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Abstract

In Machine Learning (ML) and Evolutionary Com-
putation (EC), it is often beneficial to approximate
a complicated function by a simpler one, such as
a linear or quadratic function, for computational
efficiency or feasibility reasons (cf. [Jin, 2005]).
A complicated function (the target function in ML
or the fitness function in EC) may require an ex-
ponential amount of computation to learn/evaluate,
and thus approximations by simpler functions are
needed. We consider the problem of approximat-
ing pseudo-Boolean functions by simpler (e.g., lin-
ear) functions when the instance space is associ-
ated with a probability distribution. \We consider
{0,1}"™ as a sample space with a (possibly non-
uniform) probability measure on it, thus making
pseudo-Boolean functions into random variables.
This is also in the spirit of the PAC learning frame-
work of Valiant [Valiant, 1984] where the instance
space has a probability distribution on it. The best
approximation to a target function f is then defined
as the function g (from all possible approximating
functions of the simpler form) that minimizes the
expected distance to f. In an example, we use
methods from linear algebra to find, in this more
general setting, the best approximation to a given
pseudo-Boolean function by a linear function.

1 Introduction

A pseudo-Boolean function of n variables is a function from
{0,1}™ to the real numbers. Such functions are used in 0-1
optimization problems, cooperative game theory, multicrite-
ria decision making, and as fitness functions. It is not hard to
see that such a function f(«1,...,z,) has a unique expres-
sion as a multilinear polynomial
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where N = {1,...,n} and the ar are real numbers. By the
degree of a pseudo-Boolean function, we mean the degree of
its multilinear polynomial representation.

Several authors have considered the problem of finding the
best pseudo-Boolean function of degree < k approximating a
given pseudo-Boolean function f, where “best” means a least
squares criterion. Hammer and Holzman [Hammer and Holz-
man, 1992] derived a system of equations for finding such a
best degree < k approximation, and gave explicit solutions
when £ = 1 and £k = 2. They proved that such an ap-
proximation is characterized as the unique function of degree
< k that agrees with f in all average m-th order derivatives
form = 0,1,...,k, in analogy with the Taylor polynomials
from calculus. Grabisch, Marichal, and Roubens [Grabisch et
al., 2000] solve the system of equations derived by Hammer
and Holzman, and give explicit formulas for the coefficients
of the best degree < k function. Zhang and Rowe [Zhang and
Rowe, 2004] use linear algebra to find the best approximation
that lies in a linear subspace of the space of pseudo-Boolean
functions; for example, these methods can be used to find the
best approximation of degree < k.

Here, instead of simply viewing the domain of a pseudo-
Boolean function as the set {0,1}™, we consider {0,1}" as
a discrete sample space and introduce a probability measure
on this space. Thus, a pseudo-Boolean function will be a ran-
dom variable on this sample space. (Viewing {0, 1} simply as
a set corresponds to viewing all of its points as equally likely
outcomes.) Given a pseudo-Boolean random variable f, we
then use methods from linear algebra to find the best approx-
imation to f that lies in a linear subspace, taking into account
the weighting of the elements of {0, 1}". Such a best approx-
imation will then be close to f at the “most likely” n-tuples,
and may not be so close to f at the “least likely” n-tuples.

2 Best Approximation on a Non-Uniform
Domain

We will identify the integers 0,1,...,2™ — 1 with the el-
ements in B™ via binary representation. Let p(i),i =
0,1,...,2™ — 1, be a probability measure on B™. Let F
denote the space of all pseudo-Boolean functions in n vari-
ables. Then F has the structure of a real vector space. Define



an inner product ( , ), on F by
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=0

We note that (f, g),, is the expected value of the random vari-

able fg. Put|| f [l,= \/{f, f)p-

Now let £ be a vector subspace of F of dimension m. For
example, £ might be the space of all pseudo-Boolean func-
tions of degree at most &, for some fixed k. We recall how to
use an orthonormal basis of £ to find the best approximation
to a given element of JF (cf. [Hoffman and Kunze, 1971]).

Let vq,...,v,, be a basis for £. We can find an orthonor-
mal basis uq,...,un for £ by applying the Gram-Schmidt
algorithm.  This orthonormal basis satisfies the property
(Ur,us)p = ops forr,s = 1,...,m, where d,; equals O if
r # sandequals 1 if » = s. The orthonormal basis can be ob-
tained as follows: Take uq = (1/ || v1 ||p)v1. Wua, ..., upq
have been obtained, then put w, = v, — 3771 (vy, ;) pu;,
and take u, = (1/ || wy ||p)wy

Given f € F, the “best approximation” to f by functions
in £ is that function g € £ that minimizes

2n—1
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Notice that if we take the uniform distribution on B™, so
that p(i) = (1/2)™ for all 4, then the best approxima-
tion to f in £ is the function ¢ € L that also minimizes
S22 SN (f(6) — g(i))2 This is the usual “least squares” con-
dition used in [Hammer and Holzman, 1992], [Grabisch et
al., 2000], [Zhang and Rowe, 2004], and in this case one may
simply use the usual Euclidean inner product in R2". In our
more general setting, it follows from section 8.2 of [Hoffman
and Kunze, 1971] that the best approximation to f by func-
tions in £ is the unique function g = 37" | (f, u;)pu;.

3 Example

To illustrate these ideas, we look at an example considered by
[Zhang and Rowe, 2004]. Take n = 3 and f(x1,x2,23) =
5x1 + 13x3 + 92129 — 42123 — 42073 + 41 2273. We Wish
to approximate f by the best linear function, so we let £ be
the space spanned by the functions v; = 1,v2 = z1,v3 =
29,04 = x3. |If we take the uniform distribution on B3, so
that p(i) = 1/8 fori = 0,1,...,7, then by applying the
Gram-Schmidt algorithm we get the following orthonormal
basis for £ with respect to the inner product ( , ):

up = 1,ue =221 — 1, uz = 229 — 1,uqy = 223 — 1.
(More generally, one can show that, for any n, an orthonormal

basis for the space of pseudo-Boolean functions of degree at
most 1 with respect to the uniform distribution is 1,2x; —

1,...,2x, — 1.) Then the best linear approximation to f is
(w1, m2,23) = Y1 (fLug)pu; =
39 17 7
5 17

7
= —Z+?l’1+51’2+10$3,

in agreement with Example 4.1 of [Zhang and Rowe, 2004].
Here, || f —g ||, = 2.88.

Now we take a different probability measure on B3. Sup-
posing thata “1” is twice as likely as a “0” we define a proba-
bility measure p on B3 by p(0) = 1/27,p(1) = 2/27,p(2) =
2/27,(3) = 4/27,p(4) = 2/27,5(5) = 4/27,p(6) =
4/27,p(7) = 8/27. An orthonormal basis for £ with respect
to the inner product ( , )z is then

3$1—2~ 31‘2—2~ 31‘3—2
= , Uz = , Uy = .
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Then the best linear approximation to f is now
~ 4 ~ ~
g($17x27x3) = Zj:1<fa u]>25u3 =
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(1/27)(=76 + 273z, + 13822 + 25513).

Here, | f — g ||5 = 2.55. For comparison, the distance now
between the linear function g we found above and the func-
tion fis || f — g |5~ 2.79.

Uy = 17’U,2

4 Conclusion

Instead of considering B™ = {0, 1}™ simply as a set, we al-
low it to be viewed as a sample space wth a probability mea-
sure p. Then pseudo-Boolean functions are random variables
on this sample space. Given a complicated pseudo-Boolean
function, it is natural to want to approximate it by a simpler
function, for example a linear or quadratic function. As an
example, we found the best linear approximation to a given
pseudo-Boolean function in three variables with respect to
two different probability measures on B3. Further research
is needed to find an effective method of computing the best
approximation on a non-uniform domain when the number of
variables is large.
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