
Question Classification by Structure Induction
�

Menno van Zaanen and Luiz Augusto Pizzato and Diego Mollá
Division of Information and Communication Sciences (ICS)

Department of Computing
Macquarie University
2109 Sydney, NSW

Australia�
menno, pizzato, diego � @ics.mq.edu.au

Abstract

In this article we introduce a new approach (and
several implementations) to the task of question
classification. The approach extracts structural in-
formation using machine learning techniques and
the patterns found are used to classify the questions.
The approach fits in between the machine learning
and handcrafting of regular expressions (as it was
done in the past) and combines the best of both:
classifiers can be generated automatically and the
output can be investigated and manually optimised
if needed.

1 Introduction
Before a question answering (QA) system can answer a ques-
tion, it needs to have an idea what the question is about.
One of the principal tasks of the question analysis stage of a
QA system is the determination of the expected answer type
(EAT). Finding the EAT of a question is called question clas-
sification (or EAT classification) [Hermjakob, 2001].

In this work we introduce a new approach to the prob-
lem of EAT classification, based on structural information
that can be extracted from the questions. Re-occurring struc-
tures found in questions, such as “How far . . . ” may help
finding the correct EAT (in this case “distance”) for a par-
ticular question. The approach described here automatically
finds these structures during training and uses this informa-
tion when classifying new questions.

Our approach combines the two main methods to question
classification: machine learning and pattern matching. Us-
ing machine learning, patterns are extracted from the training
data. These patterns serve as regular expressions during the
classification task.

In the next two sections, we will describe two systems that
fit into this approach. The first one uses a grammatical infer-
ence system and the second one is based on tries.

2 Alignment-Based Learning Classifier
The structure extraction phase of the first system is done by
Alignment-Based Learning (ABL) [van Zaanen, 2002]. ABL�

This work is supported by the Australian Research Council,
ARC Discovery Grant no. DP0450750.

“DESC” (What)(is (caffeine))
“DESC” (What)(is (Teflon))
“LOC” (Where) is (Milan)
“LOC” What (are the twin cities)

Table 1: Example sentences with ABL structure

is a generic unsupervised grammatical inference framework
that learns structure from plain text sentences. The underly-
ing idea of ABL is that constituents can be interchanged. To
give an example, if we exchange the noun phrase the man
in the sentence He sees the man with another noun phrase
a woman, we get another valid sentence: He sees a woman.
This process can be reversed (by aligning sentences) and pos-
sible constituents, called hypotheses can be found. This is
called the alignment learning phase, one of the three phases
of ABL, and the one that we use in this article. Table 1 shows
an example of the structure learned from a toy corpus of 4
sentences.

In the training phase, regular expressions associated with
the structures found are stored together with the EAT of the
corresponding questions. Several EATs with their frequen-
cies may be stored if a regular expression matches several
questions.

We have experimented with two implementations. The first
implementation, which we call hypo, uses the words in the
hypotheses (i.e. the words between the brackets) to form reg-
ular expressions which are stored together with the EATs of
the associated questions. The second implementation, called
unhypo, uses the words that are left after removing each hy-
pothesis. For example, the hypo version uses the first ques-
tion of Table 1 to produce the patterns /What/, /is caffeine/,
and /caffeine/, whereas unhypo produces the patterns /is caf-
feine/, /What/, and /What is/.

During the classification phase we have experimented with
two further approaches that differ on the use of the frequency
counts of the matched regular expressions. The first method
(called default) increments the counts of the EATs of the
question by the frequency that is stored with the EATs of the
regular expression. The second method (called prior) will
simply increment the counts by 1. When all regular expres-
sions are tried, both methods select the EAT with the highest
count. If there several expressions with the same count, the

default method makes a random choice, whereas the prior
method selects the EAT with the highest overall frequency.

Finally, we have experimented with the impact of the parts
of speech (POS) as a simple approach to disambiguate words.
We used Brill’s tagger [Brill, 1992] and the resulting POS in-
formation is simply combined with the plain words. Adjacent
words that have the same POS are combined into one token.
For example the question Who is Federico Fellini? is, af-
ter POS tagging, divided into three tokens: (Who, WP), (is,
VBZ) and (Federico Fellini, NNP).

3 Trie Classifier
The second system uses a trie structure. A trie �������
is a data structure defined by a recursive rule �������
	� ������ � ������������ � �������������������� � ����� . � is a set of sequences
whose elements are taken from the alphabet � . �� � � is the
set of strings that contains all strings of � that start with � �
but stripped of that initial element [Clément et al., 1998].

During the learning phase, all questions are inserted into a
trie structure that contains, in addition to the token, the EAT
and frequency information (the number of questions that use
that path in the trie).

During the classification phase, the trie is traversed in the
usual way. If the new question is a prefix of a training ques-
tion the traversal is trivial, and the node at the end of the
traversal path indicates the EAT of the question.

To find a path for unseen questions, non-matching nodes
are skipped in a methodical way in what we call the look-
ahead process. Let us say that question tokens of ques-
tion ��	! "�� ��#�����$ �� match up to �% : ������& "��& ��'(�����)* �%�� ,
and ������& � * � +������& % & %-,.� � does not exist. The look-
ahead process then builds a set of sub-tries of the form� ������* '��* ��'+������& �%/ 0 * �%1,2����3 0 45�6� . The sub-trie with the
highest frequency associated is selected, and the process con-
tinues with %-,�� until all tokens are consumed.

There are two variations of the above process. In the strict
method, 0 and �%1,.� must have the same POS tag. If the re-
sulting set of sub-tries is empty, the search process stops and
the EAT is retrieved from the node % in the trie. In the flex
method, if an empty set of sub-tries is retrieved, we consider
0 as a sequence of question words until we find a question
word equal to %-,2� .

We also experimented with a set of variations that have no
POS information. In this case, 0 and '%1,2% must be exactly the
same token. Again we allow for a strict and a flex version.

4 Results
To compare our systems with current machine-learning meth-
ods, we have used the same data as [Zhang and Sun Lee,
2003]. This is a collection of 5,452 training questions and
500 test questions. The data have 6 coarse-grained classes
and 50 fine-grained classes.

Table 2 indicates the precision of the questions classified
with the coarse-grained classes for all our systems and for a
baseline that always selects the most frequent class according
to the training data. This baseline is, of course, the same for
the plain words and POS tagged data. All our implementa-
tions performed well above the baseline.

words POS
Baseline 0.188 0.188
ABL hypo default 0.516 0.682

prior 0.554 0.624
unhypo default 0.652 0.638

prior 0.580 0.594
Trie strict 0.844 0.812

flex 0.850 0.794

Table 2: Results on the coarse-grained data

The results show that the POS information helps the perfor-
mance of the ABL method but not of the trie-based method.
Overall, the trie-based approach outperforms the ABL imple-
mentations. We obtained similar results with the fine-grained
data (not shown for reasons of space).

Our best results fall close to the best-performing system in
the bag-of-words and bag-of- 7 -grams versions of [Zhang and
Sun Lee, 2003]. Their results ranged from 75.6% (Nearest
Neighbours on words) to 87.4% (SVM on 7 -grams). Given
the simplicity of our methods and their potential for further
improvement, this is encouraging.

5 Conclusion
The results on the annotated questions of the TREC10 data
show that the approach is feasible and both systems generate
acceptable results. We expect that future systems that fall
in the structure induced question classification approach (for
example, based on other grammatical inference systems) will
result in even better performances.

The automatically learned regular expressions can be in-
spected and extended by humans. The systems therefore
combine the advantages of machine-learning and pattern-
matching methods.

Additionally, we think that the structure found by the sys-
tems can be used to find the focus of the question.

References
[Brill, 1992] Eric Brill. A simple rule-based part-of-speech

tagger. In Proc. ANLP, pages 152–155, Trento, Italy, 1992.

[Clément et al., 1998] J. Clément, P. Flajolet, and B. Vallée.
The analysis of hybrid trie structures. In Proc. ACM-
SIAM Symposium on Discrete Algorithms, pages 531–539,
Philadelphia:PA, USA, 1998. SIAM Press.

[Hermjakob, 2001] Ulf Hermjakob. Parsing and question
classification for question answering. In Proc. ACL/EACL
Workshop on Open-Domain Question Answering, 2001.

[van Zaanen, 2002] Menno van Zaanen. Bootstrapping
Structure into Language: Alignment-Based Learning. PhD
thesis, University of Leeds, Leeds, UK, January 2002.

[Zhang and Sun Lee, 2003] Dell Zhang and Wee Sun Lee.
Question classification using support vector machines. In
Charles Clarke, Gordon Cormack, Jamie Callan, D avid
Hawking, and Alan Smeaton, editors, Proc. SIGIR, pages
26–32, New York:NY, US, 2003. ACM Press.

