
Probabilistic Consistency Boosts MAC and SAC

Deepak Mehta∗ and M.R.C. van Dongen

Computer Science Department, University College Cork, Ireland

Abstract

Constraint Satisfaction Problems (CSPs) are ubiq-
uitous in Artificial Intelligence. The backtrack al-
gorithms that maintain some local consistency dur-
ing search have become the de facto standard to
solve CSPs. Maintaining higher levels of consis-
tency, generally, reduces the search effort. How-
ever, due to ineffective constraint propagation, it of-
ten penalises the search algorithm in terms of time.
If we can reduce ineffective constraint propagation,
then the effectiveness of a search algorithm can be
enhanced significantly. In order to do so, we use
a probabilistic approach to resolve when to propa-
gate and when not to. The idea is to perform only
the useful consistency checking by not seeking a
support when there is a high probability that a sup-
port exists. The idea of probabilistic support in-
ference is general and can be applied to any kind
of local consistency algorithm. However, we shall
study its impact with respect to arc consistency and
singleton arc consistency (SAC). Experimental re-
sults demonstrate that enforcing probabilistic SAC

almost always enforces SAC, but it requires signif-
icantly less time than SAC. Likewise, maintaining
probabilistic arc consistency and maintaining prob-
abilistic SAC require significantly less time than
maintaining arc consistency and maintaining SAC.

1 Introduction

Constraint Satisfaction Problems (CSPs) are ubiquitous in Ar-
tificial Intelligence. They involve finding values for problem
variables subject to constraints. For simplicity, we restrict
our attention to binary CSPs. Backtrack algorithms that main-
tain some local consistency during search have become the
de facto standard to solve CSPs. Maintaining a higher level
of local consistency before and/or during search usually re-
duces the thrashing behaviour of a backtrack algorithm. How-
ever, the amount of ineffective constraint propagation also in-
creases, which can penalise the algorithm in terms of time.

Arc consistency (AC) is the most widely used local consis-
tency technique to reduce the search space of CSPs. Coarse-

∗The first author is supported by the Boole Centre for Research
in Informatics.

grained arc consistency algorithms such as AC-3 [Mackworth,
1977] and AC-2001 [Bessière and Régin, 2001] are competi-
tive. These algorithms repeatedly carry out revisions, which
require support checks for identifying and deleting all unsup-
ported values from the domain of a variable. However, for
difficult problems, in many revisions, some or all values suc-
cessfully find some support, that is to say, ineffective con-
straint propagation occurs. For example, when RLFAP 11
is solved using either MAC-3 or MAC-2001 equipped with
dom/deg as a variable ordering heuristic, 83% of the total re-
visions are ineffective. If we can avoid this ineffective propa-
gation, then a considerable amount of work can be saved.

Recently, singleton arc consistency (SAC) [Debruyne and
Bessière, 1997] has been getting much attention. It is a
stronger consistency than AC. Therefore, it can avoid much
unfruitful exploration in the search-tree. However, as pointed
out earlier, as the strength of local consistency increases, so
does the amount of ineffective propagation. Hence, applying
it before search can be expensive in terms of checks and time,
and maintaining it during search can be even more expensive.

At the CPAI’2005 workshop, [Mehta and van Dongen,
2005a] presented a probabilistic approach to reduce ineffec-
tive propagation and studied it with respect to arc consistency
on random problems. This probabilistic approach is to avoid
the process of seeking a support, when the probability of its
existence is above some, carefully chosen, threshold. This
way a significant amount of work in terms of support checks
and time can be saved.

In this paper, we present a more extensive investigation.
We study the impact of using the probabilistic approach not
only in AC but also in SAC and LSAC (limited version of SAC

proposed in this paper) on a variety of problems. We call the
resulting algorithms Probabilistic Arc Consistency 1 (PAC),
Probabilistic Singleton Arc Consistency (PSAC), and Proba-
bilistic LSAC (PLSAC). Our four main contributions, then, are
as follows: First, we investigate the threshold at which Main-
taining PAC (MPAC) performs the best on different classes of
random problems. Second, we carry out experiments to deter-
mine how well MPAC does on a variety of known problems in-
cluding real-world problems. Our findings suggest that MPAC

usually requires significantly less time than MAC. Next, we

1Probabilistic Arc Consistency proposed in this paper has no re-
lation with the one mentioned in [Horsch and Havens, 2000]

IJCAI-07
143

examine the performances of PSAC and PLSAC when used as
a preprocessor before search. Experimental results demon-
strate that enforcing probabilistic SAC and LSAC almost al-
ways enforces SAC and LSAC but usually require significantly
less time. Finally, we investigate the impact of maintaining
PSAC and PLSAC during search on various problems. Re-
sults show a significant gain in terms of time on quasi-group
problems. Overall, empirical results presented in this paper
demonstrate that the original algorithms are outperformed by
their probabilistic counterparts.

The remainder of this paper is organised as follows: Sec-
tion 2 gives an introduction to constraint satisfaction and con-
sistency algorithms. Section 3 introduces the notions of a
probabilistic support condition and probabilistic revision con-
dition. Experimental results are presented in section 4 fol-
lowed by conclusions in section 5.

2 Preliminaries

A Constraint Satisfaction Problem (V ,D, C) is defined as a
set V of n variables, a non-empty domain D(x) ∈ D, for all
x ∈ V and a set C of e constraints among subsets of vari-
ables of V . The density of a CSP is defined as 2 e/(n2 − n).
A binary constraint Cxy between variables x and y is a sub-
set of the Cartesian product of D(x) and D(y) that specifies
the allowed pairs of values for x and y. The tightness of the
constraint Cxy is defined as 1 − |Cxy |/|D(x) × D(y) |. A
value b ∈ D(y) (also denoted as, (y, b)) is called a support
for (x, a) if (a, b) ∈ Cxy. Similarly, (x, a) is called a support
for (y, b) if (a, b) ∈ Cxy . A support check is a test to find if
two values support each other. The directed constraint graph
of a CSP is a graph having an arc (x, y) for each combination
of two mutually constraining variables x and y. We will use
G to denote the directed constraint graph of the input CSP.

A value a ∈ D(x) is arc consistent if ∀y ∈ V constraining
x the value a is supported by some value in D(y). A CSP is
arc consistent if and only if ∀x ∈ V , D(x) �= ∅, and ∀a ∈
D(x), (x, a) is arc consistent. We denote the CSP P obtained
after enforcing arc consistency as ac(P). If there is a variable
with an empty domain in ac(P), we denote it as ac(P) = ⊥.
Usually, an input CSP is transformed into its arc consistent
equivalent, before starting search. We call the domain of x
in this initial arc consistent equivalent of the input CSP the
first arc consistent domain of x. We use Dac(x) for the first
arc consistent domain of x, and D(x) for the current domain
of x. The CSP obtained from P by assigning a value a to
the variable x is denoted by P|x=a. The value a ∈ D(x) is
singleton arc consistent if and only if ac(P|x=a) �= ⊥. A CSP

is singleton arc consistent if and only if each value of each
variable is singleton arc consistent.

MAC is a backtrack algorithm that maintains arc consis-
tency after every variable assignment. Forward Checking
(FC) can be considered a degenerated form of MAC. It en-
sures that each value in the domain of each future variable is
FC consistent, i.e. supported by the value assigned to every
past and current variable by which it is constrained. MSAC

is a backtrack algorithm that maintains singleton arc consis-
tency. Throughout this paper, familiarity with the arc consis-
tency algorithm AC-3 [Mackworth, 1977] is assumed.

3 Probabilistic Support Inference

The traditional approach to infer the existence of a support
for a value a ∈ D(x) in D(y) is to identify some b ∈ D(y)
that supports a. This usually results in a sequence of support
checks. Identifying the support is more than needed: know-
ing that a support exists is enough. The notions of a support
condition (SC) and a revision condition (RC) were introduced
in [Mehta and van Dongen, 2005b] to reduce the task of iden-
tifying a support up to some extent for arc consistency algo-
rithms. If SC holds for (x, a) with respect to y, then it guar-
antees that (x, a) has some support in D(y). If RC holds for
an arc, (x, y), then it guarantees that all values in D(x) have
some support in D(y). In the following paragraphs, we de-
scribe the special versions of SC and RC which facilitates the
introduction of their probabilistic versions.

Let Cxy be the constraint between x and y, let a ∈ D(x),
and let R(y) = Dac(y) \ D(y) be the values removed from
the first arc consistent domain of y. The support count of
(x, a) with respect to y, denoted sc(x, y, a), is the number
of values in Dac(y) supporting a. Note that |R(y) | is an up-
per bound on the number of lost supports of (x, a) in y. If
sc(x, y, a) > |R(y) | then (x, a) is supported by y. This con-
dition is called a special version of a support condition. For
example, if |Dac(y)| = 20, sc(x, y, a) = 2, and |R(y) | = 1,
i.e. 1 value is removed from Dac(y), then SC holds and (x, a)
has a support in D(y) with a probability of 1. Hence, there is
no need to seek support for a in D(y).

For a given arc, (x, y), the support count of x with
respect to y, denoted sc(x, y), is defined by sc(x, y) =
min ({sc(x, y, a) : a ∈ D(x)}). If sc(x, y) > |R(y) | , then
each value in D(x) is supported by y. This condition is a spe-
cial version of what is called a revision condition in [Mehta
and van Dongen, 2005b]. For example, if |Dac(y) | = 20,
sc(x, y) = 2 and |R(y) | = 1 then each value a ∈ D(x)
is supported by some value of D(y) with a probability of 1.
Hence, there is no need to revise D(x) against D(y).

In the examples discussed above, if |R(y)| = 2, then SC

and RC will fail. Despite of having a high probability of the
support existence, the algorithm will be forced to search for
it in D(y). Avoiding the process of seeking a support with
a high probability can also be worthwhile. In order to do
so, the notions of a probabilistic support condition (PSC) and
a probabilistic revision condition (PRC) were introduced in
[Mehta and van Dongen, 2005a]. The PSC holds for (x, a)
with respect to y, if the probability that a support exists for
(x, a) in D(y) is above some, carefully chosen, threshold.
The PRC holds for an arc (x, y), if the probability of having
some support for each value a ∈ D(x) in D(y), is above
some, carefully chosen, threshold.

Let Ps(x,y,a) be the probability that there exists some sup-

port for (x, a) in D(y). If we assume that each value in
Dac(y) is equally likely to be removed during search, then
it follows that

Ps(x,y,a) = 1 −

(
|R(y) |

sc(x, y, a)

)
/

(
|Dac(y) |

sc(x, y, a)

)
.

Let T , 0 ≤ T ≤ 1, be some desired threshold. If Ps(x,y,a) ≥
T then (x, a) has some support in D(y) with a probability

IJCAI-07
144

of T or more. This condition is called a Probabilistic Sup-
port Condition (PSC) in [Mehta and van Dongen, 2005a]. If
it holds, then the process of seeking a support for (x, a) in
D(y) is avoided. For example, if T = 0.9, |Dac(y)| = 20,
sc(x, y, a) = 2, and this time |R(y) | = 2, then PSC holds
and (x, a) has a support in D(y) with a probability of 0.994.

Let Ps(x,y) be the least probability of the values of Dac(x)
that there exists some support in y. If Ps(x,y) ≥ T then,

each value in D(x) is supported by y with a probability of
T or more. This condition is called a Probabilistic Revision
Condition. If it holds then the revision of D(x) against D(y)
is skipped. The interested reader is referred to [Mehta and
van Dongen, 2005a] for details.

3.1 PAC-3

PSC and PRC can be embodied in any coarse-grained AC al-
gorithm. Figure 1 depicts the pseudocode of PAC-3, the result
of incorporating PSC and PRC into AC-3 [Mackworth, 1977].
Depending on the threshold, sometimes it may achieve less
than full arc consistency. If PSC holds then the process of
identifying a support is avoided. This is depicted in Figure 2.
If PRC holds then it is exploited before adding the arcs to the
queue, in which case the corresponding arc (x, y) is not added
to the queue. This is depicted in Figure 1. Note that coarse-
grained arc consistency algorithms require O(ed) revisions
in the worst-case to make the problem arc consistent. Nev-
ertheless, the maximum number of effective revisions (that is
when at least a single value is deleted from a domain) cannot
exceed O(nd), irrespective of whether the algorithm used is
optimal or non-optimal. Thus, in the worst case, it can per-
form O(ed − nd) ineffective revisions. In order to use PSC

and PRC, the support count for each arc-value pair must be
computed prior to search. If T = 0 then PAC-3 makes the
problem FC consistent. If T = 1 then PAC-3 makes the prob-
lem arc consistent. The support counters are represented in
O(e d), which exceeds the space-complexity of AC-3. Thus,
the space-complexity of PAC-3 becomes O(e d). The worst-
case time complexity of PAC-3 is O(e d3). The use of PSC and
PRC in PAC-3 is presented in such a way that the idea is made
as clear as possible. This should not be taken as the real im-
plementation. [Mehta and van Dongen, 2005a] describes how
to implement PSC and PRC efficiently.

4 Experimental Results

4.1 Introduction

Overview

We present some empirical results demonstrating the practi-
cal use of PSC and PRC. We investigate several probabilis-
tic consistencies, particularly, Probabilistic Arc Consistency
(PAC), Probabilistic Singleton Arc Consistency (PSAC), and
a limited version of PSAC (PLSAC). First, we find out the
threshold at which Maintaining PAC (MPAC) performs the
best by experimenting on model B random problems. Next,
we carry out experiments to determine how well MPAC does
when compared to MAC and FC. The results for FC are also
included to show that MPAC is not only better than MAC on
problems on which FC is better than MAC but as well as on
the problems on which MAC is better than FC. Finally, we

Function PAC-3(current var) :Boolean;

begin

Q := G

while Q not empty do begin

select any x from {x : (x, y) ∈ Q }
effective revisions := 0
for each y such that (x, y) ∈ Q do

remove (x, y) from Q

if y = current var then

revise(x, y, change
x
)

else

revisep(x, y, change
x
)

if D(x) = ∅ then

return False

else if change
x

then

effective revisions := effective revisions + 1
y′′ := y;

if effective revisions = 1 then

Q := Q∪ { (y′, x) ∈ G : y′ �= y′′, Ps(y′,x) < T }
else if effective revisions > 1 then

Q := Q∪ { (y′, x) ∈ G : Ps(y′,x) < T }
return True;

end; Figure 1: PAC-3

Function revisep(x, y, var change
x
)

begin

change
x

:= False

for each a ∈ D(x) do

if Ps(x,y,a) ≥ T then

\∗ do nothing ∗\
else

if �b ∈ D(y) such that b supports a then

D(x) := D(x) \ { a }
change

x
:= True

end;

Figure 2: Algorithm revisep

examine the usefulness of PSAC and PLSAC when used as a
preprocessor and when maintained during search.

Problems Studied

We have used model B [Gent et al., 2001] random problems
and several problems from the literature to evaluate the com-
petence of probabilistic consistencies. In model B, a random
CSP instance is represented as 〈n, d, c, t 〉 where n is the num-
ber of variables, d is the uniform domain size, c is the num-
ber of constraints, and t is the number of forbidden pairs of
values. For each combination of parameter, 50 instances are
generated and their mean performances is reported. The re-
maining problems, except odd even n 2 have all been used
as benchmarks for the First International CSP Solver Com-
petition and are described in [Boussemart et al., 2005]. In-
formally, the odd-even n problem is an undirected constraint
graph with a cycle with n variables. The domain of each vari-
able is {1, 2, 3, 4}. For each constraint Cxy , if a (x, a) is odd
(even) then it is supported by even (odd) values of D(y). The
problem is unsatisfiable if n is odd.

Throughout, it has been our intention to compare general-
purpose propagation algorithms, and not special-purpose al-
gorithms, which make use of the semantics of the con-
straints. Some readers may argue that the probabilistic con-
straint propagation algorithms should have been compared
with special-purpose propagation algorithms. For example, it
is well known that for anti-functional constraints, there is no
need to look for a support unless there is only one value left.

2The problem is mentioned in the invited talk ”Towards theo-
retical frameworks for comparing constraint satisfaction models and
algorithms” by Peter van Beek in CP’2001.

IJCAI-07
145

Table 1: Comparison between FC, MAC, and MPAC (with
T=0.9) on random problems.

〈n, d, c, t〉 Algorithm #chks time #vn

FC 60,435,849 13.084 1,336,291

〈20, 30, 190, 271〉 MAC 223,034,030 18.203 281,954

MPAC 49,496,904 11.602 443,292

FC 286,321,115 61.306 6,181,026

〈20, 40, 190, 515〉 MAC 1,052,973,654 86.216 1,287,709

MPAC 234,024,186 51.102 2,048,660

FC 121,226,499 31.230 2,581,395

〈50, 10, 500, 20〉 MAC 276,708,237 35.178 334,566

MPAC 72,993,605 27.913 678,370

FC 3,809,711,519 2754.135 346,075,062

〈150, 15, 400, 134〉 MAC 908,870,372 217.939 709,387

MPAC 706,309,188 193.746 1,149,995

FC 555,592,958 119.888 17,268,137

〈100, 20, 290, 240〉 MAC 135,546,970 17.777 97,939

MPAC 81,031,221 16.731 132,983

FC 58,969,203 8.686 1,871,351

〈90, 20, 222, 272〉 MAC 18,255,078 1.086 7,719

MPAC 8,019,466 1.081 10,734

Indeed, this should improve constraint propagation. How-
ever, probabilistic algorithms can be improved similarly.

Implementation Details

AC-3 is used to implement the arc consistency component of
MAC and SAC. The reason why AC-3 is chosen is that it is eas-
ier to implement and is also efficient. For example, the best
solvers in the binary and overall category of the First Inter-
national CSP Solver Competition were based on AC-3. Sim-
ilarly, PAC-3 is used to implement the probabilistic arc con-
sistency component of the probabilistic versions of MAC and
SAC. SAC-1 is used to implement singleton arc consistency.
All algorithms were equipped with a dom/wdeg [Bousse-
mart et al., 2004] conflict-directed variable ordering heuris-
tic. The performance of the algorithms is measured in terms
of checks (#chks), time in seconds (time), the number of re-
visions (#rev), and the number of visited nodes (#vn). The
experiments were carried out on a PC Pentium III having 256
MB of RAM running at 2.266 GHz processor with linux. All
algorithms were written in C.

4.2 Probabilistic Arc Consistency

Maintaining probabilistic arc consistency in such a way that
the amount of ineffective constraint propagation is minimised
and simultaneously the least amount of effective propagation
is avoided depends heavily on the threshold value T . There-
fore, a natural question is for which values of T , MPAC re-
solves the trade-off, in terms of time, between the effort re-
quired to search and that required to detect inconsistent val-
ues. To find this out, experiments were designed to exam-
ine the behaviour of MPAC with different thresholds ranging
from 0 to 1 in steps of 0.02 on random problems. Note that
at T = 1, MPAC maintains full arc consistency and at T = 0,
it becomes forward checking. It is well known that on hard
dense, loosely constrained random CSPs, FC performs bet-
ter than MAC and on hard sparse, tightly constrained random
CSPs, MAC performs better than FC [Chmeiss and Saı̈s, 2004].
Therefore, we studied MPAC with these classes of problems.

Random Problems

In our investigations, we found that inferring the existence
of a support with a likelihood, roughly between 0.8 and 0.9,
enables MPAC to outperform both MAC and FC on both classes
of problems. Table 1 presents results on hard dense, loosely

Table 2: Comparison between FC, MAC, and MPAC (with T =
0.9) on a variety of known problems.

Problem Algorithm #chks time #vn #rev

FC 74,944,982 11.564 1,508,169 13,406,750

frb40-19 MAC 177,424,742 11.488 158,816 25,493,093

MPAC 47,423,325 8.407 268,115 14,899,791

FC 972,804,340 196.002 17,843,238 172,256,029

frb45-21 MAC 1,501,335,748 215.092 1,861,016 333,222,409

MPAC 599,255,164 145.864 3,532,973 195,139,744

FC 20,492,062 1.791 384,458 1,515,356

scen5 MAC 879,425 0.061 498 21,934

MPAC 7,713,406 0.466 59,048 585,416

FC 2,891,066 0.325 11,788 131,020

scen11 MAC 8,285,681 0.517 3,749 276,601

MPAC 10,391,078 0.298 4,624 98,334

FC 2,203,289,973 550.03 14,543,828 170,755,686

scen11 f7 MAC 8,028,568,317 777.38 3,471,542 408,551,247

MPAC 1,518,283,911 360.86 6,935,594 157,729,437

FC 5,372,894,595 1,295.79 36,611,678 421,021,114

scen11 f6 MAC 16,066,360,455 1,767.93 7,643,388 817,697,705

MPAC 4,233,509,071 954.79 19,056,709 413,380,973

FC 206,389 0.054 11,588 77,051

bqwh15 106 MAC 231,871 0.036 1,594 91,721

MPAC 81,520 0.027 1,893 50,785

FC 9,368,452 3.093 500,794 3,615,749

bqwh18 141 MAC 5,516,466 1.224 23,229 2,283,944

MPAC 1,402,175 0.788 27,232 1,101,786

FC 12,213,843 2.487 149,151 2,040,421

geom MAC 49,937,553 4.119 28,220 5,895,601

MPAC 7,313,488 2.006 43,511 2,371,765

FC 129,662,303 7.510 1,656,165 15,002,347

qa-5 MAC 52,300,903 3.999 94,531 11,736,269

MPAC 3,2433,059 2.342 105,304 4,731,980

FC 2,135,903,729 1,526.256 140,853,896 1,704,256,885

qa-6 MAC 911,855,065 129.094 672,252 164,556,262

MPAC 960,010,551 104.517 1,462,548 99,707,970

FC 287,382,172 37.730 96,173,136 96,873,380

odd even 27 MAC 948 0.000 4 162

MPAC 1,218 0.000 4 162

FC 4,190,654,127 211.518 33,918,459 40,155,040

K25⊕Q8 MAC 23,117,603,455 308.070 122,934 1,804,139

MPAC 5,512,831,722 180.914 246,026 2,004,268

FC 5,959,952,959 503.351 32,977,840 174,400,084

K25⊗Q8 MAC 23,472,721,326 335.107 122,549 12,963,828

MPAC 5,550,542,521 198.914 260,750 4,182,518

constrained problems (first 3 rows), on which FC is better than
MAC, and on hard sparse, tightly constrained problems (last 3
rows) on which MAC is better than FC. Results demonstrate
that MPAC (T = 0.9) is better than the best of FC and MAC on
both classes of random problems. Also, the number of nodes
visited by MPAC (T = 0.9) is nearer to MAC than those visited
by FC. This is the first time an algorithm has been presented
that outperforms MAC and FC on both classes of problems.
Seeing the good performance of MPAC for threshold values
ranging between 0.8 and 0.9, we decided to choose T = 0.9
for the remainder of the experiments.

Problems from the Literature

Table 2 shows the results obtained on some instances of va-
riety of known problems: (1) forced random binary prob-
lems frb-40-19 and frb-45-21 (2) RLFAP instances scen5

and scen11, (3) modified RLFAP instances scen11 f7 and
scen11 f6, (4) average of 100 satisfiable instances of bal-
anced Quasigroup with Holes problems bqwh15 106 and
bqwh18 141 (5) average of 100 (92 satisfiable, 8 satisfiable)
instances of geometric problem geom (6) two instances of
attacking prime queen problem qa-5 and qa-6, (7) one in-
stance of odd-even problem odd-even 27, (8) two instances
of queen-knights problem K25⊕Q8 and K25⊗Q8.

One can observe in Table 2, that in terms of time, on some
problems, FC is better than MAC, while on some, MAC is bet-
ter than FC. It is surprising that FC is not much inferior than
MAC as anticipated. This is partially because of the robust-

IJCAI-07
146

ness of the conflict directed variable ordering heuristic. For
easy problems, due to the expense entailed by computing the
number of supports for each arc-value pair, MPAC may not be
beneficial. However, the time required to initialise the sup-
port counters is not much. Furthermore, for all the harder
instances, that require at least 1 second to solve, MPAC gen-
erally pays off, by avoiding much ineffective propagation. In
summary, by visiting few extra nodes than MAC, MPAC is able
to save much ineffective propagation and solves the problem
more quickly than both MAC and FC.

Note that, if the domain size is small or if the values have
only a few supports, then keeping the threshold high, fails
PSC and PRC quickly, since the likelihood of support exis-
tence decreases rapidly with respect to the number of values
removed from the domain and the prospect of effective prop-
agation increases. This in turn permits MPAC to act like MAC.
For example, in case of odd even 27, the domain size of each
variable is 4 and each arc-value pair is supported by 2 values.
For this problem, FC visits exactly 2n+1 − 4 nodes, while
MAC visits only 4 nodes and for T = 0.9 MPAC also vis-
its only 4 nodes. The probability of support existence for a
value (x, a) in D(y) becomes 0.66, as soon as 2 values are
removed from y, and since the threshold is set to 0.9, both
PSC and PRC fails, enabling MPAC to maintain full arc consis-
tency. This again shows that MPAC with the right threshold is
able to resolve when to propagate and when not to.

We also experimented with MAC-2001 which uses an opti-
mal arc consistency algorithm AC-2001. However, for almost
all the problems, MAC-2001 was consuming more time than
MAC-3, since there is a huge overhead of maintaining auxil-
iary data structures [van Dongen, 2003].

4.3 Probabilistic Singleton Arc Consistency

Although there are stronger consistencies than arc consis-
tency, the standard is to make the problem full/partial arc con-
sistent before and/or during search. However, recently, there
has been a surge of interest in SAC [Bessière and Debruyne,
2005; Lecoutre and Cardon, 2005] as a preprocessor of MAC.
The advantage of SAC is that it improves the filtering power
of AC without changing the structure of the problem as op-
posed to other stronger consistencies such as k-consistency
(k > 2) and so on. But, establishing SAC can be expensive,
and can be a huge overhead, especially for loose problems
[Lecoutre and Cardon, 2005]. We investigate the advantages
and disadvantages of applying PSC and PRC to SAC.

Enforcing SAC in SAC-1 [Debruyne and Bessière, 1997]

style works by having an outer loop consisting of variable-
value pairs. For each (x, a) if ac(P|x=a) = ⊥, then it deletes
a from D(x). Then it enforces AC. Should this fail then the
problem is not SAC. The main problem with SAC-1 is that
deleting a single value triggers the addition of all variable-
value pairs in the outer loop. The restricted SAC (RSAC) al-
gorithm [Prosser et al., 2000] avoids this triggering by con-
sidering each variable-value pair only once. We propose lim-
ited SAC (LSAC) which lies between restricted SAC and SAC.
The idea is that if a variable-value pair (x, a) is found arc-
inconsistent then, only the pairs involving neighbours of x as
a variable are added in the outer-loop. Our experience is that
LSAC is more effective than RSAC.

Table 3: Comparison between SAC, LSAC, PSAC and PLSAC.
problem SAC LSAC PSAC PLSAC

#chks 274,675 186,172 14,384 11,436

bqwh15 106 time 0.026 0.020 0.006 0.005

#rem 23 23 23 23

#chks 409,344 299,821 44,534 36,973

bqwh18 114 time 0.040 0.030 0.010 0.008

#rem 15 15 15 15

#chks 872,208,323 895,600,777 17,484,337 17,484,337

qa-7 time 50.885 52.390 1.929 1.979

#rem 65 65 65 65

#chks 3,499,340,592 3,533,080,066 51,821,816 51,821,816

qa-8 time 249.696 290.534 9.790 11.496

#rem 160 160 160 160

#chks 206,371,887 206,371,887 16,738,737 16,738,737

K25⊕Q8 time 2.407 2.446 0.469 0.450

#rem 3,111 3,111 3,111 3,111

#chks 1,301,195,918 1,301,195,918 19,252,527 19,252,527

K25⊗Q8 time 13.473 13.469 0.613 0.635

#rem 3,112 3,112 3,112 3,112

#chks 9,896,112 11,791,192 2,793,188 2,348,189

scen5 time 0.700 0.858 0.126 0.120

#rem 13,814 13,814 13,794 13,794

#chks 622,229,041 622,229,041 16,376,619 16,376,619

scen11 time 21.809 21.809 3.005 3.005

#rem 0 0 0 0

#chks 292,600,735 292,600,735 16,415,998 16,415,998

scen11 f6 time 11.775 11.763 0.811 0.813

#rem 3660 3660 3660 3660

#chks 600,508,958 600,508,958 14,100,504 14,100,504

js-1 time 15.549 15.411 0.446 0.415

#rem 0 0 0 0

#chks 985,446,461 985,446,461 18,291,441 18,291,441

js-2 time 24.963 25.393 0.601 0.631

#rem 0 0 0 0

#chks 5,272,064 6,184,748 744,324 611,475

co-25-10-20 time 0.258 0.303 0.076 0.061

#rem 392 391 392 392

#chks 2,143,350 23,359 184,507 184,507

co-75-1-80 time 0.087 0.001 0.012 0.013

#rem 59 59 56 56

The algorithms SAC, LSAC, PSAC (Probabilistic SAC), and
PLSAC (Probabilistic LSAC) were applied to forced random
problems, RLFAP, modified RLFAP, quasi-group with holes,
queens-knights, attacking prime queen, job-shop instances,
composed random problems. Table 3 presents results for only
a few instances of the above problems, due to space restric-
tion. Again, the value of threshold used for PSC and PRC is
0.9. In Table 3 #rem denotes the number of removed val-
ues. The intention is not to test if the preprocessing by SAC

has any effect in the global cost of solving the problem, but
to see if the same results can be achieved by doing consid-
erably less computation by using probabilistic support infer-
ence. When the input problem is already singleton arc con-
sistent, PSAC and PLSAC avoid most of the unnecessary work.
For example, for job-shop instances js-1 and js-2, both PSAC

and PLSAC spend at least 34 times less time than their coun-
terparts. Even when the input problem is not singleton arc
consistent, probabilistic versions of the algorithms are as ef-
ficient as the original versions. For most of the problems,
they remove exactly the same number of values as removed
by SAC and LSAC, but consume significantly less time. For
example, in case of attacking queen problems, all the algo-
rithms remove the same number of values. However, PSAC

and PLSAC are quicker by an order of at least 27.

Seeing the good performance of PSAC and PLSAC, the im-
mediate question arises: can we afford to maintain them dur-
ing search? So far SAC has been used only as a preprocessor.
Maintaining SAC can reduce the number of branches signifi-
cantly but at the cost of much constraint propagation, which
may consume a lot of time. Maintaining it even for depth 1

IJCAI-07
147

Table 4: Comparison of MAC, MSAC, MLSAC against their
probabilistic versions (T = 0.9) on structured problems.
(Checks are in terms of 1000s.)

problem MAC MPAC MSAC MPSAC MLSAC MPLSAC

#chks 5,433 1,220 45,165 3,835 31,580 1,418

qwh-20 time 2.17 1.34 10.83 3.08 8.69 1.32

(easy) #vn 21,049 21,049 570 570 1,101 1,101

#chks 186,872 42,769 756,948 70,666 293,152 34,330

qwh-20 time 75.35 51.01 172.23 54.56 76.86 31.39

(hard) #vn 693,662 693,662 3,598 3,598 7,136 7,136

#chks 502,148 93,136 807,478 57,235 656,270 40,650

qwh-25 time 252.89 154.00 236.20 63.71 221.46 53.506

(easy) #vn 1,348,291 1,348,291 2,525 2,525 10,283 10,283

#chks 600,697 670,370 2,090,689 768,556 954,767 211,826

qcp-20 time 2,753.77 1,990.31 8,242.28 1,679.01 5,688.19 877.540

(easy) #vn 26,191,095 26,191,095 107,624 107,624 586,342 586,342

within search has been found very expensive in [Prosser et al.,
2000]. We investigate if PSAC and PLSAC can be maintained
within search economically. Table 4 shows the comparison of
MAC, MPAC, MSAC (maintaining SAC), MLSAC (maintaining
LSAC), MPSAC (maintaining PSAC), and MPLSAC (maintain-
ing PLSAC) on structured problems. Mean results are shown
only for quasigroup with holes (QWH) and quasi-completion
problems (QCP) categorised as easy and hard. Note that here
easy does not mean easy in the real sense. The results are
first of their kind and highlight the following points: (1) the
probabilistic version of the algorithm is better than its corre-
sponding original version, (2) maintaining full or probabilis-
tic (L)SAC reduces the branches of the search tree drastically,
(3) though MLSAC and MPLSAC visit a few nodes more than
MSAC and MPSAC, their run-times are low, (4) MPLSAC is the
best in terms of checks and solution time.

In our experiments, MPSAC/MPLSAC outperformed MSAC/
MLSAC for almost all the problems which we have consid-
ered. But, when compared to MAC and MPAC, they were
found to be expensive for most of the problems except for
quasi-group problems. However, this observation is made
only for threshold value 0.9. Thorough testing remains to
be done with different values of T .

5 Conclusions and Future Work

This paper investigates the use of probabilistic approach to
reduce ineffective constraint propagation. The central idea is
to avoid the process of seeking a support when there is a high
probability of its existence. Inferring the existence of a sup-
port with a high probability allows an algorithm to save a lot
of checks and time and slightly affects its ability to prune val-
ues. For example, by visiting a few nodes more than MAC,
MPAC is able to outperform both MAC and FC on a variety
of different problems. Similarly, enforcing probabilistic SAC

almost always enforces SAC, but it requires significantly less
time than SAC. Overall, experiments highlight the good per-
formance of probabilistic support condition and probabilistic
revision condition. We believe that the idea of probabilistic
support inference deserves further investigation. The notions
of PSC and PRC can be improved further by taking into ac-
count the semantics of the constraints.

References

[Bessière and Debruyne, 2005] C. Bessière and R. De-
bruyne. Optimal and suboptimal singleton arc consistency

algorithms. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, pages 54–59, 2005.

[Bessière and Régin, 2001] C. Bessière and J.-C. Régin. Re-
fining the basic constraint propagation algorithm. In Pro-
ceedings of the 17th International Joint Conference on Ar-
tificial Intelligence, pages 309–315, 2001.

[Boussemart et al., 2004] F. Boussemart, F. Hemery,
C. Lecoutre, and L. Saı̈s. Boosting systematic search
by weighting constraints. In Proceedings of the 13th
European Conference on Artificial Intelligence, 2004.

[Boussemart et al., 2005] F. Boussemart, F. Hemery, and
C. Lecoutre. Description and representation of the prob-
lems selected for the 1st international constraint satisfac-
tion solver competition. In Proceedings of the 2nd Inter-
national Workshop on Constraint Propagation and Imple-
mentation, Volume 2 Solver Competition, 2005.

[Chmeiss and Saı̈s, 2004] A. Chmeiss and L. Saı̈s. Con-
straint satisfaction problems:backtrack search revisited. In
Proceedings of the Sixteenth IEEE International Confer-
ence on Tools with Artificial Intelligence, pages 252–257,
Boca Raton, FL, USA, 2004. IEEE Computer Society.

[Debruyne and Bessière, 1997] R. Debruyne and
C. Bessière. Some practical filtering techniques for
the constraint satisfaction problem. In Proceedings of
the 15th International Joint Conference on Artificial
Intelligence, pages 412–417, 1997.

[Gent et al., 2001] I.P. Gent, E. MacIntyre, P. Prosser,
B. Smith, and T. Walsh. Random constraint satisfaction:
Flaws and structure. Journal of Constraints, 6(4), 2001.

[Horsch and Havens, 2000] M. Horsch and W Havens. Prob-
abilistic arc consistency: A connection between constraint
reasoning and probabilistic reasoning. In 16th Conference
on Uncertainity in Artificial Intelligence, 2000.

[Lecoutre and Cardon, 2005] C. Lecoutre and S. Cardon. A
greedy approach to establish singleton arc consistency. In
Proceedings of the 19th International Joint Conference on
Artificial Intelligence, pages 199–204, 2005.

[Mackworth, 1977] A.K. Mackworth. Consistency in net-
works of relations. Artificial Intelligence, 8:99–118, 1977.

[Mehta and van Dongen, 2005a] D. Mehta and M.R.C. van
Dongen. Maintaining probabilistic arc consistency. In Pro-
ceedings of the 2nd International Workshop on Constraint
Propagation and Implementation, pages 49–64, 2005.

[Mehta and van Dongen, 2005b] D. Mehta and M.R.C. van
Dongen. Reducing checks and revisions in coarse-grained
mac algorithms. In Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence, 2005.

[Prosser et al., 2000] P. Prosser, K. Stergiou, and T. Walsh.
Singleton consistencies. In Proceedings of the 6th Inter-
national Conference on Principles and Practice of Con-
straint Programming, pages 353–368, 2000.

[van Dongen, 2003] M.R.C. van Dongen. Lightweight MAC
algorithms. In Proceedings of the 23rd SGAI International
Conference on Innovative Techniques and Applications of
Artificial Intelligence, pages 227–240. Springer, 2003.

IJCAI-07
148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

