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Abstract

Most probabilistic inference algorithms are speci-
fied and processed on a propositional level. In the
last decade, many proposals for algorithms accept-
ing first-order specifications have been presented,
but in the inference stage they still operate on a
mostly propositional representation level.[Poole,
2003] presented a method to perform inference di-
rectly on the first-order level, but this method is
limited to special cases. In this paper we present the
first exact inference algorithm that operates directly
on a first-order level, and that can be applied to any
first-order model (specified in a language that gen-
eralizes undirected graphical models). Our exper-
iments show superior performance in comparison
with propositional exact inference.

1 Introduction
Probabilistic inference algorithms are widely employed inar-
tificial intelligence. However, most of them do not accept
first-order specifications of models, which can abstract over
classes of objects, requiring instead propositional ones which
are longer and redundant because they must be specified vari-
able by variable.

In the last decade, many proposals for algorithms accept-
ing first-order specifications have been presented[Ngo and
Haddawy, 1995; Ng and Subrahmanian, 1992; Jaeger, 1997;
Kersting and De Raedt, 2000; Friedmanet al., 1999; Pfeffer
et al., 1999; Poole, 1993; Andersonet al., 2002; Richardson
and Domingos, 2004; Laskey, 2005], most of which based on
the theoretic framework of[Halpern, 1990]. However, these
solutions perform inference at a mostly propositional level,
that is, dealing with the random variables instantiated from
the first-order, parameterized variables in the first-orderspec-
ification (usually only the relevant random variables will be
present in the propositional version). In domains with a large
number of objects this may be both costly and essentially un-
necessary. For example, a medical application can be about
a large population of people infected with a certain disease
and have a model of the probability of death of a person (any
person) with that disease. To answer the query “what is the
probability thatsomeonewill die of this disease?”, an algo-
rithm that depends on propositionalization would have to in-

stantiate a random variable per patient. However this is not
necessary since one can reason about individuals on a gen-
eral level, provided one knows the population size, in order
to answer that query in a much shorter time.

In such a scenario it would be possible to devise a way of
using the available model to answer the query without consid-
ering each individual. However, this would require a manual
devising of a processspecificto the model or query in ques-
tion. What is missing to date is an algorithm that can receive
a generalfirst-order model andautomaticallyanswer queries
like these without computional waste.

A first step in this direction was given by[Poole, 2003],
which proposes a generalized version of the variable elimina-
tion algorithm ([Zhang and Poole, 1994]) that islifted, that is,
deals with groups of random variables at a first-order level.
The algorithm receives a specification in whichparameter-
izedrandom variables stand for all of their instantiations and
then eliminates them in a way that is equivalent to, but much
cheaper than, eliminating all their instantiations at once.

The algorithm in[Poole, 2003], however, works only for a
very particular type of model because its only elimination op-
eration is what we callinversion elimination, which requires
special conditions explained later. These special conditions
may sometimes be met by carefully chosen elimination order-
ings, but in certain cases no such ordering exists and inversion
elimination cannot be applied at all steps. This introducesthe
need for another type of elimination,counting elimination,
which can always be applied but costs more. By putting these
two operations together we present the first algorithm capable
of dealing with any first-order probabilistic model that op-
erates directly on first-order representations, without resort-
ing to a propositional level. We also show that the algorithm
is correct and provide experimental results comparing it toa
propositional algorithm.

2 Motivation

A probabilistic model over a set of random variables is de-
fined by a set of dependencies, each of them on a subset of
those variables. In a propositional model, each dependency
explicitly refers to the variables it affects. For example,con-
sider a Markov network involving a potential function, orfac-



tor, such as:

φ(epidemic, sick) =

���
��
0.7, if epidemic ∧ sick,

0.3, if epidemic ∧ ¬sick,

0.5, otherwise.

In fact, this type of potential function will be common
enough in this paper that we define “ifα thenβ p” to mean

φ(V ar(α, β)) =

���
��
p, if α ∧ β,

1− p, if α ∧ ¬β,

0.5, otherwise.

whereα andβ are boolean formulas on binary random vari-
ables andV ar(α, β) is the set of these random variables. If
p is omitted, it is assumed to be1. “β p” is the same as
“if > thenβ p” and “if α thenβ p elseq” stands for both
“if α then β p” and “if ¬α then β q”. So we can write a
model in the more readable fashion:1

if epidemic thensick 0.7 if sick thendeath 0.4

In most practical problems, the same factor holds on many
different sets of variables, requiring propositional models to
repeat that factor several times, modulo the specific variables
involved each time. In our example, if we wish to keep track
of whether each member of a population is sick (with distinct
variablessick(john), sick(mary), . . . ), we would have to
write

if epidemic thensick(john) 0.7

if sick(john) thendeath(john) 0.4

if epidemic thensick(mary) 0.7

if sick(mary) thendeath(mary) 0.4 . . .

This renders the model specification unnecessarily complex
and redundant. Moreover, an inference algorithm will con-
sider each of those factors separately, even though there is
some structure across them that should be exploited.

Currently, the most common way of dealing with these sit-
uations is to keep the original model and use it for each sepa-
rate object (in this case, each person) as needed. This however
does not help when different instances of the factor need to be
used at the same time, as it would be the case to answer the
queryP (sick(john) ∧ sick(mary)), for example. In these
situations, procedures specific to a given model have to be
manually tailored, in what is a time consuming solution.

A natural way around this problem is to specify recurring
factors in a parameterized way. This would allow us to ex-
press the same as above in the more succint way

if epidemic thensick(Person) 0.7

if sick(Person) thendeath(Person) 0.4

wherePerson (and, in our notation, words starting with a
capital) is a typedlogical variableassuming any value from
the set of people involved in the problem. The semantics of
this representation is simply that it should be equivalent to

1The reason we define the model with this “conditional” poten-
tial function rather than with usual conditional probabilities is that
we concern ourselves with Markov networks (undirected models)
only in this paper.

the propositional model formed by all possible instantiations
of its logical variables. Following[Poole, 2003], we call these
parameterized factorsparfactors.

This semantics immediately provides an inference al-
gorithm for such a representation, namely the one in
which we apply any regular propositional inference al-
gorithm to the propositionalized model, but this would
be overkill. For example, in order to solve the query
P (death(john)|sick(john)) it is only necessary to con-
sider the instantiations forPerson = john, ignoring
other values. One could also consider general queries
such asP (sick(Person)|death(Person)) that do not re-
quire any instantiations at all in order to be solved.
An extreme example of the benefit of directly using the
first-order representation is given by adding the parfactor
“if death(Person) then someDeath” to the model and
considering the queryP (someDeath|epidemics). The tree
width of the propositionalized graphical model is the popu-
lation size, while the query can in fact be answered in time
independentfrom the population size (a similar example is
shown in fig. 4). It is therefore desirable to have an algorithm
performinglifted inference, that is, inference directly on the
first-order level, which instantiates parfactors only whennec-
essary.

The languages we mentioned before allow parameterized
specifications of probabilistic models. However, no corre-
sponding first-order inference algorithm has been provided;
inference is still performed by generating some proposition-
alized form of the model and using regular propositional in-
ference algorithms on them (although some systems, like
SPOOK in[Pfefferet al., 1999], benefit from the first-order
structure in some ways). In this paper we present an al-
gorithm which performs exact lifted inference on first-order
models.

It is also useful to allow deterministic constraints on the
logical variables of parfactors. For example,

if sick(Person1) ∧ roommate(Person1, P erson2)

thensick(Person2) 0.8, P erson1 6= Person2 (1)

diabetes(Person) 0.01, P erson 6= john ∧ Person 6= mary

The constraintPerson1 6= Person2 in the first factor states
that only its instantiations satisfying this condition will be
considered. In the second factor, the potential of0.01 for
the random variablediabetes(Person) is assigned only for
instantiations in whichPerson is distinct from john and
mary.

3 Language, notation and semantics
Our language and semantics are essentially the same as
those in[Poole, 2003], that is, those of a Markov network
specified in a first-order language that allows parameterized
random variables,2 and are also similar to Markov logic
networks[Richardson and Domingos, 2004]. A parfactor is
a triad(φ, A, C) representing the applications of a potential
function φ on all instantiations of a tuple of logicalatoms

2Poole discusses some aspects of directed models, however.



A according to assignments to the logical variables in
these atoms that satisfy a constraint formulaC. At this
point, we restrict ourselves to constraints with a finite
number of solutions so as to have finite models only (this
prevents us from using function symbols – more on this in
section 6). For example, (1) is represented by the parfactor
(φ, A, C), whereφ is the appropriate potential function,A is
{sick(Person1),roommate(Person2), sick(Person2)}
andC is Person1 6= Person2.

Note that we are in no way committed to the “if . . . then”
construction used, which is simply a notation for a specific
type of potential function. Any potential function is allowed,
and random variables can be multivalued rather than binary
only.

Just as with regular undirected graphical models, here the
joint probability distribution is determined by the product of
all potential functions given an assignment to all random vari-
ables (which are instantiations of atoms in parfactors, and
thereforeground atoms). The only difference is that in a
first-order model this product involves all instantiationsof all
parfactors. Given a set of parfactorsG, the joint distribution
defined by it is

P (RV (G)) ∝
∏

g∈G

∏

θ∈Θg

φg(Agθ) (2)

where RV (G) is the set of all random variables (ground
atoms) involved in all instantiations of all its parfactors, Θg

is the set of all assignments, or substitutions, to the logical
variables ofg that satisfy its constraint (thesolutionsto the
constraint),φg is the potential function ing, Ag is the tuple
of atoms ing andAgθ is the instantiation of this tuple given
an assignmentθ to logical variables.

Further notation include, for a parfactorg, Cg for the con-
straint ing and, for a set of parfactorsG, AG for the atoms
in G, CG for the total constraint

∧

g∈G Cg andΘG for the set
of solutions ofCG. For any objectα, LV (α) andRV (α) are
the sets of logical and random variables inα, respectively.
Finally, all sets of parfactors are implicitly assumed to be
standardized apart, that is, logical variables are renamed if
necessary so that no logical variable is used in more than one
parfactor in the set.

4 Inference
The inference problem is, given a set of random variables
(ground atoms)Q representing a query, to calculate the mar-
ginal probability ofQ given a modelG (queries involving a
condition can be issued by adding parfactors representing this
condition toG). This is

P (Q) ∝
∑

RV (G)\Q

φ(G)

where
∑

RV (G)\Q is a summation over all assignments to ran-
dom variables not inQ andφ(G) is a shorthand notation for
the right-hand side of equation (2).

Calculating this summation by brute force is intractable,
but one can use independencies in the model to do it more
efficiently. In propositional models, one way of doing this is

PROCEDUREFOVE(G, Q)
G a set of parfactors,Q a set of random variables (the query).

1. If RV (G) = Q, returnG.
2. G← SHATTER(G, Q) (figure 2).
3. E ← FIND-ELIMINABLE(G, Q).
4. GE ← {g ∈ G : RV (g) andRV (E) intersect}.
5. GĒ ← G \GE .
6. g′ ← ELIMINATE(GE, E).
7. G′ ← {g′} ∪GĒ .
8. ReturnFOVE(G′, Q).

PROCEDUREFIND-ELIMINABLE(G, Q)
G a set of parfactors,Q ⊂ RV (G), G shattered againstQ.

1. Choosee from AG \Q.
2. Ge ← {g ∈ G : RV (g) andRV (e) intersect}.
3. If LV (e) = LV (Ge) ({e} is inversion-eliminable)

return{e}.
4. ReturnFIND-COUNT-ELIMINABLE(G, Q, {e}).

PROCEDUREELIMINATE(G, E)
G a set of parfactors,E ⊂ RV (G).

1. A′ ← AG \E.

2. g ← (�g∈G φ
|ΘG|/|Θg|
g , A′, CG) (fusion, section 4.4).

3. If LV (E) = LV (g) (E is inversion-eliminable)
return parfactor(� e φg(A

′θ, e), A′, Cg).
4. Return

(�N1
· · ·�Nu

N1! . . . Nn!�k
i φg(vi, A

′)|Vi|, A′,>)
(as detailed in section 4.3).

PROCEDUREFIND-COUNT-ELIMINABLE(G, Q, E)
G a set of parfactors,Q ⊆ RV (G), E ⊆ AG \Q.

1. If AGE
\ E is ground (E is counting-eliminable)

returnE.
2. Choose a non-ground atome ∈ AG \ E.
3. ReturnFIND-COUNT-ELIMINABLE(G, Q,E ∪ {e}).

Figure 1: First-order variable elimination algorithm.

the variable elimination (VE,[Zhang and Poole, 1994]) algo-
rithm which calculates the total marginal by dividing it into
smaller partial marginalizations, each on a single variable.
The main contribution of this paper is a first-order version of
VE, FOVE, which is shown in Figure 1 and works in a simi-
lar way by eliminating one (but maybe more) atoms and their
respective constraints at each step. The advantage ofFOVE
is that, by eliminating an atom with its associated constraints,
we are effectively eliminating all of its groundings in alifted
way, with a cost that is sometimes independent of the number
of groundings.

4.1 FOVE correctness
We now show thatFOVE is correct. The algorithm works in
the following way: suppose we want to eliminate the atoms
in a setE at a given step of it. Then we can write

P (Q) ∝ �
RV (G)\Q

φ(G)

= �
RV (G)\Q\RV (E)

�
RV (E)

φ(GE)φ(GĒ)

= �
RV (G)\Q\RV (E)

φ(GĒ) �
RV (E)

φ(GE)



whereRV (E) is the set of random variables resulting from
all instantiations ofE in G, GE is the subset of parfactors in
G depending onRV (E), andGĒ is G \ GE .

If we can represent
∑

RV (E) φ(GE) as the potential
of a single parfactorg′, (defined such thatφ(g′) =
∏

θ∈Θg
φg(Agθ)), we can reduce the original marginal

∑

RV (G)\Q φ(G) to a marginal on a modelG′ = GĒ ∪ {g′}
which involves fewer random variables:

P (Q) ∝ �
RV (G)\Q

φ(G) = �
RV (G)\Q\RV (E)

φ(GĒ) �
RV (E)

φ(GE)

= �
RV (G)\Q\RV (E)

φ(GĒ)φ(g′)

= �
RV (G)\Q\RV (E)

φ(GĒ ∪ {g
′}) = �

RV (G′)\Q

φ(G′)

There are two ways, described below, of calculating a par-
factor g′ such thatφ(g′) =

∑

RV (E) φ(GE): (1) inversion
eliminationor (2) counting elimination. (1) is the preferable
one because it does not depend on the number of objects in
the domain or, in other words, the size ofRV (E). However,
this method requires certain conditions onE (explained later)
that may be impossible to satisfy for anyE in the atoms ofG.
(2) is less favorable as it depends on the size ofRV (E) (it is
still better than propositionalization, though), but it isalways
possible to find anE on which it can be applied.

In the two next subsections, we assume thatGE has been
replaced by an equivalent parfactorg. This operation is called
fusionand is explained in section 4.4. We are thus left with
the problem of expressing

∑

RV (E) φ(g) as a parfactor.

Finally, we assume that the parfactors and query have been
shattered, as explained in section 4.5. The main property of
shattered parfactors and query is that any two atoms in them
have groundings which are either identical or completely dis-
joint. Why this matters will be explained as inversion and
counting elimination are explained.

4.2 Inversion elimination

Inversion elimination assumes thatE is a unary set{e} such
thatLV (e) = LV (g), whereLV (α) is the set of logical vari-
ables inα. Let θ1 . . . θn be an enumeration ofΘg. Then

�
RV (e)

φ(g) = �
RV (e)

�
θ∈Θg

φg(Agθ)

=�
eθ1

· · ·�
eθn

φg(Agθ1) . . . φg(Agθn)

=�
eθ1

φg(Agθ1) · · ·�
eθn

φg(Agθn)

(because of shattering)

= ��
eθ1

φg(Agθ1)� . . . ��
eθn

φg(Agθn)�
=

�
θ∈Θg

�
eθ

φg(Agθ) =
�

θ∈Θg

�
eθ

φg(A
′
θ, eθ)

=
�

θ∈Θg

�
e

φg(A
′
θ, e) (by renaming)

=
�

θ∈Θg

φ
′(A′

θ) = φ(g′)

for g′ a new parfactor(φ′, A′, Cg) whereA′ is a tuple of the
atoms distinct frome in Ag, φ′(A′θ) =

∑

eθ φg(Agθ), and
Cg is the constraint formula ofg.

Note that the initial sum of products becomes a product of
sums, hence the nameinversion elimination. Also note that
the sum providingφ′ is over the assignments on theparame-
terizedrandom variables. Therefore this elimination method
does not depend on the number of groundings, but on the
number of assignments to the parameterized random variable,
which is much smaller.

The conditionLV (e) = LV (g) is essential for this method
to work because it guarantees that the random variables being
summed out have a one-to-one correspondence to the instan-
tiations ofg. This is a condition not taken into account by
[Poole, 2003], whose method eliminates all random variables
not in the query by inversion elimination, one by one. How-
ever, the proof above should make it clear that this is not al-
ways possible. A numerical contradiction can be found by
trying to answer the queryr for p(X) ∧ q(Y ) ∧ r 0.8, with
type ofX being{a} and type ofY being{b, c}, since neither
p(X) or p(Y ) is suitable for inversion elimination. The cor-
rect answer is≈ 0.78, but eliminatingp(X) and thenq(Y )
by inversion produces≈ 0.75.

4.3 Counting elimination
When we cannot find an atome in G satisfying the conditions
for inversion elimination, we can resort tocounting elimina-
tion, which is based on counting arguments.

Counting elimination can be done on a set of atomsE such
that the remaining atoms ing (and consequentlyGE) are all
ground. We can always find such anE in G, since the set of
non-ground atoms inG is such a set. We however try to find
the smallest suchE since the cost of the method depends on
the size ofRV (E). Note that counting elimination is only
justified for|E| > 1 since|E| = 1 implies thatE is inversion
eliminable.

Once we have a properE, letA′ be the remaining atoms in
g. Then, becauseA′ is ground,

�
RV (E)

φ(g) = �
RV (E)

�
θ∈Θg

φg(Eθ,A
′
θ)

= �
RV (E)

�
θ∈Θg

φg(Eθ,A
′)

The last term above defines a potential functionφ′ on A′.
The result obtained from counting elimination is a new par-
factorg′ = (φ′, A′,>).



In order to calculate this term, we present a counting argu-
ment. Given an assignment onRV (E),

�
θ∈Θg

φg(Eθ, A
′) =

k�
i

φg(vi, A
′)|Vi|

by grouping all applications ofφg with the samevi, where
v1, . . . , vk are the different assignments toEθ andVi is the
set of differentEθ’s assignedvi.

Now assume for a moment thatE is in fact just one atom
e. This means that thevi’s are the possible values for in-
stances ofe. Note that

∏k
i φg(vi)

|Vi| is a function ofvi

and |Vi|, but not ofVi. In other words, it only matters how
many instances ofe are assignedvi by a given assignment
onRV (e), but notwhichof them. Different assignments will
induce different vectors(V1, . . . , Vk), but if they induce the
same vector(|V1|, . . . , |Vn|) (denoted~N ), that product will
be the same. Also, given a vector~N , the number of assign-
ments inducing it is~N !, the multinomial coefficient of~N 3 (in
the particular case wheree is a binary variable, this becomes
(|RV (e)|

~N0

)

=
(|RV (e)|

~N1

)

). We can therefore group assignments

according to~N and write

�
RV (E)

φ(g) =�
~N

~N !

k�
i

φg(vi, A
′)

~Ni

Let us now consider the case whereE contains multi-
ple atoms. LetE1, . . . , En be an enumeration ofE and
R1, . . . , Rn be their respective groundings. Let us also as-
sume that for any two atomsEm, Ej in E, their groundings
Rm, Rj are identical or disjoint. This condition is satisfied
by shattered sets of parfactors, as discussed in 4.5. Moreover,
we also assume that any two atoms inE are either identical
or not unifiable at all, according toCg. This is also granted
for shattered sets of parfactors. For now, we also demand that
for any two atomsEm, Ej in E, LV (Em) ∩ LV (Ej) = ∅,
leaving the case where this is false for later.

Let S1, . . . , Su be an enumeration of{Rj : 1 ≤ j ≤ n},
that is, a sequence of uniqueRj ’s. We can consider each
assignment as a composition of assignments on eachSi and
write

�
RV (E)

φ(g) =�
S1

· · ·�
Su

k�
i

φg(vi, A
′)|Vi|

As before,|Vi| is the number ofEθ’s assignedvi, butvi is
a tupleassignment toEθ. |Vi| can be calculated by choosing,
for each componentvi,j , how many random variables inRj
can be assignedvi,j (this choice can be made in this fashion
because atoms inE do not share logical variables). This is
simply |Rj |, the number of random variables inRj , unless
some other componentvi,m, with m < j, Em 6= Ej and
Rm = Rj , has already committed a random variable inRj
for itself. For this reason, it is important to know from the
beginning whetherEmθ is either the same random variable

3Defined as~N ! = ( ~N1, . . . , ~Nn)! = ( ~N1+···+ ~Nn)!
~N1!... ~Nn!

asEjθ or not, otherwise we would not know whether to have
one less option fromRj (for the cases whereEmθ 6= Ejθ)
or not to have to make a choice at all (in those cases where
Emθ = Ejθ and the choice has already been made forEmθ
and therefore forEjθ). This information is available since
Em andEj must be either identical or not unifiable, as stated
above. From this reasoning,

�
RV (E)

φ(g) =�
~N1

· · ·�
~Nu

~N1! . . . ~Nn!
k�
i

φg(vi, A
′)|Vi|

with

|Vi| =
∏

j

(| ~Ns(j),i| − |{m : m < j, Em 6= Ej , Rm = Rj}|),

wheres(j) is such thatSs(j) = Rj , ~Ns(j) is the vector corre-
sponding to the counting of assigments onSs(j) = Rj , with
~Ns(j),i being the number of random variables inRj assigned
vi,j .

Finally, we consider the case where the condition that for
any two atomsEm, Ej in E, LV (Em) ∩ LV (Ej) = ∅ is
not satisfied. We can reduce this case to the previous one
by multiplying away the logical variables violating the con-
dition. To multiply a logical variable vector̄Z away from a
parfactorh, we calculate a new parfactorh′ = (φ′, A′, C′)
whereA′ is the same asAh but for the removal of the logi-
cal variables inZ̄, C′ = C|LV (h)\Z̄ and, for anyθ ∈ Θh′ ,
φ′(A′θ) =

∏

θ′∈C|Z̄
φh(Ahθ′θ), whereC|W̄ , the restriction

of C to a vector of logical variables̄W , is defined as the con-
straint∃V̄ C for V̄ = LV (C) \ W̄ . This is simply the for-
mula describing the solutions ofC restricted to variables in
W̄ (for equational formulas without function symbols this can
be simplified to an equational formula without quantifiers).

Multiplying away is an expensive operation that depends
directly on the domain size. We are currently working on
more sophisticated counting arguments that minimize its use.

4.4 Fusion

We now explain how a set of parfactorsG can be replaced by
a single, equivalent parfactorfs(G) = (φ′, AG, CG), with
φ′(AGθ) =

∏

g∈G φg(Agθ)
|Θg|/|ΘG| for anyθ ∈ ΘG.

φ(G) =
�
g∈G

�
θ∈Θg

φg(Agθ) =
�
g∈G

�
θ∈ΘG

φg(Agθ)|Θg|/|ΘG|

=
�

θ∈ΘG

�
g∈G

φg(Agθ)
|Θg|/|ΘG|

=
�

θ∈ΘG

φ
′(AGθ) = φ(fs(G))

The crucial step is the one in which we replace each origi-
nal set of constraint solutionsΘg by the global constraint so-
lution setΘG. When this happens, each original instantiation
of a parfactor is now instantiated|ΘG|/|Θg| many times more
than before, but the power|Θg|/|ΘG| preserves the original
potential value.



4.5 Shattering
The elimination of atoms requires certain conditions guaran-
teed by the fact that the set of parfactors having been shat-
tered against the query. This is based on discussion in[Poole,
2003].

A set of parfactors isshatteredif, for every pair of atoms
(p, q) in G, two conditions hold: (1), their groundingsRV (p)
andRV (q) are either identical or disjoint, and (2), in a con-
dition needed by counting elimination, every pair of atoms in
each parfactor must be either identical or never be instanti-
ated to the same random variable by a single logical variable
assignment. We call pairs of atoms satisfying these two con-
ditionsproper pairs. A set of parfactors isshattered against
a set of ground atomsQ if the same conditions hold when the
atoms inQ are included.

For example, parfactors (φ1, p(X, a),>) and
(φ2, p(b, Y ), Y 6= d) are not shattered becauseRV (p(X, a))
andRV (p(b, Y )) overlap but are not identical, violating (1).
In another example, parfactor(φ, (p(X), p(Y )),>) is not
shattered because, even thoughRV (p(X)) = RV (p(Y )),
p(X) and p(Y ) are instantiated to the same random vari-
able by some logical variable assignments (those in which
X = Y ), violating (2).

The algorithm in figure 2 shatters a set of parfactors against
a query. It works by repeatedly identifying pairs of improper
pairs andbreakingparfactors into equivalent sets of parfac-
tors whose sets of instantiations are the same as the original
ones, but inducing proper pairs. This is done by, through uni-
fication, determining the conditions for the groundings of im-
proper pairs to coincide or not, and breaking the parfactors
along these conditions. After this, unified atoms are rewritten
so that they will be identical.

For example, if we have parfactor(φ2, p(b, Y ), Y 6=
d) and queryp(b, c), p(b, Y ) and p(b, c) are an improper
pair. Their most general unifier (MGU) isY = c, so we
can break the parfactor into(φ2, p(b, Y ), Y 6= d ∧ Y =
c) and (φ2, p(b, Y ), Y 6= d ∧ Y 6= c) which can be
rewritten as(φ2, p(b, Y ), Y = c) = (φ2, p(b, c),>) and
(φ2, p(b, Y ), Y 6= d ∧ Y 6= c). In another example, par-
factor (φ, (p(X), p(Y )), X 6= a) contains improper pair
p(X), p(Y ). Their unification yieldsX = Y , so the par-
factor is broken into(φ, (p(X), p(Y )), X 6= a ∧ X = Y )
and(φ, (p(X), p(Y )), X 6= a ∧ X 6= Y ), the first one being
rewritten as(φ, (p(X), p(X)), X 6= a).

5 Empirical results
We use the implementation available at
http://l2r.cs.uiuc.edu/˜cogcomp to compare
average run times between lifted and propositional inference
(which produce the exact same results) for two different mod-
els while increasing the number of objects in the domain. The
first one, (I) in figure 3, answers the queryP (death) from
{epidemic 0.55, if epidemic then sick(X) 0.7 else0.01,
if sick(X) thendeath 0.55} and uses inversion elimination
only. Figure 4 shows that this model can have a very large
tree width when propositionalized but can be treated as a
linear graph by lifted inference. The second one, (II) in figure
3, answers queryP (r) from p(X) ∧ p(Y ) ∧ r 0.51, X 6= Y

PROCEDURESHATTER(G,Q)
G a set of parfactors,Q a set of atoms.

1. If there exist improper atom pairp, q in AG ∪Q
(a) For eachr ∈ {p, q}

If r comes from parfactorg
i. g′ ← NORMALIZE(φg, Ag, Cg ∧MGU(p, q)).
ii. g′′ ← NORMALIZE(φg, Ag, Cg ∧ ¬MGU(p, q)).
iii. G← (G \ {g}) ∪ {g′, g′′}.

(b) ReturnSHATTER(G, Q).
2. ReturnG.

PROCEDURENORMALIZE(g)
g a parfactor.

1. If there exists a pair of atomsp, q in Ag unified inCg

replaceq by p in g.
2. ReturnNORMALIZE(g).

Figure 2: Shattering algorithm.

Figure 3: (I) Average run time for answering queryP (death)
from {epidemic 0.55, if epidemic then sick(X) 0.7 else0.01,
if sick(X) thendeath 0.55}, which requires inversion elimination
only. (II) Average run time for answering queryP (r) from
p(X)∧p(Y )∧r 0.51, X 6= Y , which requires counting elimination.

and uses counting elimination only. In both cases proposi-
tional inference starts taking very long before any noticeable
variation in lifted inference run times.

6 Discussion
We presented and showed the correctness of a lifted first-
order probabilistic inference algorithm, the first one to our
knowledge that covers all cases in its intended language. This
allows expressive representations whose inference is made
much cheaper by abstracting away from specific instances of
random variables and dealing instead with whole classes of
them at once. We believe this type of algorithm will be essen-
tial to the development of large and expressive probabilistic
systems, especially when the particular model is not known in
advance and a general and automatic approach is necessary.

We presented two ways of eliminating variables: inversion
and counting elimination. Counting elimination is potentially
much more expensive than inversion elimination, but we ex-
pect its occurrence in practical problems to be low; in any
case, we believe that much better counting arguments exist.
Investigating them is an interesting line for further research.

Many other interesting directions remain to be taken. A
very natural extension would be to allow non-ground queries
that produce not only probabilities but also bindings for log-
ical variables. Also, the algorithm can be adapted, in a
way similar to[Pfeffer and Koller, 2000], in order to work



Figure 4: Computing an answer to queryP (death) from the epi-
demic model and a million people is expensive for the propositional
grounded model (a) as it has a large tree width, but cheap for the
lifted model (b) since it is a linear graph.

with infinite models, allowing for richer constraint languages
where constraints may have infinite solutions, as for exam-
ple those with function symbols. This is also related to Con-
straint Logic Programming[Van Hentenryck, 1989]. Given
the complexity of the language, approximation schemes will
be very important for practical applications; counting elimi-
nation seems a particularly good place to start given its rela-
tively high cost but also regularity. Techniques from theorem
proving will be particularly useful when models with a large
number of parfactors are necessary and one has to apply them
wisely. A complexity study is also necessary for, among other
things, guiding the choice of efficient elimination orderings.

Much of the gain in performance from a lifted algorithm
comes from the presence of a large number of indistinguish-
able objects in the domain, that is, objects about which
we have exactly the same knowledge. It has been argued
([Chaviraet al., 2004]) that this does not occur often in practi-
cal applications. However, the current work simply provides
a base for extensions with other important benefits. In an
approximate inference setting, for example, the notion of in-
distinguishable objects is replaced by that of objects about
which there is approximately the same knowledge (according
to the current approximation factor), a much more practical
situation. For non-ground queries, a problem of great practi-
cal interest, lifted inference is much more suitable, sincethe
answers to such queries may be lifted themselves.
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