
AND/OR Branch-and-Bound for Graphical Models

Radu Marinescu and Rina Dechter
School of Information and Computer Science
University of California, Irvine, CA 92697

{radum,dechter}@ics.uci.edu

Abstract

The paper presents and evaluates the power of a new
framework for optimization in graphical models,
based on AND/OR search spaces. The virtue of the
AND/OR representation of the search space is that
its size may be far smaller than that of a traditional
OR representation. We develop our work onCon-
straint Optimization Problems(COP) and introduce
a new generation of depth-first Branch-and-Bound
algorithms that explore an AND/OR search space
and use static and dynamic mini-bucket heuristics
to guide the search. We focus on two optimiza-
tion problems, solving Weighted CSPs (WCSP) and
finding the Most Probable Explanation (MPE) in be-
lief networks. We show that the new AND/OR ap-
proach improves considerably over the classic OR
space, on a variety of benchmarks including ran-
dom and real-world problems. We also demonstrate
the impact of different lower bounding heuristics on
Branch-and-Bound exploring AND/OR spaces.

1 Introduction
Graphical modelssuch as constraint networks and belief net-
works have become a powerful representation framework for
reasoning with deterministic and probabilistic information.
These models use graphs to capture conditional independen-
cies between variables, allowing a concise representationof
the knowledge as well as efficient graph-based query process-
ing algorithms.

Optimization tasks such as finding the most likely state of a
belief network or finding a solution that violates the least num-
ber of constraints in a constraint network are all instancesof
Constraint Optimization Problems(COP). They are typically
tackled with eithersearchor inferencealgorithms. Search
methods (e.g. depth-first Branch-and-Bound, best-first search)
are time exponential in the number of variables and can oper-
ate in polynomial space. Inference algorithms (e.g. variable
elimination, tree-clustering) are time and space exponential in
a topological parameter calledtree width. If the tree width
is large, the high space complexity makes the latter methods
impractical.

In this paper we focus on search. In contrast to in-
ference algorithms, search algorithms are less sensitive to

the graph-model structure because they traverse a structure-
blind search space. To overcome this problem the idea of
AND/OR search spaces was introduced in the past year, and
was shown to vividly display independencies encoded in the
underlying graphical model[Dechter and Mateescu, 2004]. In
this paper we developAND/OR Branch-and-Bound(AOBB),
a general algorithm for solving COPs, which explores the
AND/OR search tree in adepth-firstmanner. Its efficiency
depends on its guiding heuristic functions. In the past, a
class of partitioning-based heuristic functions, based onthe
Mini-Bucket approximation and known asstatic mini-bucket
heuristicswas shown to be powerful for optimization prob-
lems [Kask and Dechter, 2001]. We take the idea one step
further and introducedynamic mini-bucket heuristics, which
are computed dynamically at each node of the search tree.
Both schemes are parameterized by the Mini-Bucketi-bound,
which allows for a controllable trade-off between preprocess-
ing and search.

We apply the AND/OR algorithms to two common opti-
mization problems: solving Weighted CSPs[Bistarelli et al.,
1997] and finding the Most Probable Explanation (MPE) in
belief networks[Pearl, 1988]. We experiment with both ran-
dom models and real-world benchmarks. Our results show
conclusively that the new AND/OR Branch-and-Bound algo-
rithms improve dramatically over traditional OR ones, espe-
cially when the heuristic estimates are inaccurate and the al-
gorithms rely primarily on search rather than on pruning.

2 Background
A finite Constraint Optimization Problem(COP) is a six-tuple
P = 〈X ,D,F ,⊗,⇓, Z〉, whereX = {X1, ..., Xn} is a set
of variables,D = {D1, ..., Dn} is a set of finite domains
andF = {f1, ..., fm} is a set of constraints. Constraints
can be eithersoft (cost functions) orhard (sets of allowed tu-
ples). Without loss of generality we assume that hard con-
straints are represented as (bi-valued) cost functions. Allowed
and forbidden tuples have cost0 and∞, respectively. The
scope of functionfi, denotedscope(fi) ⊆ X , is the set of
arguments offi. The operators⊗ and⇓ can be defined us-
ing the semi-ring framework[Bistarelli et al., 1997], but in
this paper we assume that:⊗ifi is a combinationoperator,
⊗ifi ∈ {

∏
i fi,

∑
i fi} and⇓Y f is aneliminationoperator,

⇓Y f ∈ {maxS−Y f, minS−Y f}, whereS is the scope of
functionf andY ⊆ X . The scope of⇓Y f is Y .

An optimization task is defined byg(Z) = ⇓Z⊗
m
i=1fi,

whereZ ⊆ X . A global optimizationis the task of finding
the best global cost, namelyZ = ∅. For simplicity we will de-
velop our work assuming a COP instance withsummationand
minimizationas combination and elimination operators, and a
global cost function defined byf(X) = minX

∑m

i=1 fi.
Theprimal graphof a COP instance has the variablesX as

its nodes and an arc connects any two variables that appear in
the scope of the same function.

In practice, most complete COP solvers follow adepth-first
Branch-and-Boundstrategy which maintains anupper bound,
the best solution cost found so-far, and alower boundon the
optimal extension of the current assignment. Value pruning
occurs as soon as the lower bound exceeds the upper bound.

3 AND/OR Search Spaces
The usual way to do search (i.e.OR search) is to instantiate
variables in turn, following a static/dynamic linear ordering.
This process defines a search tree (i.e.OR tree), whose nodes
represent states in the space of partial assignments.

One way to exploit the independencies encoded by the
graphical model is to introduce AND nodes into the search
space, which will decompose the problem into separate sub-
problems. In the past year,[Dechter and Mateescu, 2004] in-
troduced the concept of AND/OR search spaces for constraint
networks, belief networks, and for graphical models in gen-
eral. The AND/OR search space is defined using a back-bone
pseudo-treearrangement of the primal graph.

DEFINITION 1 (pseudo-tree)Given the primal graphG of a
COP instanceP , a pseudo-treeis a rooted tree with the same
set of vertices asG and has the property that adjacent vertices
fromG must be in the same branch of the rooted tree[Freuder
and Quinn, 1985].

DEFINITION 2 (AND/OR search tree) Given a COP in-
stanceP , its primal graphG and a pseudo-treeT of G, the
associatedAND/OR search treeST (P) has alternating levels
of OR nodes and AND nodes. The OR nodes are labeledXi

and correspond to the variables. The AND nodes are labeled
〈Xi, a〉 and correspond to value assignments in the domains
of the variables. Therootof the AND/OR search tree is an OR
node, labeled with the root ofT . The children of an OR node
Xi are AND nodes labeled with assignments〈Xi, a〉, consis-
tent along the path from the root. The children of an AND node
〈Xi, a〉 are OR nodes labeled with the children of variableXi

in T . Thepathof a noden ∈ ST , denotedPathST
(n), is the

path from the the root ofST to n, and corresponds to a partial
value assignment to all variables along the path.

A solution subtreeSolST
of ST is an AND/OR subtree

such that:(i) it contains the root ofST ;(ii) if a nonterminal
AND noden ∈ ST is in SolST

then all of its children are in
SolST

;(iii) if a nonterminal OR noden ∈ ST is in SolST
then

exactly one of its children is inSolST
.

Example 1 Consider the graphical model in Figure 1(a) (top)
describing a graph coloring problem over domains{0,1}. An
AND/OR search tree based on the pseudo-tree in Figure 1(a)
(bottom), and a highlighted solution subtree are given in Fig-

A

D

B C

E

F

A

D

B

CE

F

(a)

AOR

0AND 1

BOR

0AND 1

EOR C

OR D F D F

AND 0 1 0 1 0 1 0 1

AND 0 10 1

(b)

Figure 1: An AND/OR search tree.

ure 1(b). Observe that the AND node〈B, 0〉1 roots two inde-
pendent subproblems, one represented by variable{E}, and
the other by variables{C, D, F}.

THEOREM 1 ([Dechter and Mateescu, 2004]) Given a COP
instanceP and a pseudo-treeT , its AND/OR search treeST

is sound and complete (contains all and only solutions) and its
size isO(n·exp(m)), wherem is the depth of the pseudo-tree.

Any search algorithm that traverses the AND/OR search
tree in a depth-first manner is guaranteed to have a time com-
plexity exponential in the depth of the pseudo-tree and can op-
erate in linear space. In contrast, the time complexity of search
algorithms exploring traditional OR search trees is exponen-
tial in the number of variables. The arcs inST are annotated
by appropriatelabelsof the cost functions. The nodes inST

can be associated with avalue, accumulating the result of the
computation resulted from the subtree below.

DEFINITION 3 (label) The label l(Xi, 〈Xi, a〉) of the arc
from the OR nodeXi to the AND node〈Xi, a〉 is defined as
the sum of all the cost functions values for which variableXi

is contained in their scope and whose scope is fully assigned
alongPathST

(〈Xi, a〉).

DEFINITION 4 (value) Thevaluev(n) of a noden ∈ ST , is
defined recursively as follows: (i) ifn = 〈Xi, a〉 is a ter-
minal AND node thenv(n) = l(Xi, 〈Xi, a〉); (ii) if n =
〈Xi, a〉 is an internal AND node thenv(n) = l(Xi, 〈Xi, a〉)+∑

n′∈succ(n)v(n′); (iii) if n = Xi is an internal OR node then
v(n) = minn′∈succ(n)v(n′), wheresucc(n) are the children
of n in ST .

Clearly, the value of each node can be computed recur-
sively, from leaves to root. We can show that:

PROPOSITION1 Given an AND/OR search treeST of a COP
instanceP = 〈X ,D,F , +, min〉, the value functionv(n) is
the minimal cost solution to the subproblem rooted atn, sub-
ject to the current variable instantiation along the path from
root to n. If n is the root ofST , thenv(n) is the minimal cost
solution toP .

Therefore, we can traverse the AND/OR search tree in a
depth-first manner to compute the value of the root. This

1In the figure we only denote the value.〈B, 0〉 is written as0
child of B.

approach would require linear space, storing only the cur-
rent partial solution subtree. The algorithm expands alternat-
ing levels of OR and AND nodes, periodically evaluating the
value function of the nodes along the current path. It termi-
nates when the root node is evaluated with the optimal cost.

4 AND/OR Branch and Bound
If each noden at the search frontier is assigned aheuristic
lower-bound estimateh(n) of v(n), then we can calculate the
most promising extension of the current partial solution sub-
tree and prune the portion of the search space that becomes
irrelevant, as part of a Branch-and-Bound scheme. We call
h(n) a staticheuristic function.

4.1 Lower Bounds on Partial Solution Trees
At any stage of the search, the current partial solution is a
partial solution subtree, denotedPST . By the nature of the
search process,PST must be connected, must contain the
root node and will have afrontier containing all those nodes
that were generated but not yet expanded. The leaves ofPST
are calledtip nodes. In this section we will define adynamic
heuristic function of a noden relative to the currentPST ,
which yields a more accurate lower bound onv(n) thanh(n).
For that we introduce the notions ofactive path, its insideand
outside contextsand theactive partial subtree.

DEFINITION 5 Given the currentPST , the active path
AP(t) is the path of assignments from the root ofPST to
the current tip nodet. Theinside contextin(AP) of AP(t)
contains all nodes that were fully evaluated and are children
of nodes onAP(t). Theoutside contextout(AP) of AP(t),
contains all nodes that were generated but not yet expanded
and are children of the nodes onAP(t). Theactive partial
subtreeAPT (n) rooted at a noden ∈ AP(t) contains the
sub-path betweenn and t, and all OR children of the AND
nodes on it.

For illustration consider the partial solution subtree in Fig-
ure 2(b) based on the pseudo-tree in Figure 2(a). The active
pathAP(t) has tip nodet = 〈E, 1〉, namely it is(A = 1, B =
1, E = 1). The shaded nodes at the left ofAP(t) are in
in(AP) and their corresponding subtrees have already been
explored.out(AP) includes the nodes{C, F}, which are also
in the search frontier. The active partial subtreeAPT (B) is
highlighted. It contains the nodes{B, 〈B, 1〉, E, 〈E, 1〉} on
AP(t), the OR nodeD from in(AP) and the OR nodeF
from out(AP).

DEFINITION 6 (dynamic lower bound) Given an active par-
tial tree APT (n), thedynamic heuristic evaluation function
of n, fh(n), is defined recursively as follows: (i) ifAPT (n)
consists only of a single noden, and if n ∈ in(AP) then
fh(n) = v(n) elsefh(n) = h(n); (ii) if n = 〈Xi, a〉 is
an AND node, having OR childrenm1, ..., mk thenfh(n) =

max(h(n), l(Xi, 〈Xi, a〉) +
∑k

i=1 fh(mi)); (iii) if n = Xi

is an OR node, having an AND childm, then fh(n) =
max(h(n), fh(m)).

We can prove thatfh(n) is a lower boundon the optimal
solution cost to the subproblem rooted atn, namelyfh(n) ≤
v(n), and also by definitionfh(n) ≥ h(n), indicating that the
dynamic lower bound is superior to the static one.

A

H

B

ED

K

L

C

F G

(a)

A

0 1

B C B C

0 1

D E F D E F

0 1

H K

0 1

(b)

Figure 2: A partial solution subtree.

Example 2 For the active partial subtree rooted atB in Fig-
ure 2(b), the lower boundfh(B) on v(B) is computed recur-
sively as follows:fh(B) = max(h(B), fh(〈B, 1〉)), where
fh(〈B, 1〉) = max(h(〈B, 1〉), l(B, 〈B, 1〉)+v(D)+fh(E)+
h(F)). Similarly, fh(E) = max(h(E), fh(〈E, 1〉)) =
max(h(E), h(〈E, 1〉)), sincefh(〈E, 1〉) = h(〈E, 1〉).

4.2 The Branch-and-Bound Procedure

In the AND/OR search space, we can calculate alower bound
on v(n) of a noden on the active path, by usingfh(n). In
addition, we can compute anupper boundon v(n), based on
the portion of the search space belown that has already been
explored. The upper boundub(n) on v(n) is the current min-
imum cost solution subtree of the subproblem rooted atn.

In Figure 2(b), the upper bound onv(B) is ub(B) =
min(∞, v(〈B, 0〉)) = v(〈B, 0〉), and it represents the cur-
rent best cost solution rooted atB. The lower boundfh(B)
on v(B) is calculated as seen in the previous example. If
fh(B) ≥ ub(B), then searching belowt = 〈E, 1〉 of the ac-
tive path is guaranteed not to reduceub(B) and therefore, the
subtree rooted at〈E, 1〉 can be pruned.

PROPOSITION2 (pruning rule) Given the active path
AP(t) of a current PST , for any noden on AP(t), if
fh(n) ≥ ub(n) then pruning the subtree belowt is safe.

A depth-firstAND/OR Branch-and-Bound(AOBB) algo-
rithm that implements this pruning rule is described in Fig-
ure 3. A list called OPEN simulates the recursion stack. The
list PATH maintains the current assignment (i.e. the active
path). Parent(n) refers to the predecessor ofn in PATH,
which is also the parent in the AND/OR tree,succ denotes the
set of successors of a node in the AND/OR tree andchT (Xi)
denotes the children of variableXi in T . Procedure LB(n)
computes the static heuristic estimateh(n) of v(n).

Step (3) is where the search goes forward and expands alter-
nating levels of OR and AND nodes. Upon the expansion ofn,
the algorithm successively updates thelower bound function
fh(m) for every ancestorm of n along the active path, and
discontinues search belown if, for somem, fh(m) ≥ ub(m).

Step (4) is where the value functions are propagated back-
ward. This is triggered when a node has an empty set of suc-
cessors and it typically happens when the node’s descendants
are all evaluated or when it is a dead-end. Clearly,

THEOREM 2 AOBB is sound and complete for COP.

ALGORITHM : AOBB(P , T)
Input: A COPP = (X ,D,F, +, min), pseudo-treeT , rootX0.
Output: Minimal cost solution toP .
(1) Initialize OPEN by adding OR nodeX0 to it; PATH← φ;
(2) if (OPEN ==φ)

return v(X0);
Remove the first noden in OPEN; Addn to PATH;

(3) Try to prune the subtree belown:
foreachm ∈ PATH, wherem is an ancestor ofn

if (fh(m) ≥ ub(m))
v(n)←∞; (dead-end)
goto step (4);

Expandn generating all its successors as follows:
succ(n)← φ;
if (n is OR node, denoten = Xi)

v(n)←∞;
foreachvaluea ∈ Di

h(〈Xi, a〉)← LB(Xi , a);
succ(n)← succ(n) ∪ {〈Xi, a〉};

else(n is AND node, denoten = 〈Xi, a〉)
A← {cj | (Xi ∈ var(cj)) ∧ (var(cj) ⊆ PATH)};
v(n)← 0; l(Xi, 〈Xi, a〉)←

∑
A

cj ;

foreachvariableY ∈ chT (Xi)
h(Y)← LB(Y);
succ(n)← {Y };

Add succ(n) on top of OPEN;
(4) while succ(n) == φ

if (n is OR node)
v(Parent(n))← v(Parent(n)) + v(n);

else(n is AND node)
v(n)← v(n) + l(Xi, 〈Xi, a〉);
v(Parent(n))← min(v(Parent(n)), v(n));

succ(Parent(n))← succ(Parent(n))− {n};
PATH← PATH –{n};
n← Last(PATH);

(5) goto step (2);

Figure 3: AND/OR Branch-and-Bound search (AOBB).

While the time complexity of algorithm AOBB is bounded
by O(n · exp(m)), the size of the AND/OR search space, the
pruning rule is designed to yield a far better complexity.

5 Specific Lower Bound Heuristics
In this section we describe briefly two general schemes for
generating static heuristic estimatesh(n), based on the Mini-
Bucket approximation. These schemes are parameterized by
the Mini-Bucket i-bound, thus allowing for a controllable
trade-off between heuristic strength and its overhead. We also
mention a third scheme which is based on the notion ofdirec-
tional arc-consistencyand is specific to the WCSP model.

5.1 The Mini-Bucket Heuristics
Mini-Bucket Elimination(MBE) [Dechter and Rish, 2003] is
an approximation algorithm designed to avoid the high time
and space complexity ofBucket Elimination(BE) [Dechter,
1999], by partitioning large buckets into smaller subsets,
calledmini buckets, each containing at mosti (calledi-bound)
distinct variables. The mini-buckets are then processed sepa-
rately. The algorithm outputs not only a bound on the optimal
solution cost, but also the collection of augmented buckets,
which form the basis for the heuristics generated. The com-
plexity is time and spaceO(exp(i)).

Static Mini-Bucket Heuristics In the past, [Kask and
Dechter, 2001] showed that the intermediate functions gen-
erated by the Mini-Bucket algorithm MBE(i) can be used to
compute a heuristic function, that underestimates the minimal
extension of the current assignment in a regular OR search

A

D

B

CE

F

(a)

B(E): [f(E,B)], [f(E,A)]

B(B): [f(B,A) ||
� E(B),

� C(B),
� E(B)]

B(F): [f(F,A)], [f(F,C)]

B(D): [f(D,B)], [f(D,C)]

B(C): [f(C,A)], [f(C,B) ||
� D(C),

� F(C)]

B(A): [||
� E(A),

� F(A),
� C(A),

� B(A)]

(b)

Figure 4: Schematic execution of MBE(2).

tree. In this paper we extend the idea to AND/OR search
spaces as well. For that, assume that a COP instanceP with
pseudo-treeT is being solved by AOBB search, where the
active path ends with some OR nodeXj . Consider also the
augmentedbucket structure{B(X1), ..., B(Xn)} of P , con-
structed along the ordering resulted from a DFS traversal ofT .
For each possible value assignmentXj = xj , thestatic mini-
bucket heuristic estimateh(xj) of the minimal cost solution
rooted atXj can be computed as the sum of the original func-
tions in bucketB(Xj) and the intermediate functionsλk that
were generated in bucketsB(Xk), whereXk is a descendant
of Xj in T (more details in[Kask and Dechter, 2001]).

Dynamic Mini-Bucket Heuristics This idea can be pushed
one step further. Rather than pre-compiling the mini-bucket
heuristic information, it is possible to generate it dynamically,
during search. Therefore, thedynamic mini-bucket heuris-
tic computes a lower bound by the Mini-Bucket algorithm
MBE(i), at each noden in the search space, restricted to the
subproblem rooted atn and subject to the current partial in-
stantiation. Specifically,h(xj) is calculated as the sum of the
original andλk functions residing in bucketB(Xj), where
λk ’s are computed in bucketsB(Xk) of Xj ’s descendants in
T , conditioned on the current assignment of the active path.

Example 3 Figure 4(b) shows the augmented bucket struc-
ture generated by MBE(i=2) for the binary COP instance dis-
played in Figure 4(a), along the ordering(A, B, E, C, D, F);
square brackets denote the choice of partitioning. Assume that
during search, the active path of the current partial solution
subtree is(A = a, B = b) and the tip node is the OR node
C. The static mini-bucket heuristic estimateh(C = c) =
f(c, a)+ f(c, b)+λF (a)+ λF (c) +λD(c)+ λD(b). The dy-
namic mini-bucket heuristic estimateh(C = c), involves the
sameλ functions generated in bucketsB(F) andB(D), only
that theλ’s are now computed dynamically, conditioned on
the current partial assignment(A = a, B = b).

5.2 Directional Arc-Consistency Heuristics
We also adapted for the AND/OR search space two other suc-
cessful heuristics generators,reversible DAC counts(RDAC)
[Mesegueret al., 1999] andmaintaining full DAC(MFDAC)
[Larrosa and Schiex, 2003], which proved powerful for solv-
ing binary Weighted CSPs (details omitted for space reasons).

6 Experiments
In this section we evaluate empirically the performance of our
new AND/OR Branch-and-Bound approach on two classes of

Network s-AOMB s-AOMB s-AOMB s-AOMB AORDAC
(n,d,c,t) s-BBMB s-BBMB s-BBMB s-BBMB BBRDAC
[w*,h] d-AOMB d-AOMB d-AOMB d-AOMB AOMFDAC

connectivity d-BBMB d-BBMB d-BBMB d-BBMB BBMFDAC
i=2 i=4 i=6 i=8

time nodes time nodes time nodes time nodes time nodes
(20,5,100,0.7) - 2.4M 115.57 2.5M 15.49 408K 6.91 126K 21.70 441K

[12,15] - 6.3M 179.34 7.6M 127.77 6.5M 45.76 2.2M 24.74 1.3M
medium 74.43 90K 51.19 6.9K 104.08 751 169.30 101 9.99 20K

124.45 523K 80.79 34K 140.10 3.3K 176.33 537 8.75 21.3K
(30,5,90,0.7) - 2.8M 105.77 2.2M 9.84 262K 2.71 28K 78.50 1.3M

[11,16] - 6M 180.00 7.5M 68.90 3.3M 5.64 230K 78.24 4.2M
low 72.94 82K 31.85 4.3K 63.07 548 94.95 111 10.72 22.2K

104.15 348K 69.49 22K 90.70 1.7K 123.42 265 8.79 31.4K
(50,5,80,0.7) 67.53 1.4M 1.80 57K 0.12 2.6K 0.62 356 28.90 691K

[8,16] - 5M 145.39 4.3M 24.47 804K 1.58 36K 155.58 3.9M
sparse 7.91 18.6K 1.17 430 0.95 87 2.31 60 1.48 8.5K

63.50 295K 1.83 1K 0.94 112 2.34 69 1.49 14K

Table 1: Results on random binary WCSP instances.

optimization problems: Weighted CSP (WCSP) and the Most
Probable Explanation (MPE) problem in belief networks2.

Weighted CSP[Bistarelli et al., 1997; Larrosa and Schiex,
2003] extends the classic CSP formalism with so-calledsoft
constraintswhich assign positive integer costs to forbidden
tuples (allowed tuples have cost 0). The goal is to find a com-
plete assignment with minimum aggregated cost. The model
has numerous applications in domains such asresource allo-
cation, combinatorial auctionsor bioinformatics.

Belief Networks[Pearl, 1988] provide a formalism for rea-
soning under conditions of uncertainty. A belief network rep-
resents a joint probability distribution over the variables of
interest. A function of the graphical model encodescondi-
tional probability distributionof a variable given its parents in
the graph (also viewed as a cost function were each tuple has
associated a real cost between 0 and 1). The MPE problem
is the task of finding a complete assignment with maximum
probability that is consistent with the evidence. It appears in
applications such asspeech recognitionor medical diagnosis.

Thepseudo-treewas created as suggested in[Bayardo and
Miranker, 1995], by a DFS traversal of the induced graph. The
latter was computed using themin-fill heuristic. All competing
algorithms were restricted to a static variable ordering resulted
from a DFS traversal of the pseudo-tree. We report the average
effort, as CPU time (in seconds) and number of visited nodes
(AND nodes only for the AND/OR algorithms), required for
proving optimality of the solution. For all test instances we
record the number of variables (n), domain size (d), number
of functions (c), induced width (w*) and height of the pseudo-
tree (h). A ”-” indicates that a time limit was exceeded by the
respective algorithm. The best results are highlighted.

6.1 Weighted CSP
For this domain we experimented with random binary WCSP
problems as well as real-world benchmarks. We consider
four classes of AND/OR Branch-and-Bound (AOBB) algo-
rithms, each using a specific heuristics generator, as follows.
Classess-AOMB/d-AOMB are guided by static/dynamic
mini-bucket heuristics, AORDAC uses RDAC based heuris-
tics, and AOMFDAC maintains full DAC. For comparison,
we include results obtained with the classic OR version of

2All our experiments were done on a 2.4GHz Pentium IV with
1GB of RAM, running Windows XP

Network (n,d,c,w*,h) BBMFDAC AOMFDAC
time (sec) nodes time (sec) nodes

CELAR6-SUB0 (16,44,57,7,10) 2.78 1,871 1.98 435
CELAR6-SUB1 (14,44,75,9,11) 2420.93 364,986 981.98 180,784
CELAR6-SUB2 (16,44,89,10,13) 8801.12 19,544,182 1138.87 175,377
CELAR6-SUB3 (18,44,106,10,13)38889.20 91,168,8964028.59 846,986
CELAR6-SUB4 (22,44,131,11,16)84478.40 6,955,039 47115.40 4,643,229

Table 2: Results on CELAR6 subinstances.

each class of algorithms, denoted here bys-BBMB, d-BBMB,
BBRDAC and BBMFDAC, respectively.

Random Binary Networks
Our random binary WCSP class is characterized by a five
parameter model〈n, d, c, t, w〉 [Larrosa and Schiex, 2003],
wheren is the number of variables,d the domain size,c the
number of constraints, andt the constrainttightnessdefined as
the ratio of forbidden tuples. The costs of inconsistent tuples
are uniformly randomly distributed between 1 andw.

Table 1 shows results for experiments with three problem
classes containing instances with medium, low and very low
connectivity. We chose a maximum penalty costw of 10 and
set the constraint tightness to 70% in order to obtain over-
constrained problems. For each problem class we generated
20 instances and the time limit was set to 180 seconds. The
columns are indexed by thei-bound of the mini-bucket heuris-
tics. When comparing AND/OR versus OR algorithms we
notice a considerable improvement in terms of CPU time and
number of nodes visited, especially for problems with low and
very low connectivity. This observation verifies the theorybe-
cause a relatively sparse problem is likely to produce a shal-
low pseudo-tree, which in turn enhances the performance of
the AND/OR algorithms. In terms of the quality of the heuris-
tics, we also observe that the static mini-buckets with a rel-
atively largei-bound represent the best choice. However, if
large i-bounds are not possible, dynamic mini-buckets with
small i-bounds are preferred, especially for sparse problems.
For medium and low connected problems, MFDAC proves to
be cost effective with respect to the other heuristics generators.

Radio Link Frequency Assignment Problem (RLFAP)
RLFAP is a communication problem where the goal is to as-
sign frequencies to a set of radio links in such a way that all
links may operate together without noticeable interferences
[Cabonet al., 1999]. It can be naturally casted as a binary
WCSP where each forbidden tuple has an associated penalty
cost. Table 2 compares algorithms BBMFDAC and AOMF-
DAC for solving 5 publicly available RLFAP subinstances
calledCELAR6-SUBi (i = 0, ..., 4). We can see that the
AND/OR approach is beneficial for this domain as well. In
CELAR6-SUB4, the hardest instance, AOMFDAC causes a
CPU speed up of 1.8, whereas inCELAR6-SUB3 the speed
up is as much as 9.6. We also compared AOMFDAC against
BTD, a recent algorithm introduced in[Jegou and Terrioux,
2004]. BTD solves the MAX-CSP version ofCELAR6-SUB4

(i.e. 0/1 penalty costs) in about 123,000 sec., whereas AOMF-
DAC proves optimality in only 2,574 sec. The performance of
the mini-bucket based algorithms was quite poor on this do-
main, due to the very low quality of the heuristic estimates
resulted from approximating subproblems with very large do-
mains (up to 44 values).

Network s-AOMB s-AOMB s-AOMB s-AOMB
(n,d,w*,h) s-BBMB s-BBMB s-BBMB s-BBMB

d-AOMB d-AOMB d-AOMB d-AOMB
d-BBMB d-BBMB d-BBMB d-BBMB

i=2 i=3 i=4 i=5
time nodes time nodes time nodes time nodes

Mildew 4.58 55K 0.50 5,465 0.28 35 0.66 35
(35,100,4,15) - 26M 233.86 6.9M 0.47 4,970 0.81 4,940

86.38 15K 34.45 1,424 1.69 35 3.02 35
162.61 83K 41.92 5,113 1.78 363 3.13 363

Barley - 8.5M - 7.6M 46.22 807K 0.56 9.6K
(48,67,7,17) - 16M - 18M - 17M - 14M

- 79K 135.97 23K 12.55 667 45.95 567
- 2.2M - 1K 346.08 76K - 86K

Munin1 57.36 1.2M 12.08 260K 7.20 172K 1.66 43K
(189,21,11,24) - 8.5M - 9.2M - 9.9M - 8.3K

66.56 185K 12.47 8.1K 10.30 1.6K 11.99 523
- 405K - 430K - 235K 14.63 917

Munin2 - 5.6M - 6.7M 116.19 1.8M 1.64 21K
(1003,21,7,35) - 1.7M - 2.7M - 430K - 428K

- 3.2M - 1.2M 524.54 299K 39.22 3.8K
- 33K - 131K - 101K - 20K

Munin3 - 5.9M - 4.9M 1.31 17K 0.45 6.2K
(1044,21,7,25) - 1.4M - 1.2M - 316K - 1.5M

- 2.4M 68.64 58K 3.59 5.9K 2.84 3.8K
- 33K - 125K - 52K - 31K

Pigs - 15M 0.02 441 0.02 441 0.02 441
(441,3,10,27) - 2.8M 0.63 4.2K 0.63 4K 0.61 4K

- 6.5M 0.08 441 0.08 441 0.11 441
2.2M 1.03 614 1.08 614 1.11 614

Table 3: Results on Bayesian Network Repository.

6.2 Belief Networks
For the MPE domain we also experimented with random net-
works and real-world benchmarks, but we only report on the
latter due to space limitations. We compare the algorithms
using the mini-bucket based heuristics generators, namelys-
AOMB, d-AOMB, s-BBMB and d-BBMB. Notice that s-
BBMB is currently one of the best performing complete al-
gorithms for this domain[Kask and Dechter, 2001]

Table 3 summarizes the results for experiments on 6 real-
world belief networks from the Bayesian Network Reposi-
tory3. The time limit was set to 600 seconds. We observe
again a considerable improvement of the new AND/OR al-
gorithms over the corresponding OR ones. If we look, for
example, at the Mildew instance,s-AOMB(3) causes a CPU
speedup of 468 overs-BBMB(3). In conclusion,d-AOMB is
superior for relatively smalli-bounds (e.g. Barley, Munin3),
whereass-AOMB dominates for largeri-bounds.

7 Conclusion
The paper investigates the impact of the AND/OR search
space for graphical models on optimization tasks. We in-
troduce a general AND/OR Branch-and-Bound algorithm and
specialize it with several schemes for generating heuristic es-
timates that can guide the search. We focus on two common
optimization problems, WCSP and Bayesian MPE, and show
empirically that the new AND/OR algorithms improve dra-
matically over traditional OR ones on a variety of benchmarks
including random and real-world problems.

Our approach leaves room for future improvements. For
instance, it can be modified to traverse an AND/OR graph,
rather than a tree, via caching. We should consider the effect
of dynamic variable ordering. Also, we used a rather sim-
ple scheme of generating pseudo-tree arrangements, probably
having non-optimal height.

3http://www.cs.huji.ac.il/labs/compbio/Repository

Related Work: AOBB is related to the Branch-and-Bound
method proposed by[Kanal and Kumar, 1988] for acyclic
AND/OR graphs and game trees. More recently,[Larrosaet
al., 2002] extended pseudo-tree search[Freuder and Quinn,
1985] to optimization tasks in order to boost the Russian Doll
search for solving Weighted CSPs. The optimization method
developed in[Jegou and Terrioux, 2004] can also be inter-
preted as an AND/OR search graph algorithm, however it is
not a linear space algorithm.

Acknowledgments
This work was supported in part by the NSF grant IIS-
0412854 and the MURI ONR award N00014-00-1-0617.

References
[Bayardo and Miranker, 1995] R. Bayardo and D. Miranker.

On the space-time trade-off in solving constraint satisfac-
tion problems.Proc. of IJCAI’95, 1995.

[Bistarelli et al., 1997] S. Bistarelli, U. Montanari, and
F. Rossi. Semiring based constraint solving and optimiza-
tion. Journal of ACM, 44(2):309–315, 1997.

[Cabonet al., 1999] B. Cabon, S. de Givry, L. Lobjois,
T. Schiex, and J. Warners. Radio link frequency assign-
ment.Constraints, (4):79–89, 1999.

[Dechter and Mateescu, 2004] R. Dechter and R. Mateescu.
Mixtures of deterministic-probabilistic networks.Proc. of
UAI’04, 2004.

[Dechter and Rish, 2003] R. Dechter and I. Rish. Mini-
buckets: A general scheme for approximating inference.
Journal of ACM, 2003.

[Dechter, 1999] R. Dechter. Bucket elimination: A unifying
framework for reasoning.Artificial Intelligence, 113:41–
85, 1999.

[Freuder and Quinn, 1985] E. Freuder and M. Quinn. Taking
advantage of stable sets of variables in constraint satisfac-
tion problems.Proc. of IJCAI’85, 1985.

[Jegou and Terrioux, 2004] P. Jegou and C. Terrioux. Decom-
position and good recording for solving max-csps.Proc. of
ECAI’04, 2004.

[Kanal and Kumar, 1988] L. Kanal and V. Kumar.Search in
artificial intelligence.Springer-Verlag., 1988.

[Kask and Dechter, 2001] K. Kask and R. Dechter. A general
scheme for automatic generation of search heuristics from
specification dependencies.Artificial Intelligence, 2001.

[Larrosa and Schiex, 2003] J. Larrosa and T. Schiex. In the
quest of the best form of local consistency for weighted
csp.Proc. of IJCAI’03, pages 631–637, 2003.

[Larrosaet al., 2002] J. Larrosa, P. Meseguer, and
M. Sanchez. Pseudo-tree search with soft constraints.
Proc. of ECAI’02, 2002.

[Mesegueret al., 1999] P. Meseguer, J. Larrosa, and
T. Schiex. Maintaining reversible dac for max-csp.
Artificial Intelligence, 107(1):149–163, 1999.

[Pearl, 1988] J. Pearl.Probabilistic Reasoning in Intelligent
Systems.Morgan-Kaufmann, 1988.

