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Abstract

We present and investigate a new method for the
Traveling Salesman Problem (TSP) that incorpo-
rates backbone information into the well known
and widely applied Lin-Kernighan (LK) local search
family of algorithms for the problem. We consider
how heuristic backbone information can be obtained
and develop methods to make biased local pertur-
bations in the LK algorithm and its variants by ex-
ploiting heuristic backbone information to improve
their efficacy. We present extensive experimental re-
sults, using large instances from the TSP Challenge
suite and real-world instances in TSPLIB, showing
the significant improvement that the new method can
provide over the original algorithms.

1 Introduction
Given a set of cities and the distances between them, the trav-
eling salesman problem (TSP) is to find a complete, minimal-
cost tour visiting each city once. The TSP is a well-known
NP-hard problem with many real-world applications, such as
jobshop scheduling and VLSI routing [5]. The TSP has often
served as a touchstone for new problem-solving strategies and
algorithms; and many well-known combinatorial algorithms
were first developed for the TSP, including the Lin-Kernighan
local search algorithm [10]. In this paper, we consider the sym-
metric TSP, where the distance from a city to another is the
same as the distance in the opposite direction.

Local search (LS) algorithms have been shown very effec-
tive for the TSP. In LS algorithms for the TSP, one defines a
neighborhood structure of tours, in which tour
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is a neigh-

bor of tour
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�

can be changed into
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by some local
perturbation, such as by exchanging a pair (2-Opt) or triplet
(3-Opt) of edges between cities [9; 10]. Starting from a com-
plete tour, LS repeatedly improves the current tour until it is
the best among its neighbors; such a tour is called a local min-
imum. This process can be applied multiple times using dif-
ferent initial tours. Although LS algorithms do not guaran-
tee the optimality of the best solution found, they have been
routinely applied in practice, and are among the best methods
for the TSP. The best known LS algorithm for the TSP is the
Lin-Kernighan (LK) algorithm [10]. Since its inception three
decades ago, this classic algorithm has inspired much research
�
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on LS. Today, the best LS algorithms for the TSP are its vari-
ants, which include chained and iterated LK algorithms [11;
9; 6]. These algorithms can provide high-quality, near opti-
mal solutions for problems with several thousand cities [9]. It
is nontrivial to find solutions better than those from the Lin-
Kernighan family. Nonetheless, improving these algorithms
is of practical importance; even small improvements can have
substantial financial impacts for many applications, as in man-
ufacturing, where selected TSP tours need to be routinely tra-
versed.

A major deviation of most modern LS variants from the LK
algorithm is the use of starting tours that are closely related
to the previous local minimum or the best tour found so far,
rather than independently generated [9]. Such starting tours
can be typically generated by perturbations to the final tours of
previous runs using neighborhood structures different from the
ones used by the main procedure. For instance, double-bridge
4-Opt moves have been used extensively for this purpose [9].

The intuition behind using chained starting tours in an it-
erated LS is that high-quality local minima tend to reside
in a small vicinity of a neighborhood structure. Therefore,
it is more effective and efficient to search for a better lo-
cal minimum from a known one. This intuition is sup-
ported by the observation that local minima of a good LS
method usually share many common partial structures [1; 2;
10]. Such observations have also led to the “big valley” hy-
pothesis [1], which suggests that high-quality local minima
tend to have many edges in common, forming a single clus-
ter around the optimal tour(s), and that a better local minimum
tends to have more common edges shared with an optimal so-
lution than a worse local minimum.

Besides the iterated LS methods, common structures of lo-
cal minima have been exploited in at least two other ways. The
first is reduction [10], which first collects a small set of local
minima and then locks in the edges appearing in all of them
in the subsequent runs. This method has two effects: it can
speed up the search, as the problem becomes smaller, and pro-
vides a means of directing search among a set of otherwise
indistinguishable tours [10]. In [10], Lin and Kernighan re-
ported experimental results on instances up to 318 cities using
reduction. The second and more recent way to exploit common
structures of local minima is called tour merging [2]. Given a
set of local minima, this method constructs a graph containing
the union of their edges. Thanks to the large number of shared
edges among the local minima, the resulting graph is sparse.
An optimal tour within the sparse graph is then uncovered as



an approximate solution, which is very often optimal. Our re-
cent algorithm on maximum satisfiability (max-SAT) also ex-
plicitly exploited the information in a cluster of local minima
and incorporated it in the Walksat algorithm [15], resulting in
a significant performance improvement on diverse large max-
SAT problems [16]. The current research was inspired by these
previous results.

Our research was also motivated by the recent advances in
characterizing typical case features of combinatorial problems
by their phase transitions and backbones [7; 12]. A problem
of fundamental importance and practical interest is to utilize
inherent problem information, such as phase transitions and
backbones, in a search algorithm to cope with problem diffi-
culty. The research along this line is limited. Besides the pub-
lished work of utilizing backbone information in local search
for SAT and max-SAT [16], previously published results in-
clude exploiting phase transitions in tree search problems in an
approximation algorithm [13] and applying heuristic backbone
information in a systematic search for SAT [3].

Our new method explicitly exploits the structure of the local
minima of LS algorithms, namely the possible backbone infor-
mation embedded in the local minima, to improve the perfor-
mance of the algorithm. Here, a backbone variable for a TSP
refers to an edge between two cities that appears in all optimal
TSP tours. Unlike the reduction and tour merging methods,
our new heuristic does not freeze the common edges in all lo-
cal minima in subsequent searches; it rather applies estimated
backbone information to guide a local search to the region of
the search space that is more likely to have better approximate,
and hopefully optimal, solutions. Specifically, we treat local
minima from a local search as if they were optimal solutions,
and use edge appearance frequencies to estimate the probabil-
ities of backbone variables. We then apply the estimated back-
bone probabilities to alter the perturbations made by the local
search algorithm so that a variable having a higher backbone
probability will be less likely to be swapped out of the current
tour than a variable having a smaller backbone probability, and
conversely, will be more likely to be swapped in.

The paper is organized as follows: in Section 2, we describe
the general idea of backbone-guided local search for the TSP.
We then in Section 3 discuss the backbone-guided LK algo-
rithms. We present the experimental results in Section 4, dis-
cuss related work in Section 5, and conclude in Section 6.

2 Backbone Guided Local Search
If all backbone variables of a TSP were known, they could pro-
vide a useful clue to how edges between two cities should be
swapped in or out during a local search. If an edge is a part of
the backbone, i.e., it appears in all optimal solutions, obviously
the edge should be swapped in if it is not included in the cur-
rent tour. Moreover, we can extend the concept of backbone to
backbone frequency of an edge, which is the percentage of op-
timal solutions that have the edge. This means that a backbone
edge has a backbone frequency of one and an edge that does
not appear in any optimal solutions has a backbone frequency
of zero. Therefore, the backbone frequency of an edge is an in-
dicator of how often that edge should be swapped in (or out) if
it is (or it is not) part of the current tour. This can be exploited
as a heuristic for selecting edges in local search.

Unfortunately, exact backbone frequencies are hard to come
by without solving the problem exactly. The idea to by-

pass this problem was inspired by the fact that many ap-
proximation algorithms for the TSP, the LK algorithm and
its variants in particular, have superior performance. They
can often reach local minima that are within a small per-
centage of a global optimum and have common structures
shared with a global optimal solution, as discussed in [1;
9]. Therefore, we can treat local minima as if they were op-
timal to compute pseudo-backbone frequencies to approximate
the true backbone frequencies. We call this general approach
backbone guided local search or BGLS.

We define the pseudo-backbone frequency of an edge as
the frequency of its appearances in the local minima sampled.
Thus, if � is the set of local minima, and a given edge � ap-
pears in a subset ��� of � , the pseudo-backbone frequency of �
is simply � ����� ��� �	� .

Which local minima to use will affect the quality of the
pseudo-backbone frequencies. Ideally, we want the local min-
ima to be an unbiased sample of all high-quality approximate
solutions. One leading factor in reaching such an ideal is the
set of initial tours: the more distinct the starting tours are, the
more different the final tours will generally be. Therefore, even
though local minima reached from greedily generated starting
tours are superior to those reached from random starting tours,
a pseudo-backbone constructed from the latter generally leads
to better overall performance.

Pseudo-backbone information can be incorporated in LS al-
gorithms to “bias” the search. In LS, moves are evaluated by
the difference between the total cost of the edges to be removed
from the tour and the total cost of the edges to be added. If this
value is positive, the move is taken. In backbone guided search,
we can make biased moves in two different ways; one only uses
pseudo-backbone frequencies and the other combines pseudo-
backbone frequencies and the distances between cities. Let


be the set of backbone edges of a TSP and � the set of
local minima from which pseudo-backbone frequencies were
computed. Let � and  be the candidate set of edges to be
removed and added, respectively, at a step of searching for a�

-Opt move. We prefer to replace � by  if � has a smaller
possibility of having more backbone variables than  . If we
assume edges to be independent of each other, we prefer to
replace � by  if ����������������� � 
 � �"!$#%��&'���)(*���,+�� �
 � �-! , where ����� � � 
 � �"! is the backbone frequency of edge
� � , computed from the set of local minima � . This method has
been shown effective on maximum satisfiability [16].

Unfortunately, local search based exclusively on local per-
turbations using merely pseudo-backbone frequencies is not
very effective on the TSP. One possible factor contributing to
this discrepancy between the TSP and max-SAT is the differ-
ent sizes of their search spaces. The TSP has .�/ 01/3254 �6.8789�!
states in its search space, where � :;�)2�<=��<*>@?�!A�8. is the num-
ber of edges for an < city TSP. These states are embedded in
a constraint structure, in which, for example, taking one edge
preventing many other edges from being taken. In comparison,
the search space of max-SAT has only .)7 states for < Boolean
variables. The estimated backbone frequencies could thus be
less reliable on the TSP than on max-SAT. The deficiency of
local perturbations based purely on pseudo-backbone frequen-
cies indicates that the actual intercity distances should not be
ignored for the TSP. This constitutes one of the main differ-
ences between backbone-guided local search for the TSP and
that for max-SAT.



In the LK algorithm, moves are evaluated by summing the
costs of the edges to be removed from the current tour, and
subtracting the sum of the costs of the edges to be added. The
same evaluation principle can be applied in backbone guided
LS, but with cost computed differently. Instead of taking the
cost of a given edge to be the distance between two cities, � ,
it is taken to be ��� � ? >�� ! , where p is the pseudo-backbone
frequency of that edge. Thus, the cost of an edge will decrease
linearly in proportion to its pseudo-backbone frequency. The
extreme cases are edges not in the pseudo-backbone, which
have their original costs (�;2�� ), and edges in all local minima,
which their costs set to zero (�$2 ? ).

When this method is used, the results can be improved even
more by carrying out regular LK search using original dis-
tances from the local minima found by the biased search. This
is effective because the biased search actually searches in a new
TSP instance that has been created from the original by apply-
ing a “pseudo-backbone transform” to its edge weights. Local
minima in this new instance will not generally correspond to
local minima in the original, so continued search of the origi-
nal graph will improve the results, even after biased search has
reached a local minimum.

Furthermore, pseudo-backbone information can be em-
ployed to generate starting tours. It is known that the effec-
tiveness and speed of local search can be improved by using
greedy starting tours [9]. The greedy tour construction begins
by randomly picking a starting city, and adding the shortest
edge exiting the city to the tour. Then, edges are greedily
added one-by-one until the tour is complete. We can mod-
ify this process to naturally utilize the pseudo-backbone by
redefining the “best” edge in terms of the pseudo-backbone-
transformed weights, rather than the original weights. This
gives us a greedy pseudo-backbone tour generation heuristic.

3 Backbone Guided LK and ILK
Applying the above ideas and considerations to LK, we have
the backbone guided LK algorithm (BGLK). Similar to LK,
BGLK runs many cycles, each of which starts from a new start-
ing tour and reaches a local minimum. Different from LK,
BGLK has two phases. The first is a learning phase that runs
a fixed number of iterations of original LK with random start-
ing tours. The local minima from these runs are used to com-
pute pseudo-backbone frequencies. The second is a backbone-
guided improvement phase where biased

�
-Opts are utilized.

In addition, in the second phase, biased starting tours can be
used as well to improve local minima and speed up the search.
In our experiments, we found that setting aside 30% of the total
runs for learning was generally effective.

A few issues must be dealt with to combine pseudo-
backbone utilization with ILK, the iterated LK algorithm, in
deriving iterative BGLK (IBGLK). First, pseudo-backbone
must be constructed from “unbiased samples” of local minima.
Since each local minimum found via ILK typically differs in
only a small number of edges from its progenitor, a sampling
of local minima from such a chained process is biased, and
should not be averaged into the backbone. To deal with this,
we construct a backbone in our experiments from 30 indepen-
dent rounds, i.e., restarts, of ILK, each of which is allowed a
smaller number of iterations, such as 1% of the total number of
iterations. Another issue is that we would like to follow each
round of BGLK by a round of regular search using the orig-
inal distances. However, since BGLK uses “weighted” costs,

it is impossible to ignore potential
�

-Opts involving only un-
changed cities, as when moving between successive rounds of
ILK with only a single search method. Our solution to this has
been to alternate between BGLK and regular LK at a higher
level of granularity: one of these search mechanisms is em-
ployed until it “fails”, at which point we begin employing the
alternate mechanism until it too “fails”, then switch back to the
original, and the alternation repeats. In this context, we have
defined failure at going through

�
rounds (restarts) of optimiza-

tion without finding an improved tour. For our experiments, we
have set

� 2�����.	� , where � is the number of cities.

4 Experimental Evaluation
We have carried out two sets of experiments to study differ-
ent ways of applying pseudo-backbone information in BGLS.
In our experiments we used random instances from the TSP
Challenge suite [8], which includes problem classes of uniform
Euclidean (Uniform), clustered Euclidean (Clustered), and dis-
tance matrix (Matrix). We have also used the large instances
from the TSPLIB [14].

We compared BGLK and IBGLK against LK, ILK, the
reduction method of [10], and the search space smoothing
method of [4]. The smoothing method is related because it
modifies the distances of TSP instances in an attempt to make
it easier for local search to eventually reach local minima of
higher quality. It uses a fixed formula, 
 � 2��
� � 
 >��
 � � , to
transform distance from 
 to 
 � , where �
 is the average distance
over all original distances, and � takes a series of decreasing
values, typically ��������������� ? to help slowly move from an ini-
tially “smooth” instance, in which all distances look similar
to one another, to the actual problem. We implemented this
method in the LK algorithm for the test.

The particular version of LK-based algorithms that we used
was implemented and provided by Johnson and McGeoch, de-
scribed and analyzed in [9]. We leave the details of the im-
plementation to its original description, while simply pointing
out that all of our tests were carried out with the default settings
for this implementation, namely length-20 neighbor lists for all
levels of the search, don’t-look bits, and the 2-Level Tree tour
representation. We incorporated the reduction method and the
space smoothing method in LK to generate two variants. We
have also followed Johnson and McGeoch [9] in configuring
ILK, allowing it the most flips, ?���� , where � is the problem
size. This is our baseline ILK algorithm, abbreviated as ILK-1-
run. In addition, we used two different configurations of ILK
in our experiments: the best of five runs of .	� iterations (i.e.,
ILK with four random restarts), which is named as ILK-5-runs,
and the best of ten runs of � iterations, which is called ILK-10-
runs. We configured IBGLK as follows. It first runs 30 rounds
of ILK, each of which starts from a random tour and is allowed
�*� ?�� iterations. It then executes 70 rounds of ILK with biased
moves and biased greedy initial tours, each of which is also
allocated �*� ?�� iterations. All algorithms used the same total
number of flips to give a relatively fair comparison.

Our experiments were run on 1.6 and 2.0 GHz AMD Ath-
elon machines with 2 gigabytes of memory. All runtimes are
normalized for a 500 Mhz Alpha, as described in [9], so that
our results and the previous results can be directly compared.

4.1 The TSP Challenge suite
We experimentally validate our claim that BGLS allows local
search methods to reach better local minima, using problem



N=1000 N=3162 N=10K N=31K
Opti 0.74 — 0.70 — — — — —
LK 1.38 (8.8) 1.56 (33.0) 1.79 (83.2) 1.83 (232.9)

U Redu 1.30 (5.2) 1.59 (18.1) 1.80 (43.8) 1.84 (117.0)
Smoo 1.21 — 1.46 — 1.58 — 1.55 —
BGLK 1.07 (12.1) 1.15 (53.4) 1.2 (147.0) 1.19 (441.2)
Opti 0.54 — 0.59 — — — — —
LK 1.81 (226.9) 3.42 (625.0) 5.67 (1241.7) 5.63 (3013.3)

C Redu 1.51 (103.8) 3.36 (290.7) 5.19 (494.9) 6.01 (1132.8)
Smoo 2.16 — 3.70 — 6.08 — 6.08 —
BGLK 1.30 (322.3) 2.54 (1032.3) 4.90 (2120.8) 4.58 (5238.7)
Opti 0.02 — 0.00 — 0.00 — — —
LK 2.45 (19.9) 3.87 (63.1) 5.30 (339.3) — —

M Redu 2.24 (16.0) 3.72 (49.1) 5.19 (270.3) — —
Smoo 1.60 — 2.79 — 4.27 — — —
BGLK 0.90 (30.9) 1.77 (79.0) 2.58 (405.0) — —

Table 1: Comparison of LK, reduction, smoothing and BGLK
on problems from the Challenge suite on Uniform (U), Clus-
tered (C) and matrix (M) problem instances. The numbers are
tour costs over Held-Karp bounds in %, and normalized CPU
times in seconds (in parentheses).

instances from the Challenge suite. We examine the results
from four different perspectives.

In the first test, we compared BGLK against LK, LK with
reduction, and LK with search space smoothing. The LK algo-
rithm has 100 runs; the reduction method uses an initial prob-
ing stage of 30-run of LK, followed by 70-run of LK with re-
duction; the smoothing method has 20 runs total, each of which
runs LK five times, for � 2 ��� � ������� � ? . These algorithms all
used greedy initial tours and had a total of 100 runs. BGLK
executes an initial 30-run of LK, using random starting tours,
to learn pseudo-backbone, and then 70 runs of LK with biased
moves and biased initial tours. The sizes � of problem in-
stances are 1000, 3162, 10000, and 31623, increased by a fac-
tor of

� ?�� , following the scheme proposed and used in [9]. For
each problem class and size, 100 random problem instances
were used for each algorithm. Table 1 shows the averaged re-
sults. For comparison, percent over the Held-Karp bounds for
optimal tours is listed when known.

As shown, while the reduction and smoothing methods pro-
vide modest improvements over LK in certain instance classes
and sizes, they are respectively the worst among all algorithms
tested on the Euclidean and clustered Euclidean classes. In
contrast, BGLK is consistently superior, outperforming all the
other three methods across all instance classes and sizes. The
improvement of BGLK over these algorithms varies from 0.3%
to 1.7% on the largest problem instances of these classes. Note
that the average running time of BGLK was no more than twice
the time by LK. Interestingly, BGLK actually ran faster than
LK on some instances, presumably due to its faster focus on
promising areas. Note also that the reduction method’s run-
ning times significantly less than that of IL, while the smooth-
ing method’s runtimes are essentially identical to LK’s.

In the second experiment, we compared IBGLK against
ILK (ILK-1-run) and its two variants (ILK-5-runs and ILK-10-
runs). We used the same problem instances as in the first exper-
iment, and computed the results the same way as in that exper-
iment. The results are shown in Table 2, where we adopted the
same reporting scheme as in Table 1. As shown, the two ILK
variations do not provide much improvement over the baseline
ILK, while IBGLK is able to push significantly closer to opti-
mal than ILK for most cases where ILK does not perform very
well. For uniform Euclidean instances, as ILK does not reach
the optimum for these instances, IBGLK has a good chance

N=1000 N=3162 N=10K N=31K
Optimal 0.74 — 0.70 — — — — —

ILK-1-run 0.82 (58) 0.78 (294) 0.81 (1619) 0.89 (8371)
U ILK-5-run 0.77 — 0.80 — 0.80 — 0.85 —

ILK-10-run 0.78 — 0.82 — 0.86 — 0.98 —
IBGLK 0.77 (78) 0.77 (411) 0.77 (2311) 0.77 (11760)
Optimal 0.54 — 0.59 — — — — —

ILK-1-run 0.55 (1469) 0.62 (6645) 0.84 (22859) 1.14 (88077)
C ILK-5-run 0.54 — 0.62 — 0.76 — 1.06 —

ILK-10-run 0.54 — 0.63 — 0.73 — 1.01 —
IBGLK 0.55 (1281) 0.62 (5764) 0.78 (23311) 0.94 (93759)
Optimal 0.02 — 0.00 — 0.00 — — —

ILK-1-run 0.58 (106) 1.34 (860) 2.70 (8230) — —
M ILK-5-run 0.85 — 1.34 — 2.09 — — —

ILK-10-run 0.89 — 1.94 — 3.44 — — —
IBGLK 0.20 (139) 0.79 (1221) 1.48 (11360) — —

Table 2: Comparison of ILK (ILK-1-run), its variations (ILK-
5-run and ILK-10-run), and IBGLK on problems from the
Challenge suite. The legend and interpretation of the table are
the same as those for Table 1.

to improve tour quality. IBGLK’s performance appears to re-
main constant (i.e., 0.77%) relative to the Held-Karp bound as
the problem size increases, while ILK’s performance degrades.
Although IBGLK runs longer than ILK, due to the extra time
needed to construct and apply the pseudo-backbone, the over-
head never exceeds 50% of ILK’s runtime, and it appears that
IBGLK’s and ILK’s runtimes are asymptotically close to each
other. For clustered problem class, IBGLK, ILK and its vari-
ations’ performances are compatible with one another. Inter-
estingly, IBGLK actually runs faster than ILK on some of the
clustered instances. For this instance class, IBGLS’s lack of
significant improvement over ILK can be attributed to the fact
that ILK is already effective and close to the optimum; there
is little room for improvement. On the distance matrix class,
similar to BGLK versus LK, IBGLK is significantly superior to
ILK on each of the individual instances of different sizes, and
reduces average tour costs by more than 0.6% on the largest
( � 2 ?�� � � ��� ) instances tested. In addition, among ILK and
its variants, ILK-1-run has the fastest running times, and its
two variants are 5%-10% slower.

In the third experiment, we considered relatively small in-
stances of 1,000 cities and compared the local minima from
LK, ILK and IBGLK against the optimal solutions. We used
100 instances for each of the problem classes in the Challenge
suite. For each instances and each algorithm, we averaged
three runs with different random seeds. As the result shows,
IBGLK generally produces solutions of higher quality on aver-
age. Interestingly, it seems that more powerful search methods
produce not only better, but more diverse solutions, as quanti-
fied by the standard deviations of the Hamming distances be-
tween the structures of local minima and the optimal solutions
(data not shown). Figure 1 graphically shows relative perfor-
mances of ILK and IBGLK on individual instances in the test,
indicating that IBGLK is favorable to ILK on most of the prob-
lem instances.

Additional insight can be gained by an inspection of the
anytime behavior of these algorithms. As shown in Figure 2,
BGLK’s anytime behavior is remarkably different from that
of LK and its variants. To begin with, LK outpaces BGLK,
since LK is being run from greedy starting tours, while BGLK
must be run from random tours to construct a reliable pseudo-
backbone (see Section 3). But once BGLK begins using the
pseudo-backbone to guide the search, its rate of descent in-
creases, and the tables are turned on their performance. Qual-
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Figure 1: Comparison of local minima from ILK and IBGLK for 100 problems with 1,000 cities each. Points with ��� � indicate
that IBGLK’s solutions are of higher quality, points with +���� indicate that IBGLK’s solutions are closer to optimal. Both axes
are normalized.

itatively similar anytime performance results have been found
on large problem sizes and when comparing IBGLK with ILK.
4.2 Instances from the TSPLIB
Table 3 contains the results for ILK, its variants, and IBGLK,
on all the instances in the TSPLIB that have at least 1,000
cities. On many of the instances, unfortunately, ILK is al-
ready at or near the optimum, so there is very little room for
improvement. Again, in most places where further improve-
ments are possible, IBGLK produces them. On this set of in-
stances, IBGLK championed on 20 of them (the ones in bold
and underlined), whereas ILK and its variants came first on
12 instances (with some overlaps). Note that on the largest
instances (the ones with more than 10,000 cities), IBGLK pro-
duces significant gains over ILK. The runtimes were from our
AMD Athelon machines and then normalized to a 500MHz
Alpha as suggested in [9].

5 Related Methods and Discussions
The most closely related work is our previous work on back-
bone guided Walksat for maximum satisfiability [16]. The
backbone guided local search developed here for the TSP fol-
lows the same principles developed there; and thus can be
viewed as an innovative extension to the work in [16]. This
research was also inspired by and builds upon the previous re-
sults of the “big valley” hypothesis on the clustering of local
minima from the family of the Lin-Kernighan algorithm and
its variants [1; 2; 10].

Two pieces of previous work resemble BGLK in some way.
The first is the reduction method by Lin and Kernighan [10].
As discussed earlier, reduction “locks in” the common edges
in all local minima. This has two effects: it can speed up the
search, as the problem becomes smaller, and provides a means
of directing search among a set of otherwise indistinguishable
tours. The main limitation of this method is that it is brittle,
depending on the quality of the “locked in” edges. If a “locked
in” edge turns out not to be part of the backbone, no optimal
tour will be found. Moreover, information such as “edge ������� !
appears in 90% of all local minima” cannot be utilized, thus it
simply disregards potentially useful information of backbone
frequencies. The results in [10], up to 318 cities, is too lim-
ited to provide a fair assessment of this method. Our results in
Section 4 revealed that reduction is not competitive.

BGLS is more general than reduction by providing a remedy
to the problem of brittleness and making use of information
embedded in backbone frequencies. BGLS is a random strat-
egy, in which edges that appear in all local minima may still be

% over the Held-Karp bound runtime in seconds
Name ILK-1 ILK-5 ILK-10 IBGLK Optimal ILK-1 IBGLK
dsj1000 0.61 0.62 0.62 0.62 0.61 2097 2066
pr1002 0.89 0.89 1.04 0.89 0.89 300 345
si1032 0.15 0.08 0.08 0.08 0.08 610 772
u1060 0.65 0.67 0.67 0.67 0.65 870 873
vm1084 1.37 1.35 1.35 1.35 1.33 403 403
pcb1173 0.97 0.98 0.97 0.96 0.96 161 213
d1291 1.31 1.23 1.18 1.26 1.18 1099 1086
rl1304 1.55 1.55 1.55 1.55 1.55 457 504
rl1323 1.66 1.66 1.65 1.65 1.65 470 582
nrw1379 0.47 0.51 0.43 0.49 0.43 274 440
fl1400 1.74 1.74 1.74 1.74 1.74 22548 19317
u1432 0.44 0.38 0.38 0.29 0.29 319 617
fl1577 1.68 1.66 1.66 1.66 1.66 9072 10430
d1655 1.19 0.92 0.95 0.91 0.91 1808 1869
vm1748 1.35 1.38 1.35 1.36 1.35 893 829
u1817 1.08 1.13 1.17 1.06 0.90 468 680
rl1889 1.74 1.64 1.55 1.77 1.55 1028 1110
d2103 1.44 1.44 1.44 1.44 1.44 3407 8669
u2152 0.96 0.77 0.79 0.81 0.62 597 808
u2319 0.13 0.13 0.13 0.06 0.02 1182 2091
pr2392 1.27 1.28 1.37 1.36 1.22 503 715
pcb3038 0.91 0.88 0.93 0.94 0.81 854 1178
fl3795 1.04 1.04 1.05 1.07 1.04 45789 52460
fnl4461 0.66 0.67 0.69 0.63 0.55 1613 2505
rl5915 1.58 1.62 1.58 1.62 1.56 2963 4766
rl5934 1.53 1.39 1.56 1.54 1.38 3714 5250
pla7397 0.61 0.72 0.63 0.63 0.58 18338 20716
rl11849 1.13 1.17 1.21 1.15 1.02 9421 15301
usa13509 0.78 0.76 0.83 0.72 0.66 20829 26339
brd14051 0.61 0.63 0.66 0.58 — 28587 35048
d15112 0.66 0.68 0.72 0.63 0.52 21481 29709
d18512 0.63 0.64 0.70 0.59 — 21995 31916
pla33810 0.68 0.66 0.70 0.65 — 148387 150455
pla85900 0.56 0.58 0.62 0.52 — 256808 247597
# of bests 12 11 12 20

Table 3: Comparison of all instances in TSPLIB with at least
1,000 cities. Numbers are tour costs over Held-Karp bounds in
% and normalized runtimes in seconds (for a 500 Mhz Alpha).

swapped out of the current tour during the search, albeit with a
slim possibility. This allows more tours be explored while still
maintaining a focused search.

The second related work is search space smoothing [4],
which was briefly described in Section 4. Gu and Huang
only experimented with this idea with a 2-Opt algorithm and
on small random Euclidean problems with no more than 100
cities. They did not compare their method to other techniques.
Our results in Section 4 showed that smoothing outperforms
LK on uniform and matrix instances. However, it is less effi-
cient than BGLK and ILK.

Although both smoothing and backbone guided search all
modify distances, they are fundamentally different. First, mod-
ifying distances is just one of the end products of the backbone
guided search for the TSP. In fact, when applied to maximum
satisfiability, backbone guided local search did not change
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Figure 2: Anytime performance of LK, LK with reduction, LK with smoothing, and BGLK, for random instance from the TSP
Challenge suite with 1,000 cities.

costs at all [16]. Estimated backbone information can be used
not only to modify distances, but also in different places of a
local search to make biased searches. For instance, it can be
employed to generate biased initial starting tours. Secondly
and more importantly, the backbone guided search does not
treat every distance equally; some distances may be altered
dramatically while others may remain intact to help exploit the
intricate constraints among the cities.

6 Conclusion
We have presented and investigated a new method of applying
backbone information to force a local search to make biased
local perturbations, in the context of the TSP. Based on the
“big valley” hypothesis, we developed a method for deriving
heuristic backbone information by exploiting the local minima
from the efficient Lin-Kernighan local search algorithm. We
demonstrated its effectiveness with extensive experiments on
various problem types and instances.

Our results on the TSP show that BGLK and IBGLK com-
pare very favorably to LK and ILK, respectively, on the in-
stances in the Challenge suite, up to 31,623 cities, and the in-
stances from TSPLIB. For the uniform Euclidean class, BGLK
and IBGLK outperform LK (and its variants) and ILK, respec-
tively. On clustered Euclidean instances, BGLK outperforms
LK by reducing tour costs by more than 1% on average on
31,623-city instances; and IBGLK and ILK have comparable
performance. (Note that an improvement of a fraction of per-
cent in solution quality is significant on large TSPs [9].) BGLK
and IBGLK dominate their counterparts on tour quality on all
instances in the distance matrix class we tested; on 10,000-
city instances, BGLK and IBGLK find tours with costs at least
1.5% and 0.5% smaller than LK and ILK, respectively. On real
instances from the TSPLIB, IBGLK finds nearly twice as many
best solutions as three versions of ILK (i.e., 20 versus 12). Fi-
nally, BGLK and IBGLK have comparable running times with
their counterparts, no more than twice as long as the original
algorithms, while sometimes being faster.

In short, the main contribution of this work is an effective
method of utilizing inherent problem features, backbones in
particular, of the TSP in the LK algorithms and variants to im-
prove their efficacy. A method of exploiting problem features
in search is of fundamental interest and practical importance.
The results on the TSP in this paper have indicated that the idea
of backbone-guided local search is general and can lead to ef-
ficient heuristic algorithms for large, difficult problems. The
source code of our algorithm will be available on the web.
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