
Computationally Grounded Model of BDI-Agents∗

Kaile Su1, Abdul Sattar1, Kewen Wang1 and Guido Governatori2
1Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia

2School of ITEE, The University of Queensland, Brisbane, Australia

1 Introduction
There are two main semantic approaches to formalizing agent
systems via modal logics, the possible worlds semantics
[Hintikka, 1962] and the interpreted system model [Fagin et
al., 1995]. The first approach includes the well-known theory
of intension [Cohen and Levesque, 1990] and the formalism
of the belief-desire-intension paradigm [Rao and Georgeff,
1998]. The second approach, offers a natural interpretation,
in terms of the states of computer processes, to S5 epistemic
logic. The significance of the second approach is that we are
able to associate the system with a computer program, and
formulas can be understood as properties of program compu-
tations. In this sense, the interpreted system model is compu-
tationally grounded [Wooldridge, 2000].

There are few computationally grounded models for for-
malizing general BDI-agents. A number of researchers
have attempted to develop executable agent languages such
as AgentSpeak(L) [Rao, 1996], but these agent languages
have comparatively simple semantics [van der Hoek and
Wooldridge, 2003]. The aim of this paper is to present a com-
putationally grounded model of general BDI-agents.

The main idea of our BDI-model is that we characterize an
agent’s belief, desire and intention as a set of runs (comput-
ing paths), which is exactly a system in the interpreted system
model. Let Bi, Di and Ii be sets of runs related to the be-
liefs, desires and intentions of agent i, respectively. Then,
runs in Bi are possible computing paths from the viewpoint
of the agent; runs in Di are those computing paths that the
agent desires; and runs in Ii are those computing paths with
the agent’s choices of the possible actions. Clearly, it is rea-
sonable to assume that Di ⊆ Bi, that is, every desired com-
puting path is a possible one, but we need not to assume that
Ii ⊆ Di or even Ii ⊆ Bi because an agent’s intention may
fail to achieve its goal and the real computing path may be
beyond the agent’s belief even though the agent has chosen
and completed an intentional series of actions.

The salient point of our work is that we present a general
form of BDI agent programs, from which BDI-models can be
generated and specifications in full BDI logics can be verified
by symbolic model checking techniques.

∗This work was supported by the Australian Research Coun-
cil grant DP0452628, and partially by the NSFC grants 60496327,
10410638 and 60473004.

2 Computationally Grounded BDI Logic
We introduce a multimodal logic of belief, desire and inten-
tion, called OBDI logic, where the changes and computation
of agents’ beliefs, desires, and desires are based on agents’
observations (i.e. local states). We assume the reader is fa-
miliar with the notion of interpreted system model, and we
will follow the terminology of [Fagin et al., 1995].

2.1 Syntax
Given a set Φ of propositional atoms, the language of OBDI
logic is defined by the following BNF notations:

〈wff〉 ::= any element of Φ | ¬〈wff〉 | 〈wff〉 ∧ 〈wff〉 |
©〈wff〉 | 〈wff〉U〈wff〉 |
Bi〈wff〉 | Di〈wff〉 | Ii〈wff〉

Informally, Biϕ and Diϕ means that agent i believes and
desires ϕ, respectively. While Iiϕ denotes that ϕ holds under
the assumption that agent i acts based on his intention.

2.2 The BDI-system Model
Given a set G of global states and a system K over G, an
agent’s mental state over systemK is a tuple 〈B,D, I〉, where
B, D and I are systems (sets of runs over G) such that
I ⊆ K and D ⊆ B ⊆ K. A BDI-system is a structure
〈K,M1, · · · ,Mn〉, where K is a system and for every i,Mi

is agent i’s mental state over K.
Assume that we have a set Φ of primitive propositions. An

interpreted BDI-system I consists of a pair (S, π), where S is
a BDI-system and π is a valuation function, which gives the
set of primitive propositions true at each point in G.

2.3 Semantics
In what follows, we inductively define the satisfaction rela-
tion |=OBDI between a formula ϕ and a pair of interpreted
BDI-system and a point. Given an interpreted BDI-system
I = (S, π), suppose that S = 〈K,M1, · · · ,Mn〉 and for ev-
ery i, Mi = 〈Bi,Di, Ii〉. Let r be a run in K and u a natural
number, then we have that:
• (I, r, u) |=OBDI Biϕ iff (I, r′, v) |=OBDI ϕ for those
(r′, v) ∈ Bi such that (r, u) ∼i (r

′, v);

• (I, r, u) |=OBDI Diϕ iff (I, r′, v) |=OBDI ϕ for those
(r′, v) ∈ Di such that (r, u) ∼i (r

′, v);

• (I, r, u) |=OBDI Iiϕ iff (I, r′, v) |=OBDI ϕ for those
(r′, v) ∈ Ii such that (r, u) ∼i (r

′, v);

Other cases are trivial and omitted here.

Proposition 1 The following formulas are valid:

• X(ϕ⇒ ψ)⇒ (Xϕ⇒ Xψ)
Xϕ⇒ Y Xϕ

¬Xϕ⇒ Y ¬Xϕ
where X and Y stand for Bi, Di or Ii (for the same i).

• Relationship between belief and desire
Biϕ⇒ Diϕ

• Temporal operators
©(ϕ⇒ ψ)⇒ (©ϕ⇒©ψ)
©(¬ϕ)⇒ ¬© ϕ

φUψ ⇔ ψ ∨ (ϕ ∧©(ϕUψ))

2.4 Axiomatization
We give a proof system, called OBDI proof system, for those
BDI-agents with perfect recall and a global clock, which con-
tains the axioms of propositional calculus plus those formu-
las in Propositions 1. The proof system is closed under the
propositional inference rules plus: `ϕ

`Diϕ
and `ϕ

`Iiϕ
for every

agent i.

Theorem 2 The OBDI proof system is sound and complete
with respect to interpreted BDI-systems with satisfaction re-
lation |=OBDI .

3 Model Checking BDI-Agents
In order to make our model checking algorithm practically
useful, we must consider where our model, an interpreted
BDI-system comes from. To make the things simpler, we
may consider some abstract programs such as finite-state pro-
grams, which are expressive enough from the standpoint of
theoretical computer science. Moreover, to make our model
checking system practically efficient, we use symbolic model
checking techniques. Thus, a finite-state program in our ap-
proach is represented in a symbolic way.

3.1 Symbolic representation of interpreted
BDI-agents

We formally define a (symbolic) finite-state program with n
agents as a tuple P = (x, θ(x), τ(x,x′), O1, · · · , On), where
x is a set of system variables; θ is a boolean formula over
x, called the initial condition; τ is a boolean formula over
x ∪ x′, called the transition relation; and for each i, Oi ⊆ x,
containing agent i’s local variables, or observable variables.
Given a state s, we define agent i’s local state at state s to
be s ∩ Oi. We may associate with P an interpreted system
IP = (R, π) called the generated interpreted system of P .

For convenience, we may use P(θ, τ) to denote a finite-
state program with n agents (x, θ(x), τ(x,x′), O1, · · · , On),
if x and O1, · · · , On are clear from the context. Given
a finite-state program P(θ, τ) with n agents, we define
an agent’s internal program (over P(θ, τ) as a tuple
〈P(θ1, τ1),P(θ2, τ2),P(θ3, τ3)〉, where (θj ⇒ θ) ∧ τj ⇒
τ ,for j = 1, 2, 3, and (θ2 ⇒ θ1)∧ τ2 ⇒ τ1 are valid. Clearly,
an agent’s internal program is exactly related with an agent’s
mental state. Thus, we define a (symbolic) BDI-program
with n agents as a tuple PA = (PK , P1, · · · , Pn), where PK

is a finite-state program with n agents and for each agent i,
Pi is agent i’s internal program over P. We use IPA

to denote
the corresponding interpreted BDI-system.

3.2 Model checking OBDI logic
Theorem 3 Given a BDI-program with n agents
PA = (PK , P1, · · · , Pn), suppose that PK =
(x, θ(x), τ(x,x′), O1, · · · , On), and for every i,
Pi = 〈P(θi

1
, τ i

1
),P(θi

2
, τ i

2
),P(θi

3
, τ i

3
)〉. Then, for every

LTL formula ϕ and agent i, the following are valid in IPA
,

1. Biϕ⇔ ∀(x−Oi)(G(P(θ
i
1
, τ i

1
))⇒ Γ(ϕ, θi

1
, τ i

1
))

2. Diϕ⇔ ∀(x−Oi)(G(P(θ
i
2
, τ i

2
))⇒ Γ(ϕ, θi

2
, τ i

2
))

3. Iiϕ⇔ ∀(x−Oi)(G(P(θ
i
3
, τ i

3
))⇒ Γ(ϕ, θi

3
, τ i

3
))

where Γ(ϕ, θ, τ) is a boolean formula built from ϕ, θ, τ by
using quantifications and fixed-point operations lft and gft.

Remark that Theorem 3 provides a reduction of OBDI to
LTL, while Proposition 9 in [Su, 2004] gives an OBDD-
based method of model checking LTL formulas. The com-
plexity of our reduction of logic OBDI to LTL is PSPACE-
complete. However, because quantifications of boolean func-
tions and fixed-point operators can be dealt with in any
OBDD package, the reduction can be based on OBDDs. In
fact, we implemented a prototype of the OBDI model checker
using CUDD, a very influential OBDD package developed by
Fabio Somenzi, and achieved some preliminary experimental
results.

4 Concluding Remarks
In this work, we have explored computationally grounded
modal logics that characterize the internal attitudes of an
agent–its beliefs, desires, etc, beyond S5 axioms and carried
out a methodology on symbolic model checking for general
BDI-agents.

References
[Cohen and Levesque, 1990] P.R. Cohen and H.J. Levesque. Inten-

sion is choice with commitment. Artificial Intelligence, 42:23–
261, 1990.

[Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about knowledge. MIT Press, Cambridge, MA, 1995.

[Hintikka, 1962] J. Hintikka. Knowledge and Belief. Cornell Uni-
versity Press, Ithaca, NY, 1962.

[Rao and Georgeff, 1998] A.S. Rao and M.P. Georgeff. Decision
procedures for BDI logics. Journal of Logic and Computation,
8(3):293–344, 1998.

[Rao, 1996] A.S. Rao. BDI agent speak out in a logical computable
language. In LNAI, volume 1038, pages 42–55, 1996.

[Su, 2004] K. Su. Model checking temporal logics of knowledge in
distributed systems. In AAAI-04, pages 98–103. AAAI, 2004.

[van der Hoek and Wooldridge, 2003] W. van der Hoek and
M. Wooldridge. Towards a logic of rational agency. L.J. of
IGPL, 11(2):135–159, 2003.

[Wooldridge, 2000] M. Wooldridge. Computationally grounded
theories of agency. In E. Durfee, editor, Proceedings of ICMAS-
00, pages 13–22. IEEE Press, 2000.

