1, . . . , v9 for the two solutions:

(0, 4, 18, 19, 25, 23, 14, 6, 3, 1)

(0, 6, 7, 21, 25, 24, 22, 19, 11, 2)
Let us apply the non trivial value symmetry to the second

one. We get:

(25, 19, 18, 4, 0, 1, 3, 6, 14, 23)

Let us apply the following variable symmetry to it:

[4, 3, 2, 1, 0, 9, 8, 7, 6, 5]

This yields the first solution!
This example shows that we did not break all symmetries

that are a product of a variable symmetry by a value symme-
try. This is so despite the fact that all variable symmetries and
all value symmetries are broken.

5.2 Most Perfect Magic Squares
Most perfect magic squares, studied in[Ollerenshaw, 1986],
are given as an example of a CSP with convoluted variables
symmetries in[Roney-Dougalet al., 2004]. The authors
decided to use an inverse representation in order to trans-
form variable symmetries into value symmetries. These were

in turn broken with the GE-tree method. In[Ollerenshaw,
1986], it is proven that most perfect magic squares are in a
one to one relationship withreversible squares. A reversible
square of sizen×n (wheren ≡ 0 mod 4) has entries1 . . . n2

such that (i) the sum or the two entries at diagonally opposite
corners of any rectangle or sub-square equals the sum of the
other pair of diagonally opposite corners (ii) in each row or
column, the sum of the first and last entries equals the sum
of the next and the next to last number, etc (iii) diametrically
opposed numbers sum ton2 + 1.

Any solution is one of 2n+1((n/2)!)2 symmetric
equivalent[Ollerenshaw, 1986]. For n = 16, this is about
2.13e+14.

The natural model for this problem has one variable per cell
in the square with entries as values. In addition to the above
constraints on entries, there is an all different constraint.
Therefore, our variable symmetry breaking constraints can
be used. We report for various sizes the time used to com-
pute the symmetry breaking constraints as well as the time for
finding all non symmetrical solutions with our SBC method.
We also report the results of[Roney-Dougalet al., 2004],
obtained with GAP-SBDD and with GE-tree on a computer
about half the speed of ours. A direct comparison is difficult
because they directly search for most perfect magic squares
whereas we search for reversible squares. It is worth compar-
ing the time spent in the symmetry computations though, be-
cause these deal with the same symmetry group. Our method
spends much less time in symmetry computations because
this needs to be done only once, before the search starts.

Method n sols sym search
SBC 4 3 0.01 0.02

8 10 0.09 0.39
12 42 0.44 22.2
16 35 4.6 275.6

GAP-SBDD 4 3 0.3 0.3
8 10 5.4 125.4
12 42 2745 12518

GE-tree 4 3 0.2 0.1
8 10 0.7 90.0
12 42 29.1 10901.8

6 Discussion
We have established two major results (i) all variable symme-
tries can be broken by a linear number of binary constraints
if there is an all different constraints on all the variables of
the CSP (ii) symmetry breaking constraints of[Crawfordet
al., 1996] can be safely used in conjunction with the GE-tree
method of[Roney-Dougalet al., 2004].

Furthermore, these methods can be fully automated using
automorphism packages such as Nauty[Mc Kay, 1981] and
computational group theory[Seress, 2003]. We have imple-
mented such algorithms. Experiments on complex problems
show that these algorithms are quite efficient.

The results described in this paper can be generalized. First
of all, theorem 4 is valid for all CSPs where the variables are
subject to an all different constraint. It would be interesting to
see if similar results can be obtained for other forms of CSPs.

It is worth mentioning that we presented a method for
breaking all variable symmetries, and all value symmetries.
However, our method does not break products of both kinds
of symmetries. It remains to be seen if a simple combina-
tion of variable and value symmetry breaking techniques can
break all such symmetries.

Acknowledgements
The author would like to thank Marie Puget and the anony-
mous referees for their remarks. It greatly helped improving
the readability of this paper.

References
[Crawfordet al., 1996] Crawford, J., Ginsberg, M., Luks

E.M., Roy, A. “Symmetry Breaking Predicates for
Search Problems.” In proceedings of KR’96, 148-159.

[Fleneret al., 2002] P. Flener, A. M. Frisch, B. Hnich, Z.
Kiziltan, I. Miguel, J. Pearson, T. Walsh.: “Breaking
Row and Column Symmetries in Matrix Models. “ Pro-
ceedings of CP’02, pages 462-476, 2002

[ILOG, 2003] ILOG: ILOG Solver 6.0. User Manual. ILOG,
S.A., Gentilly, France, Septembre 2003

[Lustig and Puget, 2001] Lustig, I.J., and Puget, J.F. (2001).
”Program Does Not Equal Program: Constraint Pro-
gramming and its Relationship to Mathematical Pro-
gramming,” Interfaces 31(6), 29-53.

[Mc Kay, 1981] Mc Kay, B.: “Practical Graph Isomor-
phism” Congr. Numer. 30, 45-87, 1981

[Ollerenshaw, 1986] Dame Ollenrenshaw, K. “On most per-
fect or complete 8x8 pandiagonal magic squares” Pro-
ceedings Royal Society London, 407, 259-281, 1986.

[Petrie and Smith, 2003] Petrie, K., Smith, B.M. : “Sym-
metry breaking in graceful graphs.” In proceedings of
CP’03, LNCS 2833, 930-934, Springer Verlag, 2003.

[Petrie, 2004] Petrie, K. : ”Combining SBDS and SBDD”
Technical report APES-86-2004. Available from
http://www.dcs.st-and.ac.uk/˜apes/apesreports.html”

[Puget, 1993] Puget, J.-F.: “On the Satisfiability of Symmet-
rical Constraint Satisfaction Problems.” Proceedings of
ISMIS’93 (1993), 350–361.

[Roney-Dougalet al., 2004] Roney-Dougal C.M., Gent, I.P.,
Kelsey T., Linton S.: “Tractable symmetry breaking us-
ing restricted search trees” To appear in proceedings of
ECAI’04.

[Roy and Luks, 2004] Roy. A., Luks, E.: “The complexity of
symmetry-breaking formulas”,Annals of Mathematics
and Artificial Intelligence, 41 (2004), 19-45 (with A.
Roy).

[Seress, 2003] Seress, A.: Permutation Group Algorithms
Cambrige University Press, 2003.

