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Abstract

We show how one-class compression Neural Net-
works and one-class SVM can be applied to fMRI
data to learn the classification of brain activity as-
sociated with a specific motor activity. For com-
parison purposes, we use two labeled data and see
what degree of classification ability is lost com-
pared with the usual two-class SVM.

1 Introduction
Functional magnetic resonance imaging (fMRI) allows the
carrying out of specific non-invasive studies within a given
subject while providing an important insight to the neural ba-
sis of brain processes. Neurons, which are the basic func-
tional unit of the brain, consume a higher level of oxygen
when active, hence blood with a higher level of oxygenation
is supplied to those active neurons. fMRI makes indirect use
of this effect by detecting areas of the brain which have an
elevated consumption of oxygen. This effect can be used to
identify areas of the brain associated with specific functions.

The current methodology used to identify such regions is
to compare, using various mathematical techniques, the ele-
vation of oxygen consumption during a task with that used
during a resting state.[Mitchell et al., 2004] applied ma-
chine learning techniqes to this problem, when considering
the classification of the cognitive state of a human subject.
Thus, in order to determine the elevation of oxygen consump-
tion during a task, images acquired during a resting state are
required. In order to keep the alternation between activity,
a reference time-course is needed, where the resting and ac-
tive states are embedded. In this paper we further consider
the problem of identifying fMRI scans that have only been
acquired during the “active” state, i.e. scans acquired during
the duration when the human subject has performed the given
task. The basic intuitions are that, if available, two-class clas-
sification should perform better; although not always. How-
ever, as is the case under consideration here, often we have
some reasonable sampling of the positive examples; i.e. the
distribution of positive examples can be estimated; while the
negative examples are either non-existent or episodic; i.e. not
necessarily representative.

Obtaining good results under this assumption is known to
be quite challenging; nonetheless it is often the most realistic

assumption. For the fMRI classification described above, this
problem is particularly non-trivial as we expect the data to
be of very high dimension and extremely noisy, as the brain
concurrently works on many given tasks. It is also quite nat-
ural to assume that there is only representative data of the
task of interest; and not necessarily representative data of the
negation of this task thus making the one-class learning tech-
niques appropriate. In this work, we use two major one-class
learning techniques - ”bottleneck” or compression neural net-
works[Manevitz and Yousef, 2001] and a common version of
the one-class Support Vector Machine (SVM)[Scholkopfet
al., 1999]. We point out that we use the entire brain slice,
with no pre-filtering - i.e. the data is the entire slice, labeled
with the task.

2 Experiments
The fRMI scans are of a volunteer1 flexing their index finger
on the right hand inside a MR-scanner while12 image slices
of the brain were obtained from a T2∗-weighted MR scanner.
The time-course reference of the flexing is built from the sub-
ject performing a sequence of 20 total actions and rests con-
sisting of rest, flex, rest,. . . flex. Two hundred fMRI scans
are taken over this sequence; ten for each action and rest. The
individual fMRI images are dicom2 format of size128×128.
Each image is labelled as either1 (active) or−1 (inactive).

Thus, in our data we have100 positive and100 negative
images for each of the12 slices. For the bottleneck neural
network80 positive samples were chosen randomly and pre-
sented for training and40 samples, consisting of the remain-
ing 20 positive and20 random negative samples, were used
for testing. This experiment was redone with ten independent
random runs. The limitation to20 negative samples out of a
possible100 was chosen to keep the testing fair between the
positive and negative classes. We manually cropped the non-
brain background from the scans; resulting in a slightly dif-
ferent input/output size for each slice of about8, 300 inputs
and outputs. The compression percentage arising from the
bottleneck was chosen by experimenting with different pos-
sible values. A uniform compression of about60% gave the
best results for the hidden layer. The irrelevant (non-brain)
image data was cropped for each slice resulting in a slightly

1Provided by Ola Friman[Friman, 2003].
2For information regarding dicom see http://medical.nema.org/



different input/output size for the network for each slice.The
network was trained to the identity using20 epochs on the
above chosen data. Following training the network was used
as a classification filter, with an input value being classified
as positive if the error level was lower or equal to a threshold
chosen heuristically from training and classified as negative.
We used the same protocol in a one-class SVM. Additionally,
we used the two-class SVM where we randomly selected160

training images and the remaining40 for testing. This was
also repeated10 times.

2.1 First Experimental Results
The obtained results are an average over all the slices. Each
slice was averaged over10 repeats where in each repeat a ran-
dom split of training testing was selected. Both SVM classi-
fiers were used in their default setting as set by the OSU-
SVM 3.00 package3. In addition, the two-class SVM was
used with the unnormalised data as we have experimentally
found that with normalised data the overall results were sig-
nificantly worse. In Table 1 we are able to observe that while
the one-class SVM performs better with the RBF kernel, the
two-class SVM is better with the linear kernel. In Table 2

Table 1: SVM Results (success).

Method Linear kernel RBF kernel
One-class SVM 49.12%± 0.86% 59.18%± 1.47%

Two-class SVM 68.06%± 2.10% 44.70%± 1.12%

we compare the one-class to two-class techniques. As ini-
tially expected we are able to observe that the two-class ap-
proaches outperform those of the one-class. The one-class
SVM is slightly better then the bottleneck compression NN.
We further analyse the statistics of the methods i.e. the sepa-

Table 2: Methods success results.

Method Result on slices
BN - NN 56.19%± 1.26%

One-class SVM 59.18%± 1.47%

Two-class SVM 68.06%± 2.10%

ration of the classified samples to their true classes. In Table
34 we compute and show the statistics of the fMRI images of
the Positive samples that were classified as positive, denoted
as true-positive, and the positive samples that were classified
as negative, denoted as false-negative and the statistics of the
negative fMRI images samples that were classified as nega-
tive, denoted as true-negative, and those that were classified
as positive, denoted as false-positive. We are able to observe
in that the compression NN is able to find a higher rate of
true-positive fMRI images then the one-class SVM and the
two-class methods even though they have obtained an higher
overall success rate. Also we observe with regard to the neg-
ative samples that the two-class methods perform better then

3OSU SVMs Toolbox http://www.ece.osu.edu/∼maj/osusvm/
4std stands for Standard Deviation

the one-class. This is expected as the one-class methods make
no use of the negative samples and eminently will have a
lower ability in classifying it. Additional experiments have

Table 3: Methods Statistics

Method True-Positive False-Negative std
BN - NN 78.96% 21.04% ±3.15%

One-class SVM 72.83% 27.17% ±1.98%

Two-class SVM 71.55% 28.45% ±3.21%

True-Negative False-Positive
BN - NN 33.42% 66.58% ±3.45%

One-class SVM 39.25% 60.75% ±3.25%

Two-class SVM 65.64% 54.46% ±3.02%

been performed on visual instead of motor tasks with very
similar results.

3 Conclusions
We have found that one class classification can be done, even
with the ”noisy” data and with the full slices of the brain scan.
Comparable results (about 58% accuracy) were obtained un-
der both one-class SVM and Compression-Based NN tech-
niques. For future work we would further investigate auto-
mated feature reduction as it might be fruitful, compare scans
of the same individual across different fMRI sessions. The
work presented here was for one individual. We intend to
compare training and classification across individuals.
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