Learning discontinuities for switching between local models
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1 Introduction by at least one model. The problem of predicting which par-
ticular modelg; is responsible for a given input is solved

on a higher level as explained in the next section. In formal
r]r(ljotations, we assume a mixture model

Locally weighted learning techniques, in particular LWPR
[Vijayakumaret al, 2004, have successfully been used for
high-dimensional regression problems. Their robustness al N
efficient online versions are crucial in robotic domains where, ) ,
for instance, an inverse model of an articulated dynamic robot £ (¥/®) = (1 =€) Z Hoc(il@) P(yli, ) + ¢ Uy) ,
has to be learned in real-time. Such models map a high- i=1
dimensional state (e.g., joint angles and velocities) and a de- 1 ly — ¢i(x)|?
sired change of state to the required motor signals (torques). ﬁ P92 (¢
While typically such mappings are assumed to be smooth . , I .
\é/hereu(y) is a uniform distribution accounting for back-

in real world scenarios, there are many interesting case / . by : >
where the functions of interest are truly discontinuous. Somﬁ;ound noise (€.g. outliers) ards the hidden variable spec-

examples include contacts with other objects (in particular thdYInd the particular model that generates a datum. Since we
groun%), with other parts of the body, or\jvith “jEJinE[)Iimits”. in aim for localized models, we impose & locality constraint al-
fact, many interesting interactions with the environment man-ready at this level as follows: Lef; denote the mean input

: : o : centel) on which modely; has been trained on. For a given
ggf; themselves through discontinuities in the sensorlmotofnputm’ thesth model is eligible if and only if there does not

In this paper, we show how discontinuous switching be'&i(clxsr:a?){g(]:i?eolga which has its center “between; andz.

tween local regression models can be learned. The gener ' .
topic of switching models has been discussed before, e.g., Hoc(il®) =0 <= 3j: (. —¢;,¢i —¢;) <0,
in the context of state space modéGhahramani and Hin- where (.,-) is the scalar product in input space:

P(yli, ) =

ton, 1998; Pavlovicet al, 2004 or multiple inverse mod- iis eligible for z i is not eligible for =
els [Wolpert and Kawato, 1998 Generally, the question of Ry e

which particular model receives responsibilities for a given S o T
input can be modeled as a hidden variabla a generative o B o

ci \ c;

mixture model. In our case, we assume that the responsibik g . S .
ity index i can be predicted from the input (the robot state).FUrther, Foc(i|) is uniform over all eligiblei's. Given a
Thus, inferring a model fo corresponds to classifying the current family of models, we can infer a posterior on the
input domain into regions for each sub-model. responsmlhty index for a given datum(z, y), using Bayes
Since in robotic domains, local learning is crucial to pre-Ul€: )
vent interference and allow for online la_lda_pta'\tion_ techniques, P(ily, z) = — P(yli,x) Poc(i|z).
we propose a model of the responsibility indexhich is it- Z A
self a composition of local classifiers. Multiple pairwise clas- Calculating the MAP assignmentllows us to associate ev-
sifiers are concatenated to construct a complete model in thery training datum with the most likely model. Using this, the
form of a product-of-sigmoids, which is capable of learningsufficient statistics of each local modg) is updated. Fur-
complex, sharply bounded domains for each local model irther, the data that is labeled as “yet unmodeled” (which is
lieu of the typical Gaussian kernels. inferred to have been generatedfy)) is used to generate
a new family member by the following heuristic (compare

; ; RANSAC): A random datungz, y) is selected from the un-
2 Learning a family of models modeled data; thél closest neig)hbors dfr, y) (w.rt., Eu-
Given training datd (x, yx) {Cszl with inputsz;, and outputs ~ clidean input distance) are chosen as injtial training datz_;l for
yk, the first level goal of our algorithm is to learrfamily of ~ the new model, wheré’ is a random Poisson number with
models{®1, .., ¢} such that every datum can be explainedmean3 d (here,d is the input dimensionality). Finally, mod-

els that receive too few MAP responsibilities (less thanl
*The first author acknowledges support by the German ReseardR our experiments) are discarded. This iterative process can

Foundation (DFG), Emmy Noether fellowship TO 409/1-1. be repeated until no new models are generated.
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Figure 1: Kernels that can be represented as a product of sig
moids in 1D and 2D. 4
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This general scheme of family learning can be realized ,, _ 03
with any type of modelsy;. In the experiments, we will 1 5
chooseg; to be linear functions, learned with Partial Least 4
Squares (PLS) regression. PLS, involving an intermediate
lower-dimensional projection, has been proven efficient fbr o
high-dimensional probleni¥/ijayakumaret al., 2004. =
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On the second level of our algorithm, the goal is to learn a pre- °
dictive modelP(i|x) of the latent responsibility indekthat ~ Figure 2: (a) A 1D test function witki=1, L=10, ¢=0.1.

is more precise than the uninformed priiec(i|z). Given Learned switching model after 20 iterations dfi=1000
some data, it is easy to decide whether two models are “paraining data points. (b) The blended switching model:
tentially neighbored’—namely whether there exists data fory(x) = >, 3;(x) ¢;(x) compared to LWPR. (c) Family er-
which both models are eligible—based on their centers. Foror (cf. Sec. 4) and (d) classification error for 10 runs on ran-
each pair(ij) of neighbored models, we learn a sigmoidal dom test functions witki=10, L=10, 0=0.1, and}/=10 000.
function;;(x), wherey;; = 1 — ¢;;. The product of such The bold line is the average over all curves.

sigmoids around a submodalefines a coefficient; (x) that
we associate with the submodel for a given input

5@ = 5 [[est@), i) 1

5 Discussion

" Trex ou@)] The presented model addresses the problem of handling the
PLI=®ij discontinuities that naturally arise, e.g., in sensorimotor data
during interaction with a structured environment. Our model
extends earlier local learning approaches in several ways:
The responsibility region associated with each local model
(learned with the product of sigmoids) has a much more ver-
satile boundary shape compared to typical Gaussian kernels.
" S P ; Problems associated with initialization of kernel shapes or
ggnmdt;?r?;t?odnc;g (t:rg)?rgsgrha%rlgrt% I;L%S[\)/ggﬁg)lefhzhl\jxlgoij;a widths and the heuristic choice of an ad hoc number of sub-
oo . . ) . models are circumvented by the robust incremental allocation
beling: we introduced in the previous section is now used t0qf new models. Although we consistently used PLS as the
train these sigmoids. In the experiments, we consideto  ynderlying regression machinery, the general model allows

Here, Z' normalizess3; overi. As indicated, we represent
sigmoidsy;; with a scalar functio;;. Fig. 1 illustrates the
kind of kernels can be represented as products of sigmoids.
The sigmoids);; () are meant to represent the likelihood
that a model rather thanj is responsible for an input,

be linear functions, again learned with PLS. to utilize any efficient single model learner to represent the
. local modelsp; as well as the classifier functiogs;. Future
4 Experiments work will in particular investigate non-linear learners for the

We tested the algorithm on piecewise linear, discontinuou$ocal models as well as the boundary classifiers.
test functions. A test function has 3 parameters: the in-
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