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Abstract

In Machine Learning (ML) and Evolutionary Com-
putation (EC), it is often beneficial to approximate
a complicated function by a simpler one, such as
a linear or quadratic function, for computational
efficiency or feasibility reasons (cf. [Jin, 2005]).
A complicated function (the target function in ML
or the fitness function in EC) may require an ex-
ponential amount of computation to learn/evaluate,
and thus approximations by simpler functions are
needed. We consider the problem of approximat-
ing pseudo-Boolean functions by simpler (e.g., lin-
ear) functions when the instance space is associ-
ated with a probability distribution. We consider
{0, 1}n as a sample space with a (possibly non-
uniform) probability measure on it, thus making
pseudo-Boolean functions into random variables.
This is also in the spirit of the PAC learning frame-
work of Valiant [Valiant, 1984] where the instance
space has a probability distribution on it. The best
approximation to a target function f is then defined
as the function g (from all possible approximating
functions of the simpler form) that minimizes the
expected distance to f . In an example, we use
methods from linear algebra to find, in this more
general setting, the best approximation to a given
pseudo-Boolean function by a linear function.

1 Introduction
A pseudo-Boolean function of n variables is a function from
{0, 1}n to the real numbers. Such functions are used in 0-1
optimization problems, cooperative game theory, multicrite-
ria decision making, and as fitness functions. It is not hard to
see that such a function f(x1, . . . , xn) has a unique expres-
sion as a multilinear polynomial

f(x1, . . . , xn) =
∑

T⊆N

[

aT

∏

i∈T

xi

]

,
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where N = {1, . . . , n} and the aT are real numbers. By the
degree of a pseudo-Boolean function, we mean the degree of
its multilinear polynomial representation.

Several authors have considered the problem of finding the
best pseudo-Boolean function of degree ≤ k approximating a
given pseudo-Boolean function f , where “best” means a least
squares criterion. Hammer and Holzman [Hammer and Holz-
man, 1992] derived a system of equations for finding such a
best degree ≤ k approximation, and gave explicit solutions
when k = 1 and k = 2. They proved that such an ap-
proximation is characterized as the unique function of degree
≤ k that agrees with f in all average m-th order derivatives
for m = 0, 1, . . . , k, in analogy with the Taylor polynomials
from calculus. Grabisch, Marichal, and Roubens [Grabisch et
al., 2000] solve the system of equations derived by Hammer
and Holzman, and give explicit formulas for the coefficients
of the best degree ≤ k function. Zhang and Rowe [Zhang and
Rowe, 2004] use linear algebra to find the best approximation
that lies in a linear subspace of the space of pseudo-Boolean
functions; for example, these methods can be used to find the
best approximation of degree ≤ k.

Here, instead of simply viewing the domain of a pseudo-
Boolean function as the set {0, 1}n, we consider {0, 1}n as
a discrete sample space and introduce a probability measure
on this space. Thus, a pseudo-Boolean function will be a ran-
dom variable on this sample space. (Viewing {0, 1} simply as
a set corresponds to viewing all of its points as equally likely
outcomes.) Given a pseudo-Boolean random variable f , we
then use methods from linear algebra to find the best approx-
imation to f that lies in a linear subspace, taking into account
the weighting of the elements of {0, 1}n. Such a best approx-
imation will then be close to f at the “most likely” n-tuples,
and may not be so close to f at the “least likely” n-tuples.

2 Best Approximation on a Non-Uniform
Domain

We will identify the integers 0, 1, . . . , 2n − 1 with the el-
ements in Bn via binary representation. Let p(i), i =
0, 1, . . . , 2n − 1, be a probability measure on Bn. Let F
denote the space of all pseudo-Boolean functions in n vari-
ables. Then F has the structure of a real vector space. Define



an inner product 〈 , 〉p on F by

〈f, g〉p =

2
n−1
∑

i=0

f(i)g(i)p(i).

We note that 〈f, g〉p is the expected value of the random vari-
able fg. Put ‖ f ‖p=

√

〈f, f〉p.
Now let L be a vector subspace of F of dimension m. For

example, L might be the space of all pseudo-Boolean func-
tions of degree at most k, for some fixed k. We recall how to
use an orthonormal basis of L to find the best approximation
to a given element of F (cf. [Hoffman and Kunze, 1971]).

Let v1, . . . , vm be a basis for L. We can find an orthonor-
mal basis u1, . . . , um for L by applying the Gram-Schmidt
algorithm. This orthonormal basis satisfies the property
〈ur, us〉p = δrs for r, s = 1, . . . , m, where δrs equals 0 if
r 6= s and equals 1 if r = s. The orthonormal basis can be ob-
tained as follows: Take u1 = (1/ ‖ v1 ‖p)v1. If u1, . . . , ur−1

have been obtained, then put wr = vr −
∑r−1

j=1
〈vr , uj〉puj ,

and take ur = (1/ ‖ wr ‖p)wr.
Given f ∈ F , the “best approximation” to f by functions

in L is that function g ∈ L that minimizes

‖ f − g ‖p =

√

√

√

√

2n−1
∑

i=0

(f(i) − g(i))2p(i).

Notice that if we take the uniform distribution on Bn, so
that p(i) = (1/2)n for all i, then the best approxima-
tion to f in L is the function g ∈ L that also minimizes
∑2

n−1

i=0
(f(i) − g(i))2. This is the usual “least squares” con-

dition used in [Hammer and Holzman, 1992], [Grabisch et
al., 2000], [Zhang and Rowe, 2004], and in this case one may
simply use the usual Euclidean inner product in R

2
n

. In our
more general setting, it follows from section 8.2 of [Hoffman
and Kunze, 1971] that the best approximation to f by func-
tions in L is the unique function g =

∑m

j=1
〈f, uj〉puj .

3 Example
To illustrate these ideas, we look at an example considered by
[Zhang and Rowe, 2004]. Take n = 3 and f(x1, x2, x3) =
5x1 + 13x3 + 9x1x2 − 4x1x3 − 4x2x3 + 4x1x2x3. We wish
to approximate f by the best linear function, so we let L be
the space spanned by the functions v1 = 1, v2 = x1, v3 =
x2, v4 = x3. If we take the uniform distribution on B3, so
that p(i) = 1/8 for i = 0, 1, . . . , 7, then by applying the
Gram-Schmidt algorithm we get the following orthonormal
basis for L with respect to the inner product 〈 , 〉p:

u1 = 1, u2 = 2x1 − 1, u3 = 2x2 − 1, u4 = 2x3 − 1.

(More generally, one can show that, for any n, an orthonormal
basis for the space of pseudo-Boolean functions of degree at
most 1 with respect to the uniform distribution is 1, 2x1 −
1, . . . , 2xn − 1.) Then the best linear approximation to f is
g(x1, x2, x3) =

∑

4

j=1
〈f, uj〉puj =

=
39

4
· 1 +

17

4
(2x1 − 1) +

7

4
(2x2 − 1) + 5(2x3 − 1)

= −5

4
+

17

2
x1 +

7

2
x2 + 10x3,

in agreement with Example 4.1 of [Zhang and Rowe, 2004].
Here, ‖ f − g ‖p ≈ 2.88.

Now we take a different probability measure on B3. Sup-
posing that a “1” is twice as likely as a “0” we define a proba-
bility measure p̃ on B3 by p̃(0) = 1/27, p̃(1) = 2/27, p̃(2) =
2/27, p̃(3) = 4/27, p̃(4) = 2/27, p̃(5) = 4/27, p̃(6) =
4/27, p̃(7) = 8/27. An orthonormal basis for L with respect
to the inner product 〈 , 〉p̃ is then

ũ1 = 1, ũ2 =
3x1 − 2√

2
, ũ3 =

3x2 − 2√
2

, ũ4 =
3x3 − 2√

2
.

Then the best linear approximation to f is now
g̃(x1, x2, x3) =

∑4

j=1
〈f, ũj〉p̃ũj =

=
368

27
· 1 +

91
√

2

27
ũ2 +

46
√

2

27
ũ3 +

85
√

2

27
ũ4

= (1/27)(−76 + 273x1 + 138x2 + 255x3).

Here, ‖ f − g̃ ‖p̃ ≈ 2.55. For comparison, the distance now
between the linear function g we found above and the func-
tion f is ‖ f − g ‖p̃ ≈ 2.79.

4 Conclusion
Instead of considering Bn = {0, 1}n simply as a set, we al-
low it to be viewed as a sample space wth a probability mea-
sure p. Then pseudo-Boolean functions are random variables
on this sample space. Given a complicated pseudo-Boolean
function, it is natural to want to approximate it by a simpler
function, for example a linear or quadratic function. As an
example, we found the best linear approximation to a given
pseudo-Boolean function in three variables with respect to
two different probability measures on B3. Further research
is needed to find an effective method of computing the best
approximation on a non-uniform domain when the number of
variables is large.

References
[Grabisch et al., 2000] Michel Grabisch, Jean-Luc Marichal,

and Marc Roubens. Equivalent representations of set func-
tions. Mathematics of Operations Research, 25(2):157–
178, May 2000.

[Hammer and Holzman, 1992] P. L. Hammer and R. Holz-
man. Approximations of pseudo-boolean functions; ap-
plications to game theory. ZOR–Methods and Models of
Operations Research, 36:3–21, 1992.

[Hoffman and Kunze, 1971] Kenneth Hoffman and Ray
Kunze. Linear Algebra, 2nd edition. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1971.

[Jin, 2005] Yaochu Jin. A comprehensive survey of fitness
approximation in evolutionary computation. Soft Comput-
ing, 9(1):3–12, 2005.

[Valiant, 1984] L. G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134–1142, 1984.

[Zhang and Rowe, 2004] Hang Zhang and Jonathan E.
Rowe. Best approximations of fitness functions of binary
strings. Natural Computing, 3(1):113–124, 2004.


