
Proof General / Eclipse: A Generic Interface for Interactive Proof

Daniel Winterstein1, David Aspinall1 and Christoph Lüth2

1University of Edinburgh, U.K. and 2Universität Bremen, Germany

1 Introduction
Inspite of the considerable achievements of the formal proof
programme, take-up of these systems by mathematicians and
programmers remains poor. At least one reason for this is
the lack of good development tools. The Proof General (PG)
project is an ongoing attempt to redress this issue. Here we
present PG/ECLIPSE, an interface/development environment
that marks a new phase in the project.

2 The PG/ECLIPSE Interface
PG/ECLIPSE provides a rich range of features, many of
which will be familiar to users of modern programming IDEs.

• Proof scripts (and projects) are presented to the user via
a specialised text-editor and associated viewers (e.g. the
document outline view) which support various actions.

• The central feature of PG/ECLIPSE is script manage-
ment (c.f. [Bertot, 1998]), which is a form of step de-
bugging tailored to linear scripts.

• Symbol support can make a huge difference to how read-
able a proof script is. This is possibly an area where TP
interfaces have something to offer to programming in-
terfaces. PG/ECLIPSE provides support for using math-
ematical symbols – including the use of typing shortcuts
to enter symbols, and a symbol table editor, allowing
users to adapt and extend the use of symbols to fit their
own needs.

• Theory navigation: As a theory grows, finding specific
definitions and proofs can become increasingly difficult
and time consuming. This alone can make a large dif-
ference to the usefulness of a theory. PG/ECLIPSE pro-
vides support for theory navigation. As proof script files
are read, their structure is analysed and the theories, the-
orems and lemmas they contain are indexed. This index
is then used to provide several ways to navigate files.

• A Content Assistant which suggests completions for
keywords/phrases.

• Good documentation and help is key to both the uptake
of theorem provers and the reuse of proof scripts – but
is often neglected. PG/ECLIPSE provides tools for doc-
umenting prover commands, prover settings and proof
scripts, with integrated help displays. Help for theory

elements (e.g. theorems) is created simply by writing
a preceding comment (an idea taken from the Java ap-
proach to documenting code (c.f. [Friendly, 1995]).

• One of the great potentials for provers is in mathemat-
ical/scientific education. Although there are excellent
computer algebra systems used in education, these nei-
ther perform nor teach proofs, which are central to math-
ematical work. PG/ECLIPSE introduces a teaching tool
(based around an embedded web-browser), designed for
delivering teaching material that interacts with a prover.

• Interface scripting Often a script will run better under
certain settings. PG/ECLIPSE allows a theory developer
to encode these settings in the proof script file. It defines
a small set of commands that can be used to script the
interface itself.

Figure 1: The PG/ECLIPSE display. The main window shows
the proof script; view windows below show the prover output.
A Problems view (not shown here) lists outstanding prob-
lems, such as syntax errors or unfinished proof-goals. To the
left of the editor window is an outline view of the proof’s
structure. Above the editor, a toolbar triggers proof or undo
steps by sending instructions to the prover (left-to-right, the
buttons are: undo all, undo, interrupt, step forward, process
all, and – most useful of all – go to cursor location).



3 Design principles for prover interfaces
Here we describe two design principles specific to theorem
prover interfaces.

3.1 Proof scripting is a form of programming
It has often been noted that theorem proving has a great many
similarities with programming. However this insight has not
really been used in prover interface design. Since program-
ming interfaces serve a much larger community, they have
been much more actively developed. We therefore borrow
ideas from programming interfaces where possible. One con-
sequence of this was the decision to use Eclipse as a base.
Eclipse is an open-source state-of-the-art IDE, originally in-
tended for Java programming [Eclipse Foundation, 2003].

3.2 Separation of proof engine and interface
This is a form of modularisation. Modularisation is especially
important in this domain, where – inspite of the relatively
small size of the community – there are a range of target ap-
plications and a diverse wealth of systems. Each of these
needs a good interface. Hence separating prover and inter-
face should facilitate the development of TPs, by giving TP
developers easy access to sophisticated interfaces. It would
also benefit prover interface and application designers, who
need not be tied to one proof system.

The Proof General Kit
We enforce this clear separation by specifying an API (the
PG/KIT) for all prover interactions and all knowledge of
prover behaviour. This API consists of two linked parts: An
abstract model for prover behaviour, and a protocol for com-
munication within proof sessions.

The model is based on abstracting the common behaviour
of many interactive proof systems. It acts as a clearly spec-
ified “virtual layer” that must be emulated in each prover to
cooperate properly with PG/ECLIPSE.

The communication protocol is called PGIP, for Proof
General Interactive Proof. The basic principle for represent-
ing proof scripts in PGIP is to keep the prover’s native lan-
guage, and mark up the script with PGIP tags (which give the
information needed by an interface). Designing PGIP as a
wrapper for native languages has two main consequences:

Firstly, the user employs the prover’s native language
(PGIP mark-up is only used internally). This is necessary,
since the wide variety of logics supported by modern provers
make it very hard to come up with one language which effi-
ciently supports all of these. It is also pragmatic, as users can
continue to work in the proof language they are familiar with,
and old proof scripts can still be used.

Secondly, the PGIP-annotation of the proof script (and sub-
sequent user input) is done by the prover (or a component
coming with the prover), and not by the interface, which
knows nothing about the prover’s language. Parsing requests
and responses form part of the PGIP protocol.

4 Related work
We can only give a brief overview here of the closest related
projects.

The Theorema theorem prover and the TeXMacs systems
both have excellent support for entering and viewing math-
ematical expressions [Buchberger, 2001][Audebaud, 2003].
Various systems already implement script management (e.g.
the previous PG system). However, these offer less function-
ality than PG/ECLIPSE, and do not provide a satisfactory so-
lution to the problem of handling different provers. The most
closely related work is that done within the PG/KIT frame-
work: a PGIP Emacs mode, and a PGIP-based ‘proof desk-
top’, where theories and proofs are built up using graphical
actions such as drag-and-drop. There is also a broker com-
ponent in that can act as a middle-man between a collection
of PGIP-equipped provers and interfaces. This should lead to
increasingly flexible ways to develop proofs.

5 Future work
There are many possible lines for future development. Firstly,
we want to use the Eclipse framework to further explore
the analogy between theory development and software engi-
neering. We can also go beyond adapting program develop-
ment tools. One promising line of work is on using interac-
tive proof planning to construct proof scripts (c.f. [Fleuriot,
2003]). Interactive planning could also be a valuable idea
to transfer to IDE based programming. The closest existing
analogue is the idea of ‘programming templates’; fragments
of code which can be used to help build up programs (e.g. a
standard widget initialisation method). Proof planning can be
considerably more powerful.

5.1 State of the project
This work is described in more depth at
http://proofgeneral.inf.ed.ac.uk/Kit. An alpha-release
of PG/ECLIPSE is now available (also from this we-
biste), and the latest version of Isabelle (available from
www.cl.cam.ac.uk/Research/HVG/Isabelle) supports PGIP.
Developers interested in using Proof General for other
provers should contact the authors.

References
[Audebaud, 2003] P.Audebaud & L.Rideau. Texmacs as au-

thoring tool for formal developments. In User Interfaces
for Theorem Provers UITP’03, 2003.

[Bertot, 1998] Y.Bertot & L.Théry. A generic approach to
building user interfaces for theorem provers. Journal of
Symbolic Computation, 1998.

[Buchberger, 2001] B.Buchberger. Theorema: A short intro-
duction. Mathematica Journal, 8:247–252, 2001.

[Eclipse Foundation, 2003] Eclipse Foundation. Eclipse
platform technical overview. www.eclipse.org, 2003.

[Fleuriot, 2003] L.Dixon & J.Fleuriot. Isaplanner: A proto-
type proof planner in isabelle. In 19th International Con-
ference on Automated Deduction, 2003.

[Friendly, 1995] L.Friendly. The design of distributed hy-
perlinked programming documentation. In International
Workshop on Hypermedia Design ’95, 1995.

2


