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1 Introduction
Locally weighted learning techniques, in particular LWPR
[Vijayakumaret al., 2002], have successfully been used for
high-dimensional regression problems. Their robustness and
efficient online versions are crucial in robotic domains where,
for instance, an inverse model of an articulated dynamic robot
has to be learned in real-time. Such models map a high-
dimensional state (e.g., joint angles and velocities) and a de-
sired change of state to the required motor signals (torques).

While typically such mappings are assumed to be smooth,
in real world scenarios, there are many interesting cases
where the functions of interest are truly discontinuous. Some
examples include contacts with other objects (in particular the
ground), with other parts of the body, or with “joint limits”. In
fact, many interesting interactions with the environment man-
ifest themselves through discontinuities in the sensorimotor
data.

In this paper, we show how discontinuous switching be-
tween local regression models can be learned. The general
topic of switching models has been discussed before, e.g.,
in the context of state space models[Ghahramani and Hin-
ton, 1998; Pavlovicet al., 2000] or multiple inverse mod-
els [Wolpert and Kawato, 1998]. Generally, the question of
which particular model receives responsibilities for a given
input can be modeled as a hidden variablei in a generative
mixture model. In our case, we assume that the responsibil-
ity index i can be predicted from the input (the robot state).
Thus, inferring a model fori corresponds to classifying the
input domain into regions for each sub-model.

Since in robotic domains, local learning is crucial to pre-
vent interference and allow for online adaptation techniques,
we propose a model of the responsibility indexi which is it-
self a composition of local classifiers. Multiple pairwise clas-
sifiers are concatenated to construct a complete model in the
form of a product-of-sigmoids, which is capable of learning
complex, sharply bounded domains for each local model in
lieu of the typical Gaussian kernels.

2 Learning a family of models

Given training data{(xk, yk)}M
k=1 with inputsxk and outputs

yk, the first level goal of our algorithm is to learn afamily of
models{φ1, .., φN} such that every datum can be explained
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by at least one model. The problem of predicting which par-
ticular modelφi is responsible for a given inputx is solved
on a higher level as explained in the next section. In formal
notations, we assume a mixture model

P (y|x) = (1− ε)
N∑

i=1

Ploc(i|x) P (y|i,x) + ε U(y) ,

P (y|i,x) =
1√
2π σ

exp
{
−|y − φi(x)|2

2σ2

}
,

whereU(y) is a uniform distribution accounting for back-
ground noise (e.g. outliers) andi is the hidden variable spec-
ifying the particular model that generates a datum. Since we
aim for localized models, we impose a locality constraint al-
ready at this level as follows: Letci denote the mean input
(center) on which modelφi has been trained on. For a given
inputx, theith model is eligible if and only if there does not
exist ajth model which has its center “between”ci andx.
More precisely,

Ploc(i|x) = 0 ⇐⇒ ∃j : 〈x− cj , ci − cj〉 < 0 ,
where 〈·, ·〉 is the scalar product in input space:

i is not eligible for xi is eligible for x

ci ci

x

cj cj

x

Further,Ploc(i|x) is uniform over all eligiblei’s. Given a
current family of models, we can infer a posterior on the
responsibility indexi for a given datum(x, y), using Bayes
rule:

P (i|y,x) =
1
Z
P (y|i,x) Ploc(i|x).

Calculating the MAP assignmentî allows us to associate ev-
ery training datum with the most likely model. Using this, the
sufficient statistics of each local modelφi is updated. Fur-
ther, the data that is labeled as “yet unmodeled” (which is
inferred to have been generated byU(y)) is used to generate
a new family member by the following heuristic (compare
RANSAC): A random datum(x, y) is selected from the un-
modeled data; theK closest neighbors of(x, y) (w.r.t., Eu-
clidean input distance) are chosen as initial training data for
the new model, whereK is a random Poisson number with
mean3 d (here,d is the input dimensionality). Finally, mod-
els that receive too few MAP responsibilities (less than10 d
in our experiments) are discarded. This iterative process can
be repeated until no new models are generated.



Figure 1: Kernels that can be represented as a product of sig-
moids in 1D and 2D.

This general scheme of family learning can be realized
with any type of modelsφi. In the experiments, we will
chooseφi to be linear functions, learned with Partial Least
Squares (PLS) regression. PLS, involving an intermediate
lower-dimensional projection, has been proven efficient for
high-dimensional problems[Vijayakumaret al., 2002].

3 Products of sigmoids for switching
On the second level of our algorithm, the goal is to learn a pre-
dictive modelP (i|x) of the latent responsibility indexi that
is more precise than the uninformed priorPloc(i|x). Given
some data, it is easy to decide whether two models are “po-
tentially neighbored”—namely whether there exists data for
which both models are eligible—based on their centers. For
each pair(ij) of neighbored models, we learn a sigmoidal
functionψij(x), whereψij ≡ 1 − ψji. The product of such
sigmoids around a submodeli defines a coefficientβi(x) that
we associate with the submodel for a given inputx,

βi(x) =
1
Z ′

∏
j

ψij(x) , ψij(x) =
1

1 + exp[−φij(x)]
.

Here,Z ′ normalizesβi over i. As indicated, we represent
sigmoidsψij with a scalar functionφij . Fig. 1 illustrates the
kind of kernels can be represented as products of sigmoids.

The sigmoidsψij(x) are meant to represent the likelihood
that a modeli rather thanj is responsible for an inputx,
conditioned on that eitheri or j is responsible. The product
combination is comparable to anAND voting. The MAP la-
beling î we introduced in the previous section is now used to
train these sigmoids. In the experiments, we considerφij to
be linear functions, again learned with PLS.

4 Experiments
We tested the algorithm on piecewise linear, discontinuous
test functions. A test function has 3 parameters: the in-
put dimensiond, the numberL of linear pieces it is com-
posed of and the output noiseσ. The localities, slopes and
boundaries of the linear pieces are sampled randomly. Fig.
2(a,b) display learning results from a 1D example in com-
parison to LWPR. Fig. 2(c,d) display two error curves on
10-dimensional test functions over the rather large input do-
main [−1, 1]10. The family error is the MSE of the best
fitting eligible modelφî (averaged over an independent test
data set); theclassification errorcounts how often the prod-
uct of sigmoids correctly predictsφî to be the best fitting
model for a given input (i.e., argmaxiβi = î). In the exper-
iments we find that the algorithm reliably generates a fam-
ily with optimal family error at the noise level (σ2 = 0.01).
In 5 dimensions (not displayed here) the classification error
rapidly converges to zero while in 10 dimensions, the classi-
fication error converges to around 4%. For more results see
homepages.inf.ed.ac.uk/mtoussai/projects/05-ijcai.

Figure 2: (a) A 1D test function withd=1, L=10, σ=0.1.
Learned switching model after 20 iterations onM=1000
training data points. (b) The blended switching model:
y(x) =

∑
i βi(x)φi(x) compared to LWPR. (c) Family er-

ror (cf. Sec. 4) and (d) classification error for 10 runs on ran-
dom test functions withd=10,L=10,σ=0.1, andM=10 000.
The bold line is the average over all curves.

5 Discussion
The presented model addresses the problem of handling the
discontinuities that naturally arise, e.g., in sensorimotor data
during interaction with a structured environment. Our model
extends earlier local learning approaches in several ways:
The responsibility region associated with each local model
(learned with the product of sigmoids) has a much more ver-
satile boundary shape compared to typical Gaussian kernels.
Problems associated with initialization of kernel shapes or
widths and the heuristic choice of an ad hoc number of sub-
models are circumvented by the robust incremental allocation
of new models. Although we consistently used PLS as the
underlying regression machinery, the general model allows
to utilize any efficient single model learner to represent the
local modelsφi as well as the classifier functionsφij . Future
work will in particular investigate non-linear learners for the
local models as well as the boundary classifiers.
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