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1 Introduction
Abductive Logic Programming (ALP) is an extension of
Logic Programming to formalise hypothetical reasoning. It
typically distinguishes between facts, defined within a static
theory and known to be true or false, and potentially true, ab-
ducible atoms (hypotheses).

However, in most applications, this distinction is not ade-
quate to capture the dynamics of knowledge, as reasoning is
confronted with an environment in evolution. It may turn out
that some hypotheses gain or lose strength, as events happen
in the world. For example, in the medical domain, where a
kind of hypothetical reasoning is the diagnostic inference, we
can model symptoms as observations and diseases as (not di-
rectly measurable) hypotheses: test results and new possibly
upcoming symptoms, instead, are none of these, and should
be interpreted as hypotheses confirmable by events.

An abductive derivation verifies a goal by using deduction
as in logic programming, but also by possibly assuming that
some abducibles are true. In order to have this process con-
verge to a meaningful explanation, an abductive theory nor-
mally comes together with a set ofintegrity constraintsIC,
and it is required that hypotheses be consistent withIC.

In our extended framework, we distinguish between two
classes of abducible literals:hypotheses, as classically un-
derstood, andexpectationsabout events. Expectations can be
“positive” (to be confirmed by certain events occurring), or
“negative” (to be confirmed by certain events not occurring).

We propose a new language to define abductive logic pro-
grams with expectations, inspired to the IFF proof procedure
[Fung and Kowalski, 1997], and whose semantics extends
those of classical ALP. The language permits to express ab-
ducible hypotheses and expectations withvariablesandcon-
straints. Within this new framework we can model and reason
about a number of concrete application scenaria. Our frame-
work permits, e.g., to reason about deadlines, and to express
and correctly handle expectations with universal quantifica-
tion: this typically happens with negative expectations (“The
patient is expectednot to show symptomQ at all times”).
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The operational semantics is an abductive proof-procedure
which builds on the IFF and is proven sound for a relevant
class of programs. It has been implemented usingConstraint
Handling Rulesand integrated in a Java-based system for hy-
pothetical reasoning[Alberti et al., 2005].

2 Dynamic ALP
An ALP [Kakaset al., 1992] is a tuple〈KB, IC,A〉 where
KB is a logic program,A is a set of predicates calledab-
duciblesnot defined inKB, and IC is a set of formulae
called Integrity Constraints. An abductive explanation for a
goalG is a set∆ ⊆ A s.t.KB∪∆ |= G andKB∪∆ |= IC.

New dynamically upcoming events are encoded into atoms
H(Descr [,Time]) whereDescr is a ground term represent-
ing the event andTime is an integer representing the time at
which the event happened. Such events are recorded into a set
(called history, orHAP) containingH atoms. A Dynamic
Abductive Logic Program (DALP) is a sequence of ALPs,
each grounded on a given history. We will writeDALPHAP

to indicate the abductive logic program obtained by ground-
ing the DALP with the historyHAP. The history dynami-
cally grows during the computation, as new events happen.1

An instanceDALPHAP of this framework can be queried
with a goal G, that may contain both predicates defined in
KB and abducibles. The abductive computation produces
a set∆ of hypotheses, partitioned in two sets: general hy-
potheses (∆A) andexpectations(EXP), containingpositive
expectations (in the form ofE(Descr [,Time]) atoms), and
negativeexpectations (EN((Descr [,Time])) atoms).

Typically, expectations will contain variables, over which
CLP constraints can be imposed. Variable quantification is
existentialin E expectations, anduniversalin EN expecta-
tions (unless the same variable is used outside of such expec-
tation). Explicit negation can also be applied to expectations.2

Constraints on universally quantified variables will be con-
sidered asquantifier restrictions. For instance,EN(p(X)),
X > 0 has the semantics∀X>0 EN(p(X)).

The declarative semantics forDALPHAP is based on its
ground version, and considers CLP-like constraints as defined

1The source of events is not modelled, but can be imagined as a
queue.

2For each abducible predicateA ∈ {E,EN}, the abducible
predicate¬A is implicitly defined, to represent the negation ofA,
together with the integrity constraint(∀X)¬A(X), A(X)→ false.



predicates. First, an abductive explanation should entailthe
goal and satisfy the integrity constraints:

Comp(KB ∪∆A ∪EXP ∪HAP) |= G (1)

Comp(KB ∪∆A ∪EXP ∪HAP) |= IC (2)

where, as in the IFF proof procedure, the symbol|= stands
for three valued entailment andComp stands for completion.

Among the sets of expectations of an instanceDALPHAP,
we select the ones that are consistent with respect to expec-
tations (i.e., the same event should not be both expected to
happen and not to happen), and that areconfirmed:
Definition 1 A setEXP is E-consistentiff for each (ground)
termp: {E(p),EN(p)} 6⊆ EXP. (3)

Given a historyHAP, a set of expectationsEXP is con-
firmed if and only if for each (ground) termp:

Comp(HAP ∪EXP) ∪ {E(p)→ H(p)}
∪{EN(p)→ ¬H(p)}

6|= false (4)

We writeDALPHAP≈∆A∪EXPG if equations (1-4) hold.
The operational semantics is an extension of the IFF. Each

state is defined by a tuple defining confirmed, disconfirmed,
and pending expectations, along with the resolvent, the setof
abduced literals that are not expectations, the constraintstore,
a set ofpartially solved integrity constraints, andHAP.

A derivationD is a sequence of nodesTj , where the initial
nodeT0 contains the goalG as the initial resolvent, and the
other nodesTj , j > 0, are obtained by applying one among a
set of transitions, until quiescence.
Definition 2 Starting with an instanceDALPHAPi there
exists asuccessful derivationfor a goal G iff the proof tree
with root nodeT0 has at least one consistent leaf nodeTn

(i.e., there exists forTn a ground variable assignment such
that all the constraints are satisfied). In that case, we write:

DALPHAPi∼
HAP

f

∆A∪EXPG

The transitions are those of the IFF, enlarged with those of
CLP, and with specific transitions accommodating the con-
cepts of hypotheses confirmation and evolving history.

The CLP(FD) solver has been extended for dealing with
universally quantified variables andquantifier restrictions.
For instance, given two expectations∀X<10EN(p(X)) and
∃Y >5E(p(Y )), the solver is able to infer∃Y ≥10E(p(Y )). To
the best of our knowledge, this is the only proof-procedure
able to abduce atoms containing universally quantified vari-
ables; moreover, it also handles constraintsà la CLP on uni-
versally quantified variables.

We proved soundness forallowedDALPs:3

Theorem 1 Given DALPHAPi and a ground goalG, if
DALPHAPi∼HAP

∆
G thenALPHAP≈∆G.

3 Case study
We conclude with an example from the medical domain to
show two main contributions of our work: the dynamic de-
tection of new facts, and the confirmation of hypotheses by
events. Suppose a symptoms can be caused by one of three
types of diseases. Let diseased1 be an acceptable explanation
for s if the patient is not also affected byd3, and in such a case

3The proof is based on a correspondence drawn betweenSCIFF
and IFF transitions, and exploits the soundness results of the IFF.

the patient’s temperature cannot go below37oC. s may alter-
natively be caused by diseased2, and in this case red spots
are expected to appear on the patient’s skin within 4 days. Fi-
nally,d3 may be the cause ofs, provided that an examr gives
a positive result:

symptom(s, T1)← disease(d1, T1) ∧ not disease(d3, T1)
∧EN(tem(T ), T1) ∧ T < 37.

symptom(s, T1)← disease(d2, T1)∧
E(red spots, T2) ∧ T1 < T2 ≤ T1 + 4.

symptom(s, T1)← disease(d3, T1) ∧E(exam(r, +), T1).

The initial goal can be the observationsymptom(s, 1). We
modeldisease as a classical abducible, whereasexpectations
are used to corroborate the explanations.

Notice the twofold use of expectations: both in the sec-
ond and third clause, the expectation defines a further event
that can support the diagnosis. But whileE(red spots, T2)
simply defines the expected course of illness (in order for the
diagnosis to be corroborated),E(exam(r,+), T1) can also be
intended as asuggestionto the physician for a further exam
to be done, or as arequestof further information.

The combinations of abducible literals can be refined by
means of ICs. For example, if the result of some examr is
positive, then we can assume that the patient is not affected
by diseased1: H(exam(r,+), T1) → not disease(d1, T1).
The dynamic occurrence of events can drive the generation
and selection of abductive explanations. If the query is, e.g.,
symptom(s, 1), there can be three alternative explanations:
{disease(d1, 1), ∀T>37EN(tem(T ), 1)},
{disease(d2, 1), ∃1<T2≤5E(red spots, T2)}, and
{disease(d3, 1),E(exam(r, +), 1)}.

If eventH(tem(36), 1) happens, the first set contains a dis-
confirmed expectation:∀T>37 EN(tem(T ), 1), so it can be
ruled out. If, within the deadlineT2 ≤ 5, the eventred spots
does not happen, the second set is excluded as well, and only
the third remains acceptable.

Finally, integrity constraints could suggest possible cures,
or warn about consequences of not taking certain drugs:

disease(d3, T1)→ E(aspirin, T1)
∨E(tem(T ), T2) ∧ T > 40 ∧ T2 < T1 + 2.

4 Conclusions
We presentedSCIFF, an abductive proof-procedure able, be-
side proposing explanations, to inferexpectationsabout the
happening of events. Expectations are abducibles, but more
expressive: they can contain universally quantified variables,
possibly with CLP constraints. They can represent requests
for information, or the expected evolution of a system.SCIFF
is able to process dynamically incoming events to confirm the
expectations, providing corroboration to abduced hypotheses.
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