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Abstract it is shown that a linear number of constraints can break all
symmetries for the pigeon hole problem: one simply needs
to order the variables. In this paper we consider a more gen-
eral class of problemsll different problemsThese are CSPs

such that the variables are subject to an all different constraint
among other constraints. We show in section 4 that for such
CSPs, all variable symmetries can be broken with at most
n — 1 binary constraints, whene is the number of variables.

In [Roney-Dougakt al, 2004 a general purpose method
for breaking all value symmetries is given: the GE-tree
method. We show in section 5 that this method can be safely
combined with symmetry breaking constraints, under some
conditions on the order in which the search tree is traversed.

In section 6, we apply our method to some complex CSPs.
We summarize our findings and discuss some possible gener-
alizations in section 7.

Adding symmetry breaking constraints is one of the
oldest ways of breaking variable symmetries for
CSPs. For instance, it is well known that all the
symmetries for the pigeon hole problem can be re-
moved by ordering the variables. We have general-
ized this result to all CSPs where the variables are
subject to an all different constraint. In such case it
is possible to remove all variable symmetries with
a partial ordering of the variables. We show how
this partial ordering can be automatically computed
using computational group theory (CGT). We fur-
ther show that partial orders can be safely used to-
gether with the GE-tree method [Roney-Dougal

et al, 2004. Experiments show the efficiency of
our method.

2 Symmetries, Graphs and CSPs

1 Introduction The symmetries we consider are permutations, i.e. one to one
A symmetry for a Constraint Satisfaction Problem (CSP) ismappings (bijections) from a finite set onto itself. Without

a mapping of the CSP onto itself that preserves its structurgyss of generality, we can consider permutations’gfwhere

as well as its solutions. If a CSP has some symmetries, if js the set of integers ranging frotto n — 1. For in-

may be the case that all symmetrical variants of every deagtance, we can label the variables of a graph with integers,
end encountered during the search must be explored beforesach that any variable symmetry is completely described by a
solution can be found. Even if the problem is easy to solvepermutation of the labels of its variables. This is formalized
all symmetrical variants of a solution are also solutions, angs follows.

listing all of them may just be impossible in practice. Those

observations have triggered a lot of interest for the detectio2.1 Computational Group Theory

and removal of symmetries in the constraint programming et 5» pe the set of all permutations of the $&t The image
community. Adding symmetry breaking constraints is one ofy¢ ; by the permutatiom is denotedi”. A permutations €

the oldest ways of breaking variable symmetries for (CSPs)gn jg fully described by the vectdd?, 17, ..., (n—1)7]. The
For instance, it is shown ifCrawfordet al, 1994 that all product of two permutations and@ is defined byi(®?) —

variable symmetries could be broken by adding one Iexico-(ig)o

graphical ordering constraint per symmetry. Unfortunately, Gi\./enz' e I" and a permutation grouf C 5™, theorbit

this method is not tractable in general, as there may be a i in G denoted©. is the set of elements to wk,li@‘h:an be
exponential number of symmetries. It has been shown th apped’to by an elémentdf

in general there is no way to break all symmetries of a prob- '
lem with a polynomial number of constraifi®oy and Luks, i = {i°|o € G}

2004. In [Fleneret al., 2004, a linear number of constraints

are used to break symmetries for matrix problems. As ex- Giveni € I™ and a permutation grouff C S™, the sta-
pected, since there are a polynomial number of constraintgilizer of i in G, denotedi¢;, is the set of permutations ¢f
not all symmetries are broken. However, a polynomial num-+that leavei unchanged:

ber of constraints may be sufficient for breaking all symme-

tries in some special cases. For instancePnget, 1998 ic = {0 € Gli” =i}



2.2 CSP and symmetries [1,2,0,4,5,3],]2,0,1,5,3,4],[2,1,0,5,4, 3],

A constraint satisfaction probler® (CSP) withn variables 3,4,5,0,1,2],[3,5,4,0,2,1], [4,3,5,1,0,2]
is a triple? = (V,D,C) whereV is a finite set of variables T T i
(vi)iern, D afinite set of finite setéD; );c ., and every con- [4,5,3,1,2,0],[5,3,4,2,0,1],[5,4,3,2,1,0] }

straint inC is a subset of the cross produgy, . ;. D;. With-
out loss of generality, we can assume thatC I* forsome 3 Breaking variable symmetries
k.

An assignmenis a member of5, i.e. a vector of values
(a;)iern such thata; € D; for all ¢ € I, and is denoted
(vi = a;)iern. A partial assignmenis sub vector of an as-

Without loss of generality, we can assume that domains are
subsets of * for somek, with the usual ordering on integers.

3.1 Lex leader constraints

signment.

A solutionto (V, D, C) is an assignment that is consistent Adding constraints is one of the oldest methods for reducing
with every member of. the number of variable symmetries of a GBRget, 1998

Given a permutationr of 1™, we define a variable permu- In [Crawford et al, 1994, it is shown that all the variable
tation on (partial) assignments as follows: symmetries of any CSP can be broken by the following con-

straints.
((vi = ai)ier)” = ((vie = ai)ierr)

Such permutation is calledariable symmetryf it maps Vo € G, V=V 1)

solutions to solutions. For a giveno, the constrain{) < V?) is semantically

Given a permutatiofl of I*, we define a value permutation equivalent to the disjunction of the constraints:

on (partial) assignments as follow:
_ Vo < Voo
0 6=t
((vi = ai)iern)” = ((vi = a; )iern) Vg = Voo NV < V1o

Such permutation is calledvelue symmetrif it maps so- :
lutions to solutions. vo = Vor A ... AVi—1 = V(_1)e AN V; < Vo
2.3 A graph coloring example :
Let us introduce an example that will be used throughout the vy = voe A ... Avp_2 = V(n_2)o AUn_1 < V(r—1)~

paper. We say that a grap_h with edges igracefulif there Vo = Voo A ... AUp_2 = Un_2ye AUp_1 = U(n_1)~
exists a labeling’ of its vertices such that: o : I
) i If the last constraint is omitted, the set of constraints is
e 0 < f(i) < m for each vertex, denoted) < V°.
o the set of valueg (i) are all different, In our example, the constraints given grawfordet al,
« the set of valuesbs(f(i), f(j)) for every edgdi, j) are ~ 1998 are
a!l different, o _ _ (vo,v1,v2,03,v4,v5) = (Vo v1,V2, V3, V4, 05)
A straightforward translation into a CSP exists where there is (vo,v1,v2,v3,04,05) = (vo, V2,01, V3, Vs, Ug)
a variablev; for each vertex;, se€fLustig and Puget, 2091 o m e - e
The variable symmetries of the problem are induced by the (V0 V1,2,V va,v5) - = (v1, 00, V2, 04, U3, Us)
automorphism of the graph. There is one value symmetry,  (vo,v1,v2,v3,04,05) = (v1,v2,%0, V4, Vs, V3)
which mapsv to m — v. More information on symmetries (v, v1,v2,v3,04,05) = (va,v0,v1,Vs,V3,V4)
iggti?ge;%loiraphs is available {iPetrie and Smith, 2003 (V0, V1,2, V3,04,05) < (2, 01,0, Vs, Va, U3)
Let us consider the following graplis x P: (v0, 01,02, v3,0a,05) 2 (v3,V4, V5,00, V1, V2)
0 (vo,v1,v2,v3,v4,v5) = (3,05, 04,00, V2,V1)
(vo,v1,v2,v3,04,05) = (v4, 03,05, 01,00, V2)
(vo,v1,v2,v3,04,05) = (v4, V5,03, 01,02, 00)
2 (vo,v1,v2,v3,v4,v5) = (vs,V3,v4,V2,v0,V1)
( = )

UO;U1>U27U331}47U5) (’U57’U4,’U3,U2,U1,’UO

V 3.2 A polynomial number of constraints

1 4 The number of constraints (1) can grow exponentially with
The group of variable symmetries of the correspondinghe number of variable¥. Using the fact that the variable
CSP is equivalent to the group of symmetries of the graphare subject to an all different constraint, we can significantly
Such group can be computed by packages such as Méeity reduce the number of symmetry breaking constraints. Let us

Kay, 1981. This groupG is: consider one of the symmetries of our example, namely:

{[O’ ]‘727 37 4’ 5]7 [0’ 27 173’ 574]’ [1707 2’47 37 5]7 0 = [07 27 1’3’ 5’4]




The constraint breaking this symmetry is All remaining stabilizersr3, G4, G5 are equal td7s.
Coset representatives are:
(vo, v1, V2, U3, V4, U5) = (Vg, U2, V1, Vs, Us, Ug)

. o . Uy = 09 =1{0,1,2,3,4,5
Sincevy = vy is trivially true, and since; = v, cannot be 0 p { }
true because of the all different constraint, this constraint can Uy = 17 ={1,2}
be simplified into: U, = 29 ={2}
V1 < Vg U3 = 3G3 = {3}

_ 4Ga _
This simplification is true in general and can be formalized Up = 47 =1{4}

as follows. Given a permutation, let s(o) be the smallest

such that” # i, and lett(o) be equal tqs(a))”. . Theorem 2. Given a CSP with: variables) such that
Lemma 1. Given a CSP where the variabl#sare subject hare exists an all different constraint on these variables, and

to an all different constraint, and a variable symmetry group given coset representatives séisfor the variable symme-

G for this CSP, then all variable symmetries can be broken b ty group of the CSP, then all the variable symmetries can

adding the following constraints: be broken by at most(n — 1)/2 binary constraints. These
Vo € G,v(5) < Vi(o) (2)  constraints are given by :
Proof. By definitionk” = kforall k < (o), ands(0)” # VieI"VjeU, i#j— v < ®3)

s(o). Let us look at the constraiit < V,. There is an
allglffere_fnt cgnstlral_?'ggorlthel varlalqle»? whlch meafns tr|1|at at least one permutation € G; such that® = j andj =

v = vio Ifand only It:” = . In particulary, = vgo forall ;) The converse is also true. If there exists a permutation
f <r‘:(‘7)’ andvs(s) 7 V(s (o)) - Therell‘qre, only one disjunct  g,ch, thag = s(s) and thaj = (o), thenj € U,. Therefore,
or the constraint can be true, namely: the constraints (2) can be rewritten into:

Proof. By definition, for each elemernte U;, there exists

Vo = Voo N ... NVUs(g)—1 = V(s(0)=1)" N VUs(o) < U(s(o))o VieI"VieU, itj=v< v;
Sincek? = k for k < s(o) ands(o)? = t(o), this can be 1 )
simplified intov, () < V(). O There are)_;_, (|U;| — 1) such constraints. All the per-

Note that if two permutations andé are such that(s) =  mutations ofG; leave the numbers, ..., i — 1 unchanged.
s(0) andt(c) = t(6), then the corresponding symmetry Thereforel; is a subset ofi,...,n —1}. Then|Us| —1 <
breaking constraints are identical. Therefore, it is sufficienf? — ¢ — 1. Ther?‘g{e, the number of constraints is bounded
to state only one symmetry breaking constraints for each paffOm above by ;o (n —i — 1) = n(n —1)/2. 0

i,7 such that there exists a permutationvith i = s(o’) and In our example, these constraints are :
Jj = t(o). Vg < V1, Vg < Vg, Vg < V3, Vg < V4, Vg < Vs, V1 <V
The set of these pairs can be computed using whatis known © =7 0 72 70 T8 TO S T T0 S T T T2
as the Schreier Sims algoritii@eress, 2043 This algorithm Note that some of these constraints are redundant. For in-
constructs a stabilizers chaity, G1, ..., G, as follows: stance, the constraimt < vs is entailed by the first and the

last constraints. This remark can be used to reduce the num-

Go = G ber of constraints as explained in the following section.
Vi € In, G, = (’L — 1)G1,71
— 3.3 Alinear number of constraints
By definition, i ) .
) _ The previous result can be improved by taking into account
Gi={oeG:07=1A...A(i-1)7=i-1} the transitivity of the< constraints. Given € I™, it may be
GnCGra C...G1 C Go the case that belongs to several of the séfs. In such case,
The Schreier Sims algorithm also computes set of cosdet us define(j) as the largest different fromj such thatj
representative;. Those are orbits afin G;: belongs toU;. If j belongs to ndJ; other thanU;, then let
es r(j) =J-
Ui =i Before stating our main result, let us prove the following.
By definition, U; is the set of values whichis mapped _ ) )
to by all symmetries irG that leave at leadd, ..., (i — 1) Lemma 3. With the above notations, jf€ U; and: # j
unchanged. thenr(j) € U; andr(j) < j

From now on, we will assume that all the groups we use
are described by a stabilizers chain and coset representatives Proof. Let us assume thate U; and: # j. By definition

In our example, the stabilizer chain is : of U, there exists a permutatiene G, such that? = j. Let

k = r(j). By definition ofr(5), ¢ < kandj € Uy. Therefore,

Go = G there exists a permutatioh € G}, such thatk’ = j. Let
G, =

0c, :{[01172»37475]7[07271737574]} v = of~. Then,i¥ = iggil = j971 = k. Moreover,
1G1 = {

Gy = [0,1,2,3,4,5]} v € G; becauser € G; andd € G, C G;. Therefore,



k € U;. The fact that(j)
of the definition ofr(j).0

< jis an immediate consequence

We can now state our main result.

Theorem 4. With the above notations, given a CSP with
variablesV, such that there exists an all different constraint

on these variables, then all variable symmetries can be bro-

ken by at most. — 1 binary constraints. These constraints
are given by :
Vjel

() # § — vy < vy (4)

Proof. The number of constraints (4) is at magby def-
inition. Note thatr(0) = 0 by definition ofr, therefore, the
number of constraints is at mast- 1. Let us consider one of

the constraints of (3). We are givérand; such thatj € U;
andi # j. We want to prove that the constraint (v; < v;)

2002 how to transformP into a new CSPP’ such that alll
value symmetries o become variable symmetries &f.
The idea is to add x k additional binary variables;; (vari-
ables with domains equal {@, 1}). We also add the follow-
ing channeling constraints:

(zij = 1) = (vi = j)

These constraints state that the variahleequals 1 if and
only if the variablev; equals j. Adding these new variables
do not change the solutions of the CSP. Moreover, variable
symmetries ofP are equivalent to permutations of the rows of
thex,; matrix, whereas value symmetries@fare equivalent
to permutations of the columns of the same matrix.

Let us construct the vectaX by concatenating the rows
of the matrixz;;. Therefore, the variables;; are ranked in
increasing values afthen increasing values ¢fin the vector
X.

Let us consider a value symmetfyfor P. Thend is a

Vielm jelk,

is implied by the constraints (4). Let us consider the sequencpermutation of the matrix columns. This symmetry is broken

(Jyr(4), r(r(4)),r(r(r(4))),...). Let us assume that the se-
guence never meeis We have thaj € U; andi # j. By
application of lemma 3, we get(j) € U, andr(j) < j.
Sincer(j) # i by hypothesis, lemma 3 can be applied again.
By repeated applications of lemma 3 we construct an infinit
decreasing sequence of integers all included’jn This is
not possible ad/; is finite. Therefore, there exists such
thati = r*(j). Moreover, we have established(j) #
PG, .., r(r(5)) # 7(4),r(j) # j. Therefore, the con-
straintsv k(j) < Vpk=1(4)s - Up(r(j)) < VUr(j), Vr(y) < vj are
constraints of (4) Together they implyx ;) < v; which is
the constraint. We have proved that the constraints (3) are
implied by the constraints (4). Since the set of constraints (

X
is a subset of the constraints (3), both sets of constraints al

equivalent. Then, by theorem 2, the constraints (4) break al
variable symmetries
In our example, we get from coset representatives:

r(0)=0,r(1)=0,r2)=1, r(3) =0, r(4) =0, r(5)

Therefore, the constraints (4) given by theorem 4 are:

=0

vy < V1, Vg < V3, Vg < V4, Vg < VU5, U1 < Vg

Note that the constrainf < vy is no longer appearing.

4 Breaking both variable symmetries and
value symmetries

In [Roney-Dougakt al., 2004, a general method for break-

by the constraint:

X =< Xx? (5)
Let X; be the variables in theth row of the matrix. The

Sralue symmetry) maps variables in a given row to variables

in the same row. This is formalized as follows.

X;
(X%);

(%40, Ti1, - - - »zi(k—l))

i(p—1y0-1)

( Tigo—1rLiq0—15- -5

From the definition of<, we have that (5) is equivalent to
ge disjunction of the following constraints:

I Xo < (X9,

Xo=(X")o A X1 < (X
Xo = (Xe)() VANIAN Xifl.: (Xe)i,1 NX; < (XG)Z
Xy = (X9)0 AN ANXp 9= (Xe)n_g ANXp_1 =< (Xe)n_l
Xo = (Xe)o AN ANXp_o= (XQ)H,Q ANX,_1= (Xe)n,1

Let us compare lexicographically; with (X?);.
be the value assigned tg. Thenz;(,,) = 1 andz;; = 0 for

;é a;. Similarly, x, G- =1 if and only if ¢ 1 = q;, i.e.

al = j. Therefore,XL = (X?); ifand only if a; = (a;)?,
andX; < (X%, ifand only ifa; < (a;)?.

Let a;

ing all value symmetries is described. This method uses the We then have that (5) is equivalent to the disjunction of the
group of value symmetries of the CSP. We will show that thisconstraints:
method can be combined with symmetry breaking constraints

4

when there are both variable symmetries and value symme- do < (a0) 0
tries. ap = (ao)” Aar < (a1)
4.1 GE-tree and symmetry breaking constraints :

i y i y i g . ag = (a0)9 N...Na;_1 = (ai,1)9 Na; < (al—)e
We are given a CSPP with n variablesv; subject to an all )
different constraint among other constraints. Without loss of :
generality, we can assume that the domains of the variables ag = (ag)? A ... Aan_2 = (an_2)° ANan_1 < (an_1)?
are subsets of* for somek. It is shown in[Fleneret al,, ao = (ap)? Ao Nap_2=(an_2)? Nan_1 = (an_1)°



Let us now consider one of the disjunct, namely: 5.1 Graceful graphs
We have tested our approach on the graceful grapfRetfie

ao = (ag)’ Ao Nai—1 = (ai—1)? Aa; < (a;)? and Smith, 200B Variable symmetries are broken by the
constraints (4). There is one non trivial value symmetry,
This means that leaves invariantg, a1, ..., a;—1. Insuch  which mapsa to e — a; wheree is the number of edges of

caseq; must be minimal among the values that any stichkn  the graph. Therefore, the orbits for this symmetry are the sets
map it to. We have therefore proved the following result.  {a,e — a}, for 0 < a < e/2. Therefore, one can restrict the
Lemma 5. With the above notations; is the minimum of domain ofvy by keeping one the smallest value in each of
its orbit in the group of symmetries that leawg a1, ... a;_1 these orbits.
unchanged. For each graph we report the number of solutions of the
This is equivalent to the GE-tree method for breaking allCSP (sol), the size of the search tree (node) and the time
value symmetriefRoney-Dougaét al,, 2004, when the vari- (t|_me) needed to compute all thes_e solutions the running time
ables and the values are tried in an increasing order duringithout symmetry breaking technique (no sym). We also re-
search. port these figures when the SBC method is used. In this case
From[Crawfordet al, 1994, it is safe to add all possible the running time includes the time needed to perform all the
symmetry breaking constraints (1) 6. In particular, itis ~ 9rOUP computations. Running times are measured orl a
safe to state all the constraints (1) for the variable symmetrie§Hz Dell Latitude D800 laptop running Windows XP. The
of P together with all the constraints (5). By lemma 5, the MPlementation is done with ILOG Solver §IDOG, 2003.
set of constraints (5) is equivalent to the GE-tree method for

breaking value symmetries. We have just proved the follow;  graph nosym sBC
ing result. sol node time| sol node time
K3 x P 96 1518 0.12| 8 83 0.01
Ky x Py | 1440 216781 13.9 30 1863 0.27
Theorem 6.Given a CSP, its group of variable symmetries| &5 x P> | 480 34931511 4454 2 53266 6.5
G1, and its group of value symmetri€&,, then the combi- |6 X 1% 0 1326585 305

nation of the GE-tree method for breaking value symmetries Table 1. Computing all solutions for graceful graphs.
with the symmetry breaking constraints (1) computes a set of The running times are up 89 times smaller than the ones

solutionsS such that: reported in[Petrie, 2004 for the GAP-SBDD and the GAP-
, o0 , SBDS methods, using a computer about half the speed of
VS € sol(P),30 € G1,30 € G2,35' € S, 87" =S ours. This shows that in this example our symmetry break-

ing constraints are much more efficient than modified search
Theorem 4 in section 3 says that the set of all those conmethods. However, we find twice as many more solutions.
straints (1) is equivalent to the constraints (4) when there i et see why on the grapiks x P,. This graph has 10
an all different constraints on all the variabls This y|E|dS vertices and 25 edgesl We list the values for the variables
the following result. vo, V1, - - ., Ug fOr the two solutions:

_ _ _ (0,4,18,19,25,23,14,6,3,1)
Corollary 7. Given a CSP where the variable are subject

to an all different constraint, its group of variable symmetries (0,6,7,21,25,24,22,19,11,2)

G4, and its group of value symmetri€s,, then the combi- | et ys apply the non trivial value symmetry to the second
nation of the GE-tree method for breaking value symmetriegne \We get:

with the symmetry breaking constraints (4) computes a set of

solutionsS such that: (25,19,18,4,0,1,3,6,14,23)
VS € sol(P),30 € G1,30 € Go,35" € S, S79 = & Let us apply the following variable symmetry to it:
[4,3,2,1,0,9,8,7,6,5]

This yields the first solution!
We have implemented an algorithm similar to Nditg This example shows that we did not break all symmetries
Kay, 1981 for computing graph automorphisms, as well asthat are a product of a variable symmetry by a value symme-
a Schreier Sims algorithiBeress, 2003 These have been try. Thisis so despite the fact that all variable symmetries and
used in the following examples. In our implementation, weall value symmetries are broken.
did not fully implement the GE-tree method, because it re- )
quires more computational group algorithms than what we-2 Most Perfect Magic Squares
have implemented so far. We simply compute the orbits foMost perfect magic squares, studied @ilerenshaw, 1986
the groupG of value symmetries. Then, only the minimum are given as an example of a CSP with convoluted variables
element of each orbit is left in the domain of the varialJe ~ symmetries in[Roney-Dougalet al., 2004. The authors
We will refer to this method as SBC (for Symmetry Breaking decided to use an inverse representation in order to trans-
Constraints) in order to differentiate it from other methods. form variable symmetries into value symmetries. These were

5 Experimental results



in turn broken with the GE-tree method. [®llerenshaw, It is worth mentioning that we presented a method for
1984, it is proven that most perfect magic squares are in @reaking all variable symmetries, and all value symmetries.
one to one relationship witteversible squaresA reversible  However, our method does not break products of both kinds
square of sizex x n (wheren = 0 mod 4) has entries. . . n? of symmetries. It remains to be seen if a simple combina-
such that (i) the sum or the two entries at diagonally opposité¢ion of variable and value symmetry breaking techniques can
corners of any rectangle or sub-square equals the sum of theeak all such symmetries.

other pair of diagonally opposite corners (ii) in each row or

column, the sum of the first and last entries equals the sumcknowledgements

of the next and the next to last number, etc (iii) diametrically
opposed numbers sum#3d + 1.

Any solution is one of 2"71((n/2)!)? symmetric
equivalenfOllerenshaw, 1986 Forn = 16, this is about
2.13e+14. f

The natural model for this problem has one variable per ceIRe erences
in the square with entries as values. In addition to the abovéCrawfordet al, 19964 Crawford, J., Ginsberg, M., Luks
constraints on entries, there is an all different constraint. E.M., Roy, A. “Symmetry Breaking Predicates for
Therefore, our variable symmetry breaking constraints can ~ Search Problems.” In proceedings of KR'96, 148-159.
be used. We report for various sizes the time used to COMEleneret al, 2004 P. Flener, A. M. Frisch, B. Hnich, Z.
pute the symmetry breaking constraints as well as the time for Kiziltan, 1. Miguel, J. Pearson, T. Walsh.: “Breaking
finding all non symmetrical solutions with our SBC method. Row and Column Symmetries in Matrix Models. “ Pro-
We also report the results §Roney-Dougalet al, 2004, ceedings of CP'02, pages 462-476, 2002
obtained with GAP-SBDD and with GE-tree on a computer ' '
about half the speed of ours. A direct comparison is difficultILOG, 2003 ILOG: ILOG Solver 6.0. User Manual. ILOG,
because they directly search for most perfect magic squares ~ S-A-» Gentilly, France, Septembre 2003
whereas we search for reversible squares. It is worth compaft ustig and Puget, 2091Lustig, I.J., and Puget, J.F. (2001).
ing the time spent in the symmetry computations though, be- ~ "Program Does Not Equal Program: Constraint Pro-
cause these deal with the same symmetry group. Our method gramming and its Relationship to Mathematical Pro-
spends much less time in symmetry computations because gramming,” Interfaces 31(6), 29-53.

this needs to be done only once, before the search starts. [Mc Kay, 1981 Mc Kay, B.. “Practical Graph lsomor-
phism” Congr. Numer. 30, 45-87, 1981

The author would like to thank Marie Puget and the anony-
mous referees for their remarks. It greatly helped improving
the readability of this paper.
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SBC 4 3 0.01 002 [Ollerenshaw, 1986 Dame Ollenrenshaw, K. “On most per-
8 10 0.09 0.39 fect or complete 8x8 pandiagonal magic squares” Pro-
12 42 044 222 ceedings Royal Society London, 407, 259-281, 1986.
16 35 46 2756 [Petrie and Smith, 2003Petrie, K., Smith, B.M. : “Sym-
GAP-SBDD | 4 3 03 03 metry breaking in graceful graphs.” In proceedings of
8 10 54 1254 CP’03, LNCS 2833, 930-934, Springer Verlag, 2003.
GE-ree 12 :;4,2 37245 ()1%518 [Petrie, 200} Petrie, K. : "Combining SBDS and SBDD”
8 10 0'7 9'0 0 Technical report APES-86-2004. Available from
12 42 291 109018 http://www.dcs.st-and.ac.uk/"apes/apesreports.htmi
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